|  | /* | 
|  | * Copyright 2019 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "RegionSamplingThread" | 
|  |  | 
|  | #include "RegionSamplingThread.h" | 
|  |  | 
|  | #include <cutils/properties.h> | 
|  | #include <gui/IRegionSamplingListener.h> | 
|  | #include <utils/Trace.h> | 
|  | #include <string> | 
|  |  | 
|  | #include <compositionengine/Display.h> | 
|  | #include <compositionengine/impl/OutputCompositionState.h> | 
|  | #include "DisplayDevice.h" | 
|  | #include "Layer.h" | 
|  | #include "SurfaceFlinger.h" | 
|  |  | 
|  | namespace android { | 
|  | using namespace std::chrono_literals; | 
|  |  | 
|  | template <typename T> | 
|  | struct SpHash { | 
|  | size_t operator()(const sp<T>& p) const { return std::hash<T*>()(p.get()); } | 
|  | }; | 
|  |  | 
|  | constexpr auto lumaSamplingStepTag = "LumaSamplingStep"; | 
|  | enum class samplingStep { | 
|  | noWorkNeeded, | 
|  | idleTimerWaiting, | 
|  | waitForQuietFrame, | 
|  | waitForZeroPhase, | 
|  | waitForSamplePhase, | 
|  | sample | 
|  | }; | 
|  |  | 
|  | constexpr auto timeForRegionSampling = 5000000ns; | 
|  | constexpr auto maxRegionSamplingSkips = 10; | 
|  | constexpr auto defaultRegionSamplingOffset = -3ms; | 
|  | constexpr auto defaultRegionSamplingPeriod = 100ms; | 
|  | constexpr auto defaultRegionSamplingTimerTimeout = 100ms; | 
|  | // TODO: (b/127403193) duration to string conversion could probably be constexpr | 
|  | template <typename Rep, typename Per> | 
|  | inline std::string toNsString(std::chrono::duration<Rep, Per> t) { | 
|  | return std::to_string(std::chrono::duration_cast<std::chrono::nanoseconds>(t).count()); | 
|  | } | 
|  |  | 
|  | RegionSamplingThread::EnvironmentTimingTunables::EnvironmentTimingTunables() { | 
|  | char value[PROPERTY_VALUE_MAX] = {}; | 
|  |  | 
|  | property_get("debug.sf.region_sampling_offset_ns", value, | 
|  | toNsString(defaultRegionSamplingOffset).c_str()); | 
|  | int const samplingOffsetNsRaw = atoi(value); | 
|  |  | 
|  | property_get("debug.sf.region_sampling_period_ns", value, | 
|  | toNsString(defaultRegionSamplingPeriod).c_str()); | 
|  | int const samplingPeriodNsRaw = atoi(value); | 
|  |  | 
|  | property_get("debug.sf.region_sampling_timer_timeout_ns", value, | 
|  | toNsString(defaultRegionSamplingTimerTimeout).c_str()); | 
|  | int const samplingTimerTimeoutNsRaw = atoi(value); | 
|  |  | 
|  | if ((samplingPeriodNsRaw < 0) || (samplingTimerTimeoutNsRaw < 0)) { | 
|  | ALOGW("User-specified sampling tuning options nonsensical. Using defaults"); | 
|  | mSamplingOffset = defaultRegionSamplingOffset; | 
|  | mSamplingPeriod = defaultRegionSamplingPeriod; | 
|  | mSamplingTimerTimeout = defaultRegionSamplingTimerTimeout; | 
|  | } else { | 
|  | mSamplingOffset = std::chrono::nanoseconds(samplingOffsetNsRaw); | 
|  | mSamplingPeriod = std::chrono::nanoseconds(samplingPeriodNsRaw); | 
|  | mSamplingTimerTimeout = std::chrono::nanoseconds(samplingTimerTimeoutNsRaw); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct SamplingOffsetCallback : DispSync::Callback { | 
|  | SamplingOffsetCallback(RegionSamplingThread& samplingThread, Scheduler& scheduler, | 
|  | std::chrono::nanoseconds targetSamplingOffset) | 
|  | : mRegionSamplingThread(samplingThread), | 
|  | mScheduler(scheduler), | 
|  | mTargetSamplingOffset(targetSamplingOffset) {} | 
|  |  | 
|  | ~SamplingOffsetCallback() { stopVsyncListener(); } | 
|  |  | 
|  | SamplingOffsetCallback(const SamplingOffsetCallback&) = delete; | 
|  | SamplingOffsetCallback& operator=(const SamplingOffsetCallback&) = delete; | 
|  |  | 
|  | void startVsyncListener() { | 
|  | std::lock_guard lock(mMutex); | 
|  | if (mVsyncListening) return; | 
|  |  | 
|  | mPhaseIntervalSetting = Phase::ZERO; | 
|  | mScheduler.withPrimaryDispSync([this](android::DispSync& sync) { | 
|  | sync.addEventListener("SamplingThreadDispSyncListener", 0, this, mLastCallbackTime); | 
|  | }); | 
|  | mVsyncListening = true; | 
|  | } | 
|  |  | 
|  | void stopVsyncListener() { | 
|  | std::lock_guard lock(mMutex); | 
|  | stopVsyncListenerLocked(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void stopVsyncListenerLocked() /*REQUIRES(mMutex)*/ { | 
|  | if (!mVsyncListening) return; | 
|  |  | 
|  | mScheduler.withPrimaryDispSync([this](android::DispSync& sync) { | 
|  | sync.removeEventListener(this, &mLastCallbackTime); | 
|  | }); | 
|  | mVsyncListening = false; | 
|  | } | 
|  |  | 
|  | void onDispSyncEvent(nsecs_t /* when */) final { | 
|  | std::unique_lock<decltype(mMutex)> lock(mMutex); | 
|  |  | 
|  | if (mPhaseIntervalSetting == Phase::ZERO) { | 
|  | ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForSamplePhase)); | 
|  | mPhaseIntervalSetting = Phase::SAMPLING; | 
|  | mScheduler.withPrimaryDispSync([this](android::DispSync& sync) { | 
|  | sync.changePhaseOffset(this, mTargetSamplingOffset.count()); | 
|  | }); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (mPhaseIntervalSetting == Phase::SAMPLING) { | 
|  | mPhaseIntervalSetting = Phase::ZERO; | 
|  | mScheduler.withPrimaryDispSync( | 
|  | [this](android::DispSync& sync) { sync.changePhaseOffset(this, 0); }); | 
|  | stopVsyncListenerLocked(); | 
|  | lock.unlock(); | 
|  | mRegionSamplingThread.notifySamplingOffset(); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | RegionSamplingThread& mRegionSamplingThread; | 
|  | Scheduler& mScheduler; | 
|  | const std::chrono::nanoseconds mTargetSamplingOffset; | 
|  | mutable std::mutex mMutex; | 
|  | nsecs_t mLastCallbackTime = 0; | 
|  | enum class Phase { | 
|  | ZERO, | 
|  | SAMPLING | 
|  | } mPhaseIntervalSetting /*GUARDED_BY(mMutex) macro doesnt work with unique_lock?*/ | 
|  | = Phase::ZERO; | 
|  | bool mVsyncListening /*GUARDED_BY(mMutex)*/ = false; | 
|  | }; | 
|  |  | 
|  | RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler, | 
|  | const TimingTunables& tunables) | 
|  | : mFlinger(flinger), | 
|  | mScheduler(scheduler), | 
|  | mTunables(tunables), | 
|  | mIdleTimer(std::chrono::duration_cast<std::chrono::milliseconds>( | 
|  | mTunables.mSamplingTimerTimeout), | 
|  | [] {}, [this] { checkForStaleLuma(); }), | 
|  | mPhaseCallback(std::make_unique<SamplingOffsetCallback>(*this, mScheduler, | 
|  | tunables.mSamplingOffset)), | 
|  | lastSampleTime(0ns) { | 
|  | mThread = std::thread([this]() { threadMain(); }); | 
|  | pthread_setname_np(mThread.native_handle(), "RegionSamplingThread"); | 
|  | mIdleTimer.start(); | 
|  | } | 
|  |  | 
|  | RegionSamplingThread::RegionSamplingThread(SurfaceFlinger& flinger, Scheduler& scheduler) | 
|  | : RegionSamplingThread(flinger, scheduler, | 
|  | TimingTunables{defaultRegionSamplingOffset, | 
|  | defaultRegionSamplingPeriod, | 
|  | defaultRegionSamplingTimerTimeout}) {} | 
|  |  | 
|  | RegionSamplingThread::~RegionSamplingThread() { | 
|  | mIdleTimer.stop(); | 
|  |  | 
|  | { | 
|  | std::lock_guard lock(mThreadControlMutex); | 
|  | mRunning = false; | 
|  | mCondition.notify_one(); | 
|  | } | 
|  |  | 
|  | if (mThread.joinable()) { | 
|  | mThread.join(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RegionSamplingThread::addListener(const Rect& samplingArea, const sp<IBinder>& stopLayerHandle, | 
|  | const sp<IRegionSamplingListener>& listener) { | 
|  | wp<Layer> stopLayer = stopLayerHandle != nullptr | 
|  | ? static_cast<Layer::Handle*>(stopLayerHandle.get())->owner | 
|  | : nullptr; | 
|  |  | 
|  | sp<IBinder> asBinder = IInterface::asBinder(listener); | 
|  | asBinder->linkToDeath(this); | 
|  | std::lock_guard lock(mSamplingMutex); | 
|  | mDescriptors.emplace(wp<IBinder>(asBinder), Descriptor{samplingArea, stopLayer, listener}); | 
|  | } | 
|  |  | 
|  | void RegionSamplingThread::removeListener(const sp<IRegionSamplingListener>& listener) { | 
|  | std::lock_guard lock(mSamplingMutex); | 
|  | mDescriptors.erase(wp<IBinder>(IInterface::asBinder(listener))); | 
|  | } | 
|  |  | 
|  | void RegionSamplingThread::checkForStaleLuma() { | 
|  | std::lock_guard lock(mThreadControlMutex); | 
|  |  | 
|  | if (mDiscardedFrames > 0) { | 
|  | ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForZeroPhase)); | 
|  | mDiscardedFrames = 0; | 
|  | mPhaseCallback->startVsyncListener(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void RegionSamplingThread::notifyNewContent() { | 
|  | doSample(); | 
|  | } | 
|  |  | 
|  | void RegionSamplingThread::notifySamplingOffset() { | 
|  | doSample(); | 
|  | } | 
|  |  | 
|  | void RegionSamplingThread::doSample() { | 
|  | std::lock_guard lock(mThreadControlMutex); | 
|  | auto now = std::chrono::nanoseconds(systemTime(SYSTEM_TIME_MONOTONIC)); | 
|  | if (lastSampleTime + mTunables.mSamplingPeriod > now) { | 
|  | ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::idleTimerWaiting)); | 
|  | if (mDiscardedFrames == 0) mDiscardedFrames++; | 
|  | return; | 
|  | } | 
|  | if (mDiscardedFrames < maxRegionSamplingSkips) { | 
|  | // If there is relatively little time left for surfaceflinger | 
|  | // until the next vsync deadline, defer this sampling work | 
|  | // to a later frame, when hopefully there will be more time. | 
|  | DisplayStatInfo stats; | 
|  | mScheduler.getDisplayStatInfo(&stats); | 
|  | if (std::chrono::nanoseconds(stats.vsyncTime) - now < timeForRegionSampling) { | 
|  | ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::waitForQuietFrame)); | 
|  | mDiscardedFrames++; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::sample)); | 
|  |  | 
|  | mDiscardedFrames = 0; | 
|  | lastSampleTime = now; | 
|  |  | 
|  | mIdleTimer.reset(); | 
|  | mPhaseCallback->stopVsyncListener(); | 
|  |  | 
|  | mSampleRequested = true; | 
|  | mCondition.notify_one(); | 
|  | } | 
|  |  | 
|  | void RegionSamplingThread::binderDied(const wp<IBinder>& who) { | 
|  | std::lock_guard lock(mSamplingMutex); | 
|  | mDescriptors.erase(who); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Using Rec. 709 primaries | 
|  | inline float getLuma(float r, float g, float b) { | 
|  | constexpr auto rec709_red_primary = 0.2126f; | 
|  | constexpr auto rec709_green_primary = 0.7152f; | 
|  | constexpr auto rec709_blue_primary = 0.0722f; | 
|  | return rec709_red_primary * r + rec709_green_primary * g + rec709_blue_primary * b; | 
|  | } | 
|  | } // anonymous namespace | 
|  |  | 
|  | float sampleArea(const uint32_t* data, int32_t width, int32_t height, int32_t stride, | 
|  | uint32_t orientation, const Rect& sample_area) { | 
|  | if (!sample_area.isValid() || (sample_area.getWidth() > width) || | 
|  | (sample_area.getHeight() > height)) { | 
|  | ALOGE("invalid sampling region requested"); | 
|  | return 0.0f; | 
|  | } | 
|  |  | 
|  | // (b/133849373) ROT_90 screencap images produced upside down | 
|  | auto area = sample_area; | 
|  | if (orientation & ui::Transform::ROT_90) { | 
|  | area.top = height - area.top; | 
|  | area.bottom = height - area.bottom; | 
|  | std::swap(area.top, area.bottom); | 
|  |  | 
|  | area.left = width - area.left; | 
|  | area.right = width - area.right; | 
|  | std::swap(area.left, area.right); | 
|  | } | 
|  |  | 
|  | std::array<int32_t, 256> brightnessBuckets = {}; | 
|  | const int32_t majoritySampleNum = area.getWidth() * area.getHeight() / 2; | 
|  |  | 
|  | for (int32_t row = area.top; row < area.bottom; ++row) { | 
|  | const uint32_t* rowBase = data + row * stride; | 
|  | for (int32_t column = area.left; column < area.right; ++column) { | 
|  | uint32_t pixel = rowBase[column]; | 
|  | const float r = pixel & 0xFF; | 
|  | const float g = (pixel >> 8) & 0xFF; | 
|  | const float b = (pixel >> 16) & 0xFF; | 
|  | const uint8_t luma = std::round(getLuma(r, g, b)); | 
|  | ++brightnessBuckets[luma]; | 
|  | if (brightnessBuckets[luma] > majoritySampleNum) return luma / 255.0f; | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t accumulated = 0; | 
|  | size_t bucket = 0; | 
|  | for (; bucket < brightnessBuckets.size(); bucket++) { | 
|  | accumulated += brightnessBuckets[bucket]; | 
|  | if (accumulated > majoritySampleNum) break; | 
|  | } | 
|  |  | 
|  | return bucket / 255.0f; | 
|  | } | 
|  |  | 
|  | std::vector<float> RegionSamplingThread::sampleBuffer( | 
|  | const sp<GraphicBuffer>& buffer, const Point& leftTop, | 
|  | const std::vector<RegionSamplingThread::Descriptor>& descriptors, uint32_t orientation) { | 
|  | void* data_raw = nullptr; | 
|  | buffer->lock(GRALLOC_USAGE_SW_READ_OFTEN, &data_raw); | 
|  | std::shared_ptr<uint32_t> data(reinterpret_cast<uint32_t*>(data_raw), | 
|  | [&buffer](auto) { buffer->unlock(); }); | 
|  | if (!data) return {}; | 
|  |  | 
|  | const int32_t width = buffer->getWidth(); | 
|  | const int32_t height = buffer->getHeight(); | 
|  | const int32_t stride = buffer->getStride(); | 
|  | std::vector<float> lumas(descriptors.size()); | 
|  | std::transform(descriptors.begin(), descriptors.end(), lumas.begin(), | 
|  | [&](auto const& descriptor) { | 
|  | return sampleArea(data.get(), width, height, stride, orientation, | 
|  | descriptor.area - leftTop); | 
|  | }); | 
|  | return lumas; | 
|  | } | 
|  |  | 
|  | void RegionSamplingThread::captureSample() { | 
|  | ATRACE_CALL(); | 
|  | std::lock_guard lock(mSamplingMutex); | 
|  |  | 
|  | if (mDescriptors.empty()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto device = mFlinger.getDefaultDisplayDevice(); | 
|  | const auto orientation = [](uint32_t orientation) { | 
|  | switch (orientation) { | 
|  | default: | 
|  | case DisplayState::eOrientationDefault: | 
|  | return ui::Transform::ROT_0; | 
|  | case DisplayState::eOrientation90: | 
|  | return ui::Transform::ROT_90; | 
|  | case DisplayState::eOrientation180: | 
|  | return ui::Transform::ROT_180; | 
|  | case DisplayState::eOrientation270: | 
|  | return ui::Transform::ROT_270; | 
|  | } | 
|  | }(device->getOrientation()); | 
|  |  | 
|  | std::vector<RegionSamplingThread::Descriptor> descriptors; | 
|  | Region sampleRegion; | 
|  | for (const auto& [listener, descriptor] : mDescriptors) { | 
|  | sampleRegion.orSelf(descriptor.area); | 
|  | descriptors.emplace_back(descriptor); | 
|  | } | 
|  |  | 
|  | const Rect sampledArea = sampleRegion.bounds(); | 
|  |  | 
|  | auto dx = 0; | 
|  | auto dy = 0; | 
|  | switch (orientation) { | 
|  | case ui::Transform::ROT_90: | 
|  | dx = device->getWidth(); | 
|  | break; | 
|  | case ui::Transform::ROT_180: | 
|  | dx = device->getWidth(); | 
|  | dy = device->getHeight(); | 
|  | break; | 
|  | case ui::Transform::ROT_270: | 
|  | dy = device->getHeight(); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | ui::Transform t(orientation); | 
|  | auto screencapRegion = t.transform(sampleRegion); | 
|  | screencapRegion = screencapRegion.translate(dx, dy); | 
|  | DisplayRenderArea renderArea(device, screencapRegion.bounds(), sampledArea.getWidth(), | 
|  | sampledArea.getHeight(), ui::Dataspace::V0_SRGB, orientation); | 
|  |  | 
|  | std::unordered_set<sp<IRegionSamplingListener>, SpHash<IRegionSamplingListener>> listeners; | 
|  |  | 
|  | auto traverseLayers = [&](const LayerVector::Visitor& visitor) { | 
|  | bool stopLayerFound = false; | 
|  | auto filterVisitor = [&](Layer* layer) { | 
|  | // We don't want to capture any layers beyond the stop layer | 
|  | if (stopLayerFound) return; | 
|  |  | 
|  | // Likewise if we just found a stop layer, set the flag and abort | 
|  | for (const auto& [area, stopLayer, listener] : descriptors) { | 
|  | if (layer == stopLayer.promote().get()) { | 
|  | stopLayerFound = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the layer's position on the screen | 
|  | const Rect bounds = Rect(layer->getBounds()); | 
|  | const ui::Transform transform = layer->getTransform(); | 
|  | constexpr bool roundOutwards = true; | 
|  | Rect transformed = transform.transform(bounds, roundOutwards); | 
|  |  | 
|  | // If this layer doesn't intersect with the larger sampledArea, skip capturing it | 
|  | Rect ignore; | 
|  | if (!transformed.intersect(sampledArea, &ignore)) return; | 
|  |  | 
|  | // If the layer doesn't intersect a sampling area, skip capturing it | 
|  | bool intersectsAnyArea = false; | 
|  | for (const auto& [area, stopLayer, listener] : descriptors) { | 
|  | if (transformed.intersect(area, &ignore)) { | 
|  | intersectsAnyArea = true; | 
|  | listeners.insert(listener); | 
|  | } | 
|  | } | 
|  | if (!intersectsAnyArea) return; | 
|  |  | 
|  | ALOGV("Traversing [%s] [%d, %d, %d, %d]", layer->getName().string(), bounds.left, | 
|  | bounds.top, bounds.right, bounds.bottom); | 
|  | visitor(layer); | 
|  | }; | 
|  | mFlinger.traverseLayersInDisplay(device, filterVisitor); | 
|  | }; | 
|  |  | 
|  | sp<GraphicBuffer> buffer = nullptr; | 
|  | if (mCachedBuffer && mCachedBuffer->getWidth() == sampledArea.getWidth() && | 
|  | mCachedBuffer->getHeight() == sampledArea.getHeight()) { | 
|  | buffer = mCachedBuffer; | 
|  | } else { | 
|  | const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER; | 
|  | buffer = new GraphicBuffer(sampledArea.getWidth(), sampledArea.getHeight(), | 
|  | PIXEL_FORMAT_RGBA_8888, 1, usage, "RegionSamplingThread"); | 
|  | } | 
|  |  | 
|  | bool ignored; | 
|  | mFlinger.captureScreenCommon(renderArea, traverseLayers, buffer, false, ignored); | 
|  |  | 
|  | std::vector<Descriptor> activeDescriptors; | 
|  | for (const auto& descriptor : descriptors) { | 
|  | if (listeners.count(descriptor.listener) != 0) { | 
|  | activeDescriptors.emplace_back(descriptor); | 
|  | } | 
|  | } | 
|  |  | 
|  | ALOGV("Sampling %zu descriptors", activeDescriptors.size()); | 
|  | std::vector<float> lumas = | 
|  | sampleBuffer(buffer, sampledArea.leftTop(), activeDescriptors, orientation); | 
|  | if (lumas.size() != activeDescriptors.size()) { | 
|  | ALOGW("collected %zu median luma values for %zu descriptors", lumas.size(), | 
|  | activeDescriptors.size()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (size_t d = 0; d < activeDescriptors.size(); ++d) { | 
|  | activeDescriptors[d].listener->onSampleCollected(lumas[d]); | 
|  | } | 
|  |  | 
|  | // Extend the lifetime of mCachedBuffer from the previous frame to here to ensure that: | 
|  | // 1) The region sampling thread is the last owner of the buffer, and the freeing of the buffer | 
|  | // happens in this thread, as opposed to the main thread. | 
|  | // 2) The listener(s) receive their notifications prior to freeing the buffer. | 
|  | mCachedBuffer = buffer; | 
|  | ATRACE_INT(lumaSamplingStepTag, static_cast<int>(samplingStep::noWorkNeeded)); | 
|  | } | 
|  |  | 
|  | // NO_THREAD_SAFETY_ANALYSIS is because std::unique_lock presently lacks thread safety annotations. | 
|  | void RegionSamplingThread::threadMain() NO_THREAD_SAFETY_ANALYSIS { | 
|  | std::unique_lock<std::mutex> lock(mThreadControlMutex); | 
|  | while (mRunning) { | 
|  | if (mSampleRequested) { | 
|  | mSampleRequested = false; | 
|  | lock.unlock(); | 
|  | captureSample(); | 
|  | lock.lock(); | 
|  | } | 
|  | mCondition.wait(lock, [this]() REQUIRES(mThreadControlMutex) { | 
|  | return mSampleRequested || !mRunning; | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | } // namespace android |