|  | /* | 
|  | * Copyright 2019 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <compositionengine/CompositionEngine.h> | 
|  | #include <compositionengine/Layer.h> | 
|  | #include <compositionengine/LayerFE.h> | 
|  | #include <compositionengine/Output.h> | 
|  | #include <compositionengine/impl/LayerCompositionState.h> | 
|  | #include <compositionengine/impl/OutputCompositionState.h> | 
|  | #include <compositionengine/impl/OutputLayer.h> | 
|  | #include <compositionengine/impl/OutputLayerCompositionState.h> | 
|  |  | 
|  | #include "DisplayHardware/HWComposer.h" | 
|  |  | 
|  | namespace android::compositionengine { | 
|  |  | 
|  | OutputLayer::~OutputLayer() = default; | 
|  |  | 
|  | namespace impl { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | FloatRect reduce(const FloatRect& win, const Region& exclude) { | 
|  | if (CC_LIKELY(exclude.isEmpty())) { | 
|  | return win; | 
|  | } | 
|  | // Convert through Rect (by rounding) for lack of FloatRegion | 
|  | return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); | 
|  | } | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | std::unique_ptr<compositionengine::OutputLayer> createOutputLayer( | 
|  | const CompositionEngine& compositionEngine, std::optional<DisplayId> displayId, | 
|  | const compositionengine::Output& output, std::shared_ptr<compositionengine::Layer> layer, | 
|  | sp<compositionengine::LayerFE> layerFE) { | 
|  | auto result = std::make_unique<OutputLayer>(output, layer, layerFE); | 
|  | result->initialize(compositionEngine, displayId); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | OutputLayer::OutputLayer(const Output& output, std::shared_ptr<Layer> layer, sp<LayerFE> layerFE) | 
|  | : mOutput(output), mLayer(layer), mLayerFE(layerFE) {} | 
|  |  | 
|  | OutputLayer::~OutputLayer() = default; | 
|  |  | 
|  | void OutputLayer::initialize(const CompositionEngine& compositionEngine, | 
|  | std::optional<DisplayId> displayId) { | 
|  | if (!displayId) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto& hwc = compositionEngine.getHwComposer(); | 
|  |  | 
|  | mState.hwc.emplace(std::shared_ptr<HWC2::Layer>(hwc.createLayer(*displayId), | 
|  | [&hwc, displayId](HWC2::Layer* layer) { | 
|  | hwc.destroyLayer(*displayId, layer); | 
|  | })); | 
|  | } | 
|  |  | 
|  | const compositionengine::Output& OutputLayer::getOutput() const { | 
|  | return mOutput; | 
|  | } | 
|  |  | 
|  | compositionengine::Layer& OutputLayer::getLayer() const { | 
|  | return *mLayer; | 
|  | } | 
|  |  | 
|  | compositionengine::LayerFE& OutputLayer::getLayerFE() const { | 
|  | return *mLayerFE; | 
|  | } | 
|  |  | 
|  | const OutputLayerCompositionState& OutputLayer::getState() const { | 
|  | return mState; | 
|  | } | 
|  |  | 
|  | OutputLayerCompositionState& OutputLayer::editState() { | 
|  | return mState; | 
|  | } | 
|  |  | 
|  | Rect OutputLayer::calculateInitialCrop() const { | 
|  | const auto& layerState = mLayer->getState().frontEnd; | 
|  |  | 
|  | // apply the projection's clipping to the window crop in | 
|  | // layerstack space, and convert-back to layer space. | 
|  | // if there are no window scaling involved, this operation will map to full | 
|  | // pixels in the buffer. | 
|  |  | 
|  | FloatRect activeCropFloat = | 
|  | reduce(layerState.geomLayerBounds, layerState.geomActiveTransparentRegion); | 
|  |  | 
|  | const Rect& viewport = mOutput.getState().viewport; | 
|  | const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
|  | const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; | 
|  | // Transform to screen space. | 
|  | activeCropFloat = layerTransform.transform(activeCropFloat); | 
|  | activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect()); | 
|  | // Back to layer space to work with the content crop. | 
|  | activeCropFloat = inverseLayerTransform.transform(activeCropFloat); | 
|  |  | 
|  | // This needs to be here as transform.transform(Rect) computes the | 
|  | // transformed rect and then takes the bounding box of the result before | 
|  | // returning. This means | 
|  | // transform.inverse().transform(transform.transform(Rect)) != Rect | 
|  | // in which case we need to make sure the final rect is clipped to the | 
|  | // display bounds. | 
|  | Rect activeCrop{activeCropFloat}; | 
|  | if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  | return activeCrop; | 
|  | } | 
|  |  | 
|  | FloatRect OutputLayer::calculateOutputSourceCrop() const { | 
|  | const auto& layerState = mLayer->getState().frontEnd; | 
|  | const auto& outputState = mOutput.getState(); | 
|  |  | 
|  | if (!layerState.geomUsesSourceCrop) { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // the content crop is the area of the content that gets scaled to the | 
|  | // layer's size. This is in buffer space. | 
|  | FloatRect crop = layerState.geomContentCrop.toFloatRect(); | 
|  |  | 
|  | // In addition there is a WM-specified crop we pull from our drawing state. | 
|  | Rect activeCrop = calculateInitialCrop(); | 
|  | const Rect& bufferSize = layerState.geomBufferSize; | 
|  |  | 
|  | int winWidth = bufferSize.getWidth(); | 
|  | int winHeight = bufferSize.getHeight(); | 
|  |  | 
|  | // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1]) | 
|  | // if display frame hasn't been set and the parent is an unbounded layer. | 
|  | if (winWidth < 0 && winHeight < 0) { | 
|  | return crop; | 
|  | } | 
|  |  | 
|  | // Transform the window crop to match the buffer coordinate system, | 
|  | // which means using the inverse of the current transform set on the | 
|  | // SurfaceFlingerConsumer. | 
|  | uint32_t invTransform = layerState.geomBufferTransform; | 
|  | if (layerState.geomBufferUsesDisplayInverseTransform) { | 
|  | /* | 
|  | * the code below applies the primary display's inverse transform to the | 
|  | * buffer | 
|  | */ | 
|  | uint32_t invTransformOrient = outputState.orientation; | 
|  | // calculate the inverse transform | 
|  | if (invTransformOrient & HAL_TRANSFORM_ROT_90) { | 
|  | invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
|  | } | 
|  | // and apply to the current transform | 
|  | invTransform = | 
|  | (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation(); | 
|  | } | 
|  |  | 
|  | if (invTransform & HAL_TRANSFORM_ROT_90) { | 
|  | // If the activeCrop has been rotate the ends are rotated but not | 
|  | // the space itself so when transforming ends back we can't rely on | 
|  | // a modification of the axes of rotation. To account for this we | 
|  | // need to reorient the inverse rotation in terms of the current | 
|  | // axes of rotation. | 
|  | bool is_h_flipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0; | 
|  | bool is_v_flipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0; | 
|  | if (is_h_flipped == is_v_flipped) { | 
|  | invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
|  | } | 
|  | std::swap(winWidth, winHeight); | 
|  | } | 
|  | const Rect winCrop = | 
|  | activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight()); | 
|  |  | 
|  | // below, crop is intersected with winCrop expressed in crop's coordinate space | 
|  | float xScale = crop.getWidth() / float(winWidth); | 
|  | float yScale = crop.getHeight() / float(winHeight); | 
|  |  | 
|  | float insetL = winCrop.left * xScale; | 
|  | float insetT = winCrop.top * yScale; | 
|  | float insetR = (winWidth - winCrop.right) * xScale; | 
|  | float insetB = (winHeight - winCrop.bottom) * yScale; | 
|  |  | 
|  | crop.left += insetL; | 
|  | crop.top += insetT; | 
|  | crop.right -= insetR; | 
|  | crop.bottom -= insetB; | 
|  |  | 
|  | return crop; | 
|  | } | 
|  |  | 
|  | Rect OutputLayer::calculateOutputDisplayFrame() const { | 
|  | const auto& layerState = mLayer->getState().frontEnd; | 
|  | const auto& outputState = mOutput.getState(); | 
|  |  | 
|  | // apply the layer's transform, followed by the display's global transform | 
|  | // here we're guaranteed that the layer's transform preserves rects | 
|  | Region activeTransparentRegion = layerState.geomActiveTransparentRegion; | 
|  | const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
|  | const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; | 
|  | const Rect& bufferSize = layerState.geomBufferSize; | 
|  | Rect activeCrop = layerState.geomCrop; | 
|  | if (!activeCrop.isEmpty() && bufferSize.isValid()) { | 
|  | activeCrop = layerTransform.transform(activeCrop); | 
|  | if (!activeCrop.intersect(outputState.viewport, &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  | activeCrop = inverseLayerTransform.transform(activeCrop, true); | 
|  | // This needs to be here as transform.transform(Rect) computes the | 
|  | // transformed rect and then takes the bounding box of the result before | 
|  | // returning. This means | 
|  | // transform.inverse().transform(transform.transform(Rect)) != Rect | 
|  | // in which case we need to make sure the final rect is clipped to the | 
|  | // display bounds. | 
|  | if (!activeCrop.intersect(bufferSize, &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  | // mark regions outside the crop as transparent | 
|  | activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top)); | 
|  | activeTransparentRegion.orSelf( | 
|  | Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight())); | 
|  | activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); | 
|  | activeTransparentRegion.orSelf( | 
|  | Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom)); | 
|  | } | 
|  |  | 
|  | // reduce uses a FloatRect to provide more accuracy during the | 
|  | // transformation. We then round upon constructing 'frame'. | 
|  | Rect frame{ | 
|  | layerTransform.transform(reduce(layerState.geomLayerBounds, activeTransparentRegion))}; | 
|  | if (!frame.intersect(outputState.viewport, &frame)) { | 
|  | frame.clear(); | 
|  | } | 
|  | const ui::Transform displayTransform{outputState.transform}; | 
|  |  | 
|  | return displayTransform.transform(frame); | 
|  | } | 
|  |  | 
|  | uint32_t OutputLayer::calculateOutputRelativeBufferTransform() const { | 
|  | const auto& layerState = mLayer->getState().frontEnd; | 
|  | const auto& outputState = mOutput.getState(); | 
|  |  | 
|  | /* | 
|  | * Transformations are applied in this order: | 
|  | * 1) buffer orientation/flip/mirror | 
|  | * 2) state transformation (window manager) | 
|  | * 3) layer orientation (screen orientation) | 
|  | * (NOTE: the matrices are multiplied in reverse order) | 
|  | */ | 
|  | const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
|  | const ui::Transform displayTransform{outputState.orientation}; | 
|  | const ui::Transform bufferTransform{layerState.geomBufferTransform}; | 
|  | ui::Transform transform(displayTransform * layerTransform * bufferTransform); | 
|  |  | 
|  | if (layerState.geomBufferUsesDisplayInverseTransform) { | 
|  | /* | 
|  | * the code below applies the primary display's inverse transform to the | 
|  | * buffer | 
|  | */ | 
|  | uint32_t invTransform = outputState.orientation; | 
|  | // calculate the inverse transform | 
|  | if (invTransform & HAL_TRANSFORM_ROT_90) { | 
|  | invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we cancel out the orientation component of the WM transform. | 
|  | * The scaling and translate components are already included in our bounds | 
|  | * computation so it's enough to just omit it in the composition. | 
|  | * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why. | 
|  | */ | 
|  | transform = ui::Transform(invTransform) * displayTransform * bufferTransform; | 
|  | } | 
|  |  | 
|  | // this gives us only the "orientation" component of the transform | 
|  | return transform.getOrientation(); | 
|  | } // namespace impl | 
|  |  | 
|  | void OutputLayer::updateCompositionState(bool includeGeometry) { | 
|  | if (includeGeometry) { | 
|  | mState.displayFrame = calculateOutputDisplayFrame(); | 
|  | mState.sourceCrop = calculateOutputSourceCrop(); | 
|  | mState.bufferTransform = | 
|  | static_cast<Hwc2::Transform>(calculateOutputRelativeBufferTransform()); | 
|  |  | 
|  | if ((mLayer->getState().frontEnd.isSecure && !mOutput.getState().isSecure) || | 
|  | (mState.bufferTransform & ui::Transform::ROT_INVALID)) { | 
|  | mState.forceClientComposition = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::writeStateToHWC(bool includeGeometry) const { | 
|  | // Skip doing this if there is no HWC interface | 
|  | if (!mState.hwc) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto& hwcLayer = (*mState.hwc).hwcLayer; | 
|  | if (!hwcLayer) { | 
|  | ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s", | 
|  | mLayerFE->getDebugName(), mOutput.getName().c_str()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (includeGeometry) { | 
|  | // Output dependent state | 
|  |  | 
|  | if (auto error = hwcLayer->setDisplayFrame(mState.displayFrame); | 
|  | error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", | 
|  | mLayerFE->getDebugName(), mState.displayFrame.left, mState.displayFrame.top, | 
|  | mState.displayFrame.right, mState.displayFrame.bottom, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = hwcLayer->setSourceCrop(mState.sourceCrop); error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " | 
|  | "%s (%d)", | 
|  | mLayerFE->getDebugName(), mState.sourceCrop.left, mState.sourceCrop.top, | 
|  | mState.sourceCrop.right, mState.sourceCrop.bottom, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = hwcLayer->setZOrder(mState.z); error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set Z %u: %s (%d)", mLayerFE->getDebugName(), mState.z, | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = | 
|  | hwcLayer->setTransform(static_cast<HWC2::Transform>(mState.bufferTransform)); | 
|  | error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set transform %s: %s (%d)", mLayerFE->getDebugName(), | 
|  | toString(mState.bufferTransform).c_str(), to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | // Output independent state | 
|  |  | 
|  | const auto& outputIndependentState = mLayer->getState().frontEnd; | 
|  |  | 
|  | if (auto error = hwcLayer->setBlendMode( | 
|  | static_cast<HWC2::BlendMode>(outputIndependentState.blendMode)); | 
|  | error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set blend mode %s: %s (%d)", mLayerFE->getDebugName(), | 
|  | toString(outputIndependentState.blendMode).c_str(), to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = hwcLayer->setPlaneAlpha(outputIndependentState.alpha); | 
|  | error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", mLayerFE->getDebugName(), | 
|  | outputIndependentState.alpha, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | if (auto error = | 
|  | hwcLayer->setInfo(outputIndependentState.type, outputIndependentState.appId); | 
|  | error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set info %s (%d)", mLayerFE->getDebugName(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void OutputLayer::dump(std::string& out) const { | 
|  | using android::base::StringAppendF; | 
|  |  | 
|  | StringAppendF(&out, "  - Output Layer %p (Composition layer %p) (%s)\n", this, mLayer.get(), | 
|  | mLayerFE->getDebugName()); | 
|  | mState.dump(out); | 
|  | } | 
|  |  | 
|  | } // namespace impl | 
|  | } // namespace android::compositionengine |