| // | 
 | // Copyright 2010 The Android Open Source Project | 
 | // | 
 | // Provides a pipe-based transport for native events in the NDK. | 
 | // | 
 | #define LOG_TAG "Input" | 
 |  | 
 | //#define LOG_NDEBUG 0 | 
 |  | 
 | // Log debug messages about keymap probing. | 
 | #define DEBUG_PROBE 0 | 
 |  | 
 | // Log debug messages about velocity tracking. | 
 | #define DEBUG_VELOCITY 0 | 
 |  | 
 | // Log debug messages about least squares fitting. | 
 | #define DEBUG_LEAST_SQUARES 0 | 
 |  | 
 | // Log debug messages about acceleration. | 
 | #define DEBUG_ACCELERATION 0 | 
 |  | 
 |  | 
 | #include <stdlib.h> | 
 | #include <unistd.h> | 
 | #include <ctype.h> | 
 |  | 
 | #include <ui/Input.h> | 
 |  | 
 | #include <math.h> | 
 | #include <limits.h> | 
 |  | 
 | #ifdef HAVE_ANDROID_OS | 
 | #include <binder/Parcel.h> | 
 |  | 
 | #include "SkPoint.h" | 
 | #include "SkMatrix.h" | 
 | #include "SkScalar.h" | 
 | #endif | 
 |  | 
 | namespace android { | 
 |  | 
 | static const char* CONFIGURATION_FILE_DIR[] = { | 
 |         "idc/", | 
 |         "keylayout/", | 
 |         "keychars/", | 
 | }; | 
 |  | 
 | static const char* CONFIGURATION_FILE_EXTENSION[] = { | 
 |         ".idc", | 
 |         ".kl", | 
 |         ".kcm", | 
 | }; | 
 |  | 
 | static bool isValidNameChar(char ch) { | 
 |     return isascii(ch) && (isdigit(ch) || isalpha(ch) || ch == '-' || ch == '_'); | 
 | } | 
 |  | 
 | static void appendInputDeviceConfigurationFileRelativePath(String8& path, | 
 |         const String8& name, InputDeviceConfigurationFileType type) { | 
 |     path.append(CONFIGURATION_FILE_DIR[type]); | 
 |     for (size_t i = 0; i < name.length(); i++) { | 
 |         char ch = name[i]; | 
 |         if (!isValidNameChar(ch)) { | 
 |             ch = '_'; | 
 |         } | 
 |         path.append(&ch, 1); | 
 |     } | 
 |     path.append(CONFIGURATION_FILE_EXTENSION[type]); | 
 | } | 
 |  | 
 | String8 getInputDeviceConfigurationFilePathByDeviceIdentifier( | 
 |         const InputDeviceIdentifier& deviceIdentifier, | 
 |         InputDeviceConfigurationFileType type) { | 
 |     if (deviceIdentifier.vendor !=0 && deviceIdentifier.product != 0) { | 
 |         if (deviceIdentifier.version != 0) { | 
 |             // Try vendor product version. | 
 |             String8 versionPath(getInputDeviceConfigurationFilePathByName( | 
 |                     String8::format("Vendor_%04x_Product_%04x_Version_%04x", | 
 |                             deviceIdentifier.vendor, deviceIdentifier.product, | 
 |                             deviceIdentifier.version), | 
 |                     type)); | 
 |             if (!versionPath.isEmpty()) { | 
 |                 return versionPath; | 
 |             } | 
 |         } | 
 |  | 
 |         // Try vendor product. | 
 |         String8 productPath(getInputDeviceConfigurationFilePathByName( | 
 |                 String8::format("Vendor_%04x_Product_%04x", | 
 |                         deviceIdentifier.vendor, deviceIdentifier.product), | 
 |                 type)); | 
 |         if (!productPath.isEmpty()) { | 
 |             return productPath; | 
 |         } | 
 |     } | 
 |  | 
 |     // Try device name. | 
 |     return getInputDeviceConfigurationFilePathByName(deviceIdentifier.name, type); | 
 | } | 
 |  | 
 | String8 getInputDeviceConfigurationFilePathByName( | 
 |         const String8& name, InputDeviceConfigurationFileType type) { | 
 |     // Search system repository. | 
 |     String8 path; | 
 |     path.setTo(getenv("ANDROID_ROOT")); | 
 |     path.append("/usr/"); | 
 |     appendInputDeviceConfigurationFileRelativePath(path, name, type); | 
 | #if DEBUG_PROBE | 
 |     LOGD("Probing for system provided input device configuration file: path='%s'", path.string()); | 
 | #endif | 
 |     if (!access(path.string(), R_OK)) { | 
 | #if DEBUG_PROBE | 
 |         LOGD("Found"); | 
 | #endif | 
 |         return path; | 
 |     } | 
 |  | 
 |     // Search user repository. | 
 |     // TODO Should only look here if not in safe mode. | 
 |     path.setTo(getenv("ANDROID_DATA")); | 
 |     path.append("/system/devices/"); | 
 |     appendInputDeviceConfigurationFileRelativePath(path, name, type); | 
 | #if DEBUG_PROBE | 
 |     LOGD("Probing for system user input device configuration file: path='%s'", path.string()); | 
 | #endif | 
 |     if (!access(path.string(), R_OK)) { | 
 | #if DEBUG_PROBE | 
 |         LOGD("Found"); | 
 | #endif | 
 |         return path; | 
 |     } | 
 |  | 
 |     // Not found. | 
 | #if DEBUG_PROBE | 
 |     LOGD("Probe failed to find input device configuration file: name='%s', type=%d", | 
 |             name.string(), type); | 
 | #endif | 
 |     return String8(); | 
 | } | 
 |  | 
 |  | 
 | // --- InputEvent --- | 
 |  | 
 | void InputEvent::initialize(int32_t deviceId, int32_t source) { | 
 |     mDeviceId = deviceId; | 
 |     mSource = source; | 
 | } | 
 |  | 
 | void InputEvent::initialize(const InputEvent& from) { | 
 |     mDeviceId = from.mDeviceId; | 
 |     mSource = from.mSource; | 
 | } | 
 |  | 
 | // --- KeyEvent --- | 
 |  | 
 | bool KeyEvent::hasDefaultAction(int32_t keyCode) { | 
 |     switch (keyCode) { | 
 |         case AKEYCODE_HOME: | 
 |         case AKEYCODE_BACK: | 
 |         case AKEYCODE_CALL: | 
 |         case AKEYCODE_ENDCALL: | 
 |         case AKEYCODE_VOLUME_UP: | 
 |         case AKEYCODE_VOLUME_DOWN: | 
 |         case AKEYCODE_VOLUME_MUTE: | 
 |         case AKEYCODE_POWER: | 
 |         case AKEYCODE_CAMERA: | 
 |         case AKEYCODE_HEADSETHOOK: | 
 |         case AKEYCODE_MENU: | 
 |         case AKEYCODE_NOTIFICATION: | 
 |         case AKEYCODE_FOCUS: | 
 |         case AKEYCODE_SEARCH: | 
 |         case AKEYCODE_MEDIA_PLAY: | 
 |         case AKEYCODE_MEDIA_PAUSE: | 
 |         case AKEYCODE_MEDIA_PLAY_PAUSE: | 
 |         case AKEYCODE_MEDIA_STOP: | 
 |         case AKEYCODE_MEDIA_NEXT: | 
 |         case AKEYCODE_MEDIA_PREVIOUS: | 
 |         case AKEYCODE_MEDIA_REWIND: | 
 |         case AKEYCODE_MEDIA_RECORD: | 
 |         case AKEYCODE_MEDIA_FAST_FORWARD: | 
 |         case AKEYCODE_MUTE: | 
 |             return true; | 
 |     } | 
 |      | 
 |     return false; | 
 | } | 
 |  | 
 | bool KeyEvent::hasDefaultAction() const { | 
 |     return hasDefaultAction(getKeyCode()); | 
 | } | 
 |  | 
 | bool KeyEvent::isSystemKey(int32_t keyCode) { | 
 |     switch (keyCode) { | 
 |         case AKEYCODE_MENU: | 
 |         case AKEYCODE_SOFT_RIGHT: | 
 |         case AKEYCODE_HOME: | 
 |         case AKEYCODE_BACK: | 
 |         case AKEYCODE_CALL: | 
 |         case AKEYCODE_ENDCALL: | 
 |         case AKEYCODE_VOLUME_UP: | 
 |         case AKEYCODE_VOLUME_DOWN: | 
 |         case AKEYCODE_VOLUME_MUTE: | 
 |         case AKEYCODE_MUTE: | 
 |         case AKEYCODE_POWER: | 
 |         case AKEYCODE_HEADSETHOOK: | 
 |         case AKEYCODE_MEDIA_PLAY: | 
 |         case AKEYCODE_MEDIA_PAUSE: | 
 |         case AKEYCODE_MEDIA_PLAY_PAUSE: | 
 |         case AKEYCODE_MEDIA_STOP: | 
 |         case AKEYCODE_MEDIA_NEXT: | 
 |         case AKEYCODE_MEDIA_PREVIOUS: | 
 |         case AKEYCODE_MEDIA_REWIND: | 
 |         case AKEYCODE_MEDIA_RECORD: | 
 |         case AKEYCODE_MEDIA_FAST_FORWARD: | 
 |         case AKEYCODE_CAMERA: | 
 |         case AKEYCODE_FOCUS: | 
 |         case AKEYCODE_SEARCH: | 
 |             return true; | 
 |     } | 
 |      | 
 |     return false; | 
 | } | 
 |  | 
 | bool KeyEvent::isSystemKey() const { | 
 |     return isSystemKey(getKeyCode()); | 
 | } | 
 |  | 
 | void KeyEvent::initialize( | 
 |         int32_t deviceId, | 
 |         int32_t source, | 
 |         int32_t action, | 
 |         int32_t flags, | 
 |         int32_t keyCode, | 
 |         int32_t scanCode, | 
 |         int32_t metaState, | 
 |         int32_t repeatCount, | 
 |         nsecs_t downTime, | 
 |         nsecs_t eventTime) { | 
 |     InputEvent::initialize(deviceId, source); | 
 |     mAction = action; | 
 |     mFlags = flags; | 
 |     mKeyCode = keyCode; | 
 |     mScanCode = scanCode; | 
 |     mMetaState = metaState; | 
 |     mRepeatCount = repeatCount; | 
 |     mDownTime = downTime; | 
 |     mEventTime = eventTime; | 
 | } | 
 |  | 
 | void KeyEvent::initialize(const KeyEvent& from) { | 
 |     InputEvent::initialize(from); | 
 |     mAction = from.mAction; | 
 |     mFlags = from.mFlags; | 
 |     mKeyCode = from.mKeyCode; | 
 |     mScanCode = from.mScanCode; | 
 |     mMetaState = from.mMetaState; | 
 |     mRepeatCount = from.mRepeatCount; | 
 |     mDownTime = from.mDownTime; | 
 |     mEventTime = from.mEventTime; | 
 | } | 
 |  | 
 |  | 
 | // --- PointerCoords --- | 
 |  | 
 | float PointerCoords::getAxisValue(int32_t axis) const { | 
 |     if (axis < 0 || axis > 63) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     uint64_t axisBit = 1LL << axis; | 
 |     if (!(bits & axisBit)) { | 
 |         return 0; | 
 |     } | 
 |     uint32_t index = __builtin_popcountll(bits & (axisBit - 1LL)); | 
 |     return values[index]; | 
 | } | 
 |  | 
 | status_t PointerCoords::setAxisValue(int32_t axis, float value) { | 
 |     if (axis < 0 || axis > 63) { | 
 |         return NAME_NOT_FOUND; | 
 |     } | 
 |  | 
 |     uint64_t axisBit = 1LL << axis; | 
 |     uint32_t index = __builtin_popcountll(bits & (axisBit - 1LL)); | 
 |     if (!(bits & axisBit)) { | 
 |         if (value == 0) { | 
 |             return OK; // axes with value 0 do not need to be stored | 
 |         } | 
 |         uint32_t count = __builtin_popcountll(bits); | 
 |         if (count >= MAX_AXES) { | 
 |             tooManyAxes(axis); | 
 |             return NO_MEMORY; | 
 |         } | 
 |         bits |= axisBit; | 
 |         for (uint32_t i = count; i > index; i--) { | 
 |             values[i] = values[i - 1]; | 
 |         } | 
 |     } | 
 |     values[index] = value; | 
 |     return OK; | 
 | } | 
 |  | 
 | static inline void scaleAxisValue(PointerCoords& c, int axis, float scaleFactor) { | 
 |     float value = c.getAxisValue(axis); | 
 |     if (value != 0) { | 
 |         c.setAxisValue(axis, value * scaleFactor); | 
 |     } | 
 | } | 
 |  | 
 | void PointerCoords::scale(float scaleFactor) { | 
 |     // No need to scale pressure or size since they are normalized. | 
 |     // No need to scale orientation since it is meaningless to do so. | 
 |     scaleAxisValue(*this, AMOTION_EVENT_AXIS_X, scaleFactor); | 
 |     scaleAxisValue(*this, AMOTION_EVENT_AXIS_Y, scaleFactor); | 
 |     scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MAJOR, scaleFactor); | 
 |     scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MINOR, scaleFactor); | 
 |     scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MAJOR, scaleFactor); | 
 |     scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MINOR, scaleFactor); | 
 | } | 
 |  | 
 | #ifdef HAVE_ANDROID_OS | 
 | status_t PointerCoords::readFromParcel(Parcel* parcel) { | 
 |     bits = parcel->readInt64(); | 
 |  | 
 |     uint32_t count = __builtin_popcountll(bits); | 
 |     if (count > MAX_AXES) { | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     for (uint32_t i = 0; i < count; i++) { | 
 |         values[i] = parcel->readInt32(); | 
 |     } | 
 |     return OK; | 
 | } | 
 |  | 
 | status_t PointerCoords::writeToParcel(Parcel* parcel) const { | 
 |     parcel->writeInt64(bits); | 
 |  | 
 |     uint32_t count = __builtin_popcountll(bits); | 
 |     for (uint32_t i = 0; i < count; i++) { | 
 |         parcel->writeInt32(values[i]); | 
 |     } | 
 |     return OK; | 
 | } | 
 | #endif | 
 |  | 
 | void PointerCoords::tooManyAxes(int axis) { | 
 |     LOGW("Could not set value for axis %d because the PointerCoords structure is full and " | 
 |             "cannot contain more than %d axis values.", axis, int(MAX_AXES)); | 
 | } | 
 |  | 
 | bool PointerCoords::operator==(const PointerCoords& other) const { | 
 |     if (bits != other.bits) { | 
 |         return false; | 
 |     } | 
 |     uint32_t count = __builtin_popcountll(bits); | 
 |     for (uint32_t i = 0; i < count; i++) { | 
 |         if (values[i] != other.values[i]) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | void PointerCoords::copyFrom(const PointerCoords& other) { | 
 |     bits = other.bits; | 
 |     uint32_t count = __builtin_popcountll(bits); | 
 |     for (uint32_t i = 0; i < count; i++) { | 
 |         values[i] = other.values[i]; | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | // --- PointerProperties --- | 
 |  | 
 | bool PointerProperties::operator==(const PointerProperties& other) const { | 
 |     return id == other.id | 
 |             && toolType == other.toolType; | 
 | } | 
 |  | 
 | void PointerProperties::copyFrom(const PointerProperties& other) { | 
 |     id = other.id; | 
 |     toolType = other.toolType; | 
 | } | 
 |  | 
 |  | 
 | // --- MotionEvent --- | 
 |  | 
 | void MotionEvent::initialize( | 
 |         int32_t deviceId, | 
 |         int32_t source, | 
 |         int32_t action, | 
 |         int32_t flags, | 
 |         int32_t edgeFlags, | 
 |         int32_t metaState, | 
 |         int32_t buttonState, | 
 |         float xOffset, | 
 |         float yOffset, | 
 |         float xPrecision, | 
 |         float yPrecision, | 
 |         nsecs_t downTime, | 
 |         nsecs_t eventTime, | 
 |         size_t pointerCount, | 
 |         const PointerProperties* pointerProperties, | 
 |         const PointerCoords* pointerCoords) { | 
 |     InputEvent::initialize(deviceId, source); | 
 |     mAction = action; | 
 |     mFlags = flags; | 
 |     mEdgeFlags = edgeFlags; | 
 |     mMetaState = metaState; | 
 |     mButtonState = buttonState; | 
 |     mXOffset = xOffset; | 
 |     mYOffset = yOffset; | 
 |     mXPrecision = xPrecision; | 
 |     mYPrecision = yPrecision; | 
 |     mDownTime = downTime; | 
 |     mPointerProperties.clear(); | 
 |     mPointerProperties.appendArray(pointerProperties, pointerCount); | 
 |     mSampleEventTimes.clear(); | 
 |     mSamplePointerCoords.clear(); | 
 |     addSample(eventTime, pointerCoords); | 
 | } | 
 |  | 
 | void MotionEvent::copyFrom(const MotionEvent* other, bool keepHistory) { | 
 |     InputEvent::initialize(other->mDeviceId, other->mSource); | 
 |     mAction = other->mAction; | 
 |     mFlags = other->mFlags; | 
 |     mEdgeFlags = other->mEdgeFlags; | 
 |     mMetaState = other->mMetaState; | 
 |     mButtonState = other->mButtonState; | 
 |     mXOffset = other->mXOffset; | 
 |     mYOffset = other->mYOffset; | 
 |     mXPrecision = other->mXPrecision; | 
 |     mYPrecision = other->mYPrecision; | 
 |     mDownTime = other->mDownTime; | 
 |     mPointerProperties = other->mPointerProperties; | 
 |  | 
 |     if (keepHistory) { | 
 |         mSampleEventTimes = other->mSampleEventTimes; | 
 |         mSamplePointerCoords = other->mSamplePointerCoords; | 
 |     } else { | 
 |         mSampleEventTimes.clear(); | 
 |         mSampleEventTimes.push(other->getEventTime()); | 
 |         mSamplePointerCoords.clear(); | 
 |         size_t pointerCount = other->getPointerCount(); | 
 |         size_t historySize = other->getHistorySize(); | 
 |         mSamplePointerCoords.appendArray(other->mSamplePointerCoords.array() | 
 |                 + (historySize * pointerCount), pointerCount); | 
 |     } | 
 | } | 
 |  | 
 | void MotionEvent::addSample( | 
 |         int64_t eventTime, | 
 |         const PointerCoords* pointerCoords) { | 
 |     mSampleEventTimes.push(eventTime); | 
 |     mSamplePointerCoords.appendArray(pointerCoords, getPointerCount()); | 
 | } | 
 |  | 
 | const PointerCoords* MotionEvent::getRawPointerCoords(size_t pointerIndex) const { | 
 |     return &mSamplePointerCoords[getHistorySize() * getPointerCount() + pointerIndex]; | 
 | } | 
 |  | 
 | float MotionEvent::getRawAxisValue(int32_t axis, size_t pointerIndex) const { | 
 |     return getRawPointerCoords(pointerIndex)->getAxisValue(axis); | 
 | } | 
 |  | 
 | float MotionEvent::getAxisValue(int32_t axis, size_t pointerIndex) const { | 
 |     float value = getRawPointerCoords(pointerIndex)->getAxisValue(axis); | 
 |     switch (axis) { | 
 |     case AMOTION_EVENT_AXIS_X: | 
 |         return value + mXOffset; | 
 |     case AMOTION_EVENT_AXIS_Y: | 
 |         return value + mYOffset; | 
 |     } | 
 |     return value; | 
 | } | 
 |  | 
 | const PointerCoords* MotionEvent::getHistoricalRawPointerCoords( | 
 |         size_t pointerIndex, size_t historicalIndex) const { | 
 |     return &mSamplePointerCoords[historicalIndex * getPointerCount() + pointerIndex]; | 
 | } | 
 |  | 
 | float MotionEvent::getHistoricalRawAxisValue(int32_t axis, size_t pointerIndex, | 
 |         size_t historicalIndex) const { | 
 |     return getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis); | 
 | } | 
 |  | 
 | float MotionEvent::getHistoricalAxisValue(int32_t axis, size_t pointerIndex, | 
 |         size_t historicalIndex) const { | 
 |     float value = getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis); | 
 |     switch (axis) { | 
 |     case AMOTION_EVENT_AXIS_X: | 
 |         return value + mXOffset; | 
 |     case AMOTION_EVENT_AXIS_Y: | 
 |         return value + mYOffset; | 
 |     } | 
 |     return value; | 
 | } | 
 |  | 
 | ssize_t MotionEvent::findPointerIndex(int32_t pointerId) const { | 
 |     size_t pointerCount = mPointerProperties.size(); | 
 |     for (size_t i = 0; i < pointerCount; i++) { | 
 |         if (mPointerProperties.itemAt(i).id == pointerId) { | 
 |             return i; | 
 |         } | 
 |     } | 
 |     return -1; | 
 | } | 
 |  | 
 | void MotionEvent::offsetLocation(float xOffset, float yOffset) { | 
 |     mXOffset += xOffset; | 
 |     mYOffset += yOffset; | 
 | } | 
 |  | 
 | void MotionEvent::scale(float scaleFactor) { | 
 |     mXOffset *= scaleFactor; | 
 |     mYOffset *= scaleFactor; | 
 |     mXPrecision *= scaleFactor; | 
 |     mYPrecision *= scaleFactor; | 
 |  | 
 |     size_t numSamples = mSamplePointerCoords.size(); | 
 |     for (size_t i = 0; i < numSamples; i++) { | 
 |         mSamplePointerCoords.editItemAt(i).scale(scaleFactor); | 
 |     } | 
 | } | 
 |  | 
 | #ifdef HAVE_ANDROID_OS | 
 | static inline float transformAngle(const SkMatrix* matrix, float angleRadians) { | 
 |     // Construct and transform a vector oriented at the specified clockwise angle from vertical. | 
 |     // Coordinate system: down is increasing Y, right is increasing X. | 
 |     SkPoint vector; | 
 |     vector.fX = SkFloatToScalar(sinf(angleRadians)); | 
 |     vector.fY = SkFloatToScalar(-cosf(angleRadians)); | 
 |     matrix->mapVectors(& vector, 1); | 
 |  | 
 |     // Derive the transformed vector's clockwise angle from vertical. | 
 |     float result = atan2f(SkScalarToFloat(vector.fX), SkScalarToFloat(-vector.fY)); | 
 |     if (result < - M_PI_2) { | 
 |         result += M_PI; | 
 |     } else if (result > M_PI_2) { | 
 |         result -= M_PI; | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | void MotionEvent::transform(const SkMatrix* matrix) { | 
 |     float oldXOffset = mXOffset; | 
 |     float oldYOffset = mYOffset; | 
 |  | 
 |     // The tricky part of this implementation is to preserve the value of | 
 |     // rawX and rawY.  So we apply the transformation to the first point | 
 |     // then derive an appropriate new X/Y offset that will preserve rawX and rawY. | 
 |     SkPoint point; | 
 |     float rawX = getRawX(0); | 
 |     float rawY = getRawY(0); | 
 |     matrix->mapXY(SkFloatToScalar(rawX + oldXOffset), SkFloatToScalar(rawY + oldYOffset), | 
 |             & point); | 
 |     float newX = SkScalarToFloat(point.fX); | 
 |     float newY = SkScalarToFloat(point.fY); | 
 |     float newXOffset = newX - rawX; | 
 |     float newYOffset = newY - rawY; | 
 |  | 
 |     mXOffset = newXOffset; | 
 |     mYOffset = newYOffset; | 
 |  | 
 |     // Apply the transformation to all samples. | 
 |     size_t numSamples = mSamplePointerCoords.size(); | 
 |     for (size_t i = 0; i < numSamples; i++) { | 
 |         PointerCoords& c = mSamplePointerCoords.editItemAt(i); | 
 |         float x = c.getAxisValue(AMOTION_EVENT_AXIS_X) + oldXOffset; | 
 |         float y = c.getAxisValue(AMOTION_EVENT_AXIS_Y) + oldYOffset; | 
 |         matrix->mapXY(SkFloatToScalar(x), SkFloatToScalar(y), &point); | 
 |         c.setAxisValue(AMOTION_EVENT_AXIS_X, SkScalarToFloat(point.fX) - newXOffset); | 
 |         c.setAxisValue(AMOTION_EVENT_AXIS_Y, SkScalarToFloat(point.fY) - newYOffset); | 
 |  | 
 |         float orientation = c.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION); | 
 |         c.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, transformAngle(matrix, orientation)); | 
 |     } | 
 | } | 
 |  | 
 | status_t MotionEvent::readFromParcel(Parcel* parcel) { | 
 |     size_t pointerCount = parcel->readInt32(); | 
 |     size_t sampleCount = parcel->readInt32(); | 
 |     if (pointerCount == 0 || pointerCount > MAX_POINTERS || sampleCount == 0) { | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     mDeviceId = parcel->readInt32(); | 
 |     mSource = parcel->readInt32(); | 
 |     mAction = parcel->readInt32(); | 
 |     mFlags = parcel->readInt32(); | 
 |     mEdgeFlags = parcel->readInt32(); | 
 |     mMetaState = parcel->readInt32(); | 
 |     mButtonState = parcel->readInt32(); | 
 |     mXOffset = parcel->readFloat(); | 
 |     mYOffset = parcel->readFloat(); | 
 |     mXPrecision = parcel->readFloat(); | 
 |     mYPrecision = parcel->readFloat(); | 
 |     mDownTime = parcel->readInt64(); | 
 |  | 
 |     mPointerProperties.clear(); | 
 |     mPointerProperties.setCapacity(pointerCount); | 
 |     mSampleEventTimes.clear(); | 
 |     mSampleEventTimes.setCapacity(sampleCount); | 
 |     mSamplePointerCoords.clear(); | 
 |     mSamplePointerCoords.setCapacity(sampleCount * pointerCount); | 
 |  | 
 |     for (size_t i = 0; i < pointerCount; i++) { | 
 |         mPointerProperties.push(); | 
 |         PointerProperties& properties = mPointerProperties.editTop(); | 
 |         properties.id = parcel->readInt32(); | 
 |         properties.toolType = parcel->readInt32(); | 
 |     } | 
 |  | 
 |     while (sampleCount-- > 0) { | 
 |         mSampleEventTimes.push(parcel->readInt64()); | 
 |         for (size_t i = 0; i < pointerCount; i++) { | 
 |             mSamplePointerCoords.push(); | 
 |             status_t status = mSamplePointerCoords.editTop().readFromParcel(parcel); | 
 |             if (status) { | 
 |                 return status; | 
 |             } | 
 |         } | 
 |     } | 
 |     return OK; | 
 | } | 
 |  | 
 | status_t MotionEvent::writeToParcel(Parcel* parcel) const { | 
 |     size_t pointerCount = mPointerProperties.size(); | 
 |     size_t sampleCount = mSampleEventTimes.size(); | 
 |  | 
 |     parcel->writeInt32(pointerCount); | 
 |     parcel->writeInt32(sampleCount); | 
 |  | 
 |     parcel->writeInt32(mDeviceId); | 
 |     parcel->writeInt32(mSource); | 
 |     parcel->writeInt32(mAction); | 
 |     parcel->writeInt32(mFlags); | 
 |     parcel->writeInt32(mEdgeFlags); | 
 |     parcel->writeInt32(mMetaState); | 
 |     parcel->writeInt32(mButtonState); | 
 |     parcel->writeFloat(mXOffset); | 
 |     parcel->writeFloat(mYOffset); | 
 |     parcel->writeFloat(mXPrecision); | 
 |     parcel->writeFloat(mYPrecision); | 
 |     parcel->writeInt64(mDownTime); | 
 |  | 
 |     for (size_t i = 0; i < pointerCount; i++) { | 
 |         const PointerProperties& properties = mPointerProperties.itemAt(i); | 
 |         parcel->writeInt32(properties.id); | 
 |         parcel->writeInt32(properties.toolType); | 
 |     } | 
 |  | 
 |     const PointerCoords* pc = mSamplePointerCoords.array(); | 
 |     for (size_t h = 0; h < sampleCount; h++) { | 
 |         parcel->writeInt64(mSampleEventTimes.itemAt(h)); | 
 |         for (size_t i = 0; i < pointerCount; i++) { | 
 |             status_t status = (pc++)->writeToParcel(parcel); | 
 |             if (status) { | 
 |                 return status; | 
 |             } | 
 |         } | 
 |     } | 
 |     return OK; | 
 | } | 
 | #endif | 
 |  | 
 | bool MotionEvent::isTouchEvent(int32_t source, int32_t action) { | 
 |     if (source & AINPUT_SOURCE_CLASS_POINTER) { | 
 |         // Specifically excludes HOVER_MOVE and SCROLL. | 
 |         switch (action & AMOTION_EVENT_ACTION_MASK) { | 
 |         case AMOTION_EVENT_ACTION_DOWN: | 
 |         case AMOTION_EVENT_ACTION_MOVE: | 
 |         case AMOTION_EVENT_ACTION_UP: | 
 |         case AMOTION_EVENT_ACTION_POINTER_DOWN: | 
 |         case AMOTION_EVENT_ACTION_POINTER_UP: | 
 |         case AMOTION_EVENT_ACTION_CANCEL: | 
 |         case AMOTION_EVENT_ACTION_OUTSIDE: | 
 |             return true; | 
 |         } | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 |  | 
 | // --- VelocityTracker --- | 
 |  | 
 | const uint32_t VelocityTracker::DEFAULT_DEGREE; | 
 | const nsecs_t VelocityTracker::DEFAULT_HORIZON; | 
 | const uint32_t VelocityTracker::HISTORY_SIZE; | 
 |  | 
 | static inline float vectorDot(const float* a, const float* b, uint32_t m) { | 
 |     float r = 0; | 
 |     while (m--) { | 
 |         r += *(a++) * *(b++); | 
 |     } | 
 |     return r; | 
 | } | 
 |  | 
 | static inline float vectorNorm(const float* a, uint32_t m) { | 
 |     float r = 0; | 
 |     while (m--) { | 
 |         float t = *(a++); | 
 |         r += t * t; | 
 |     } | 
 |     return sqrtf(r); | 
 | } | 
 |  | 
 | #if DEBUG_LEAST_SQUARES || DEBUG_VELOCITY | 
 | static String8 vectorToString(const float* a, uint32_t m) { | 
 |     String8 str; | 
 |     str.append("["); | 
 |     while (m--) { | 
 |         str.appendFormat(" %f", *(a++)); | 
 |         if (m) { | 
 |             str.append(","); | 
 |         } | 
 |     } | 
 |     str.append(" ]"); | 
 |     return str; | 
 | } | 
 |  | 
 | static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { | 
 |     String8 str; | 
 |     str.append("["); | 
 |     for (size_t i = 0; i < m; i++) { | 
 |         if (i) { | 
 |             str.append(","); | 
 |         } | 
 |         str.append(" ["); | 
 |         for (size_t j = 0; j < n; j++) { | 
 |             if (j) { | 
 |                 str.append(","); | 
 |             } | 
 |             str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]); | 
 |         } | 
 |         str.append(" ]"); | 
 |     } | 
 |     str.append(" ]"); | 
 |     return str; | 
 | } | 
 | #endif | 
 |  | 
 | VelocityTracker::VelocityTracker() { | 
 |     clear(); | 
 | } | 
 |  | 
 | void VelocityTracker::clear() { | 
 |     mIndex = 0; | 
 |     mMovements[0].idBits.clear(); | 
 |     mActivePointerId = -1; | 
 | } | 
 |  | 
 | void VelocityTracker::clearPointers(BitSet32 idBits) { | 
 |     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); | 
 |     mMovements[mIndex].idBits = remainingIdBits; | 
 |  | 
 |     if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { | 
 |         mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; | 
 |     } | 
 | } | 
 |  | 
 | void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { | 
 |     if (++mIndex == HISTORY_SIZE) { | 
 |         mIndex = 0; | 
 |     } | 
 |  | 
 |     while (idBits.count() > MAX_POINTERS) { | 
 |         idBits.clearLastMarkedBit(); | 
 |     } | 
 |  | 
 |     Movement& movement = mMovements[mIndex]; | 
 |     movement.eventTime = eventTime; | 
 |     movement.idBits = idBits; | 
 |     uint32_t count = idBits.count(); | 
 |     for (uint32_t i = 0; i < count; i++) { | 
 |         movement.positions[i] = positions[i]; | 
 |     } | 
 |  | 
 |     if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { | 
 |         mActivePointerId = count != 0 ? idBits.firstMarkedBit() : -1; | 
 |     } | 
 |  | 
 | #if DEBUG_VELOCITY | 
 |     LOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d", | 
 |             eventTime, idBits.value, mActivePointerId); | 
 |     for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { | 
 |         uint32_t id = iterBits.firstMarkedBit(); | 
 |         uint32_t index = idBits.getIndexOfBit(id); | 
 |         iterBits.clearBit(id); | 
 |         Estimator estimator; | 
 |         getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator); | 
 |         LOGD("  %d: position (%0.3f, %0.3f), " | 
 |                 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", | 
 |                 id, positions[index].x, positions[index].y, | 
 |                 int(estimator.degree), | 
 |                 vectorToString(estimator.xCoeff, estimator.degree).string(), | 
 |                 vectorToString(estimator.yCoeff, estimator.degree).string(), | 
 |                 estimator.confidence); | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | void VelocityTracker::addMovement(const MotionEvent* event) { | 
 |     int32_t actionMasked = event->getActionMasked(); | 
 |  | 
 |     switch (actionMasked) { | 
 |     case AMOTION_EVENT_ACTION_DOWN: | 
 |     case AMOTION_EVENT_ACTION_HOVER_ENTER: | 
 |         // Clear all pointers on down before adding the new movement. | 
 |         clear(); | 
 |         break; | 
 |     case AMOTION_EVENT_ACTION_POINTER_DOWN: { | 
 |         // Start a new movement trace for a pointer that just went down. | 
 |         // We do this on down instead of on up because the client may want to query the | 
 |         // final velocity for a pointer that just went up. | 
 |         BitSet32 downIdBits; | 
 |         downIdBits.markBit(event->getPointerId(event->getActionIndex())); | 
 |         clearPointers(downIdBits); | 
 |         break; | 
 |     } | 
 |     case AMOTION_EVENT_ACTION_MOVE: | 
 |     case AMOTION_EVENT_ACTION_HOVER_MOVE: | 
 |         break; | 
 |     default: | 
 |         // Ignore all other actions because they do not convey any new information about | 
 |         // pointer movement.  We also want to preserve the last known velocity of the pointers. | 
 |         // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position | 
 |         // of the pointers that went up.  ACTION_POINTER_UP does include the new position of | 
 |         // pointers that remained down but we will also receive an ACTION_MOVE with this | 
 |         // information if any of them actually moved.  Since we don't know how many pointers | 
 |         // will be going up at once it makes sense to just wait for the following ACTION_MOVE | 
 |         // before adding the movement. | 
 |         return; | 
 |     } | 
 |  | 
 |     size_t pointerCount = event->getPointerCount(); | 
 |     if (pointerCount > MAX_POINTERS) { | 
 |         pointerCount = MAX_POINTERS; | 
 |     } | 
 |  | 
 |     BitSet32 idBits; | 
 |     for (size_t i = 0; i < pointerCount; i++) { | 
 |         idBits.markBit(event->getPointerId(i)); | 
 |     } | 
 |  | 
 |     nsecs_t eventTime; | 
 |     Position positions[pointerCount]; | 
 |  | 
 |     size_t historySize = event->getHistorySize(); | 
 |     for (size_t h = 0; h < historySize; h++) { | 
 |         eventTime = event->getHistoricalEventTime(h); | 
 |         for (size_t i = 0; i < pointerCount; i++) { | 
 |             positions[i].x = event->getHistoricalX(i, h); | 
 |             positions[i].y = event->getHistoricalY(i, h); | 
 |         } | 
 |         addMovement(eventTime, idBits, positions); | 
 |     } | 
 |  | 
 |     eventTime = event->getEventTime(); | 
 |     for (size_t i = 0; i < pointerCount; i++) { | 
 |         positions[i].x = event->getX(i); | 
 |         positions[i].y = event->getY(i); | 
 |     } | 
 |     addMovement(eventTime, idBits, positions); | 
 | } | 
 |  | 
 | /** | 
 |  * Solves a linear least squares problem to obtain a N degree polynomial that fits | 
 |  * the specified input data as nearly as possible. | 
 |  * | 
 |  * Returns true if a solution is found, false otherwise. | 
 |  * | 
 |  * The input consists of two vectors of data points X and Y with indices 0..m-1. | 
 |  * The output is a vector B with indices 0..n-1 that describes a polynomial | 
 |  * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n)) | 
 |  * for all i between 0 and m-1 is minimized. | 
 |  * | 
 |  * That is to say, the function that generated the input data can be approximated | 
 |  * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. | 
 |  * | 
 |  * The coefficient of determination (R^2) is also returned to describe the goodness | 
 |  * of fit of the model for the given data.  It is a value between 0 and 1, where 1 | 
 |  * indicates perfect correspondence. | 
 |  * | 
 |  * This function first expands the X vector to a m by n matrix A such that | 
 |  * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n. | 
 |  * | 
 |  * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q | 
 |  * and an m by n upper triangular matrix R.  Because R is upper triangular (lower | 
 |  * part is all zeroes), we can simplify the decomposition into an m by n matrix | 
 |  * Q1 and a n by n matrix R1 such that A = Q1 R1. | 
 |  * | 
 |  * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y) | 
 |  * to find B. | 
 |  * | 
 |  * For efficiency, we lay out A and Q column-wise in memory because we frequently | 
 |  * operate on the column vectors.  Conversely, we lay out R row-wise. | 
 |  * | 
 |  * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares | 
 |  * http://en.wikipedia.org/wiki/Gram-Schmidt | 
 |  */ | 
 | static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n, | 
 |         float* outB, float* outDet) { | 
 | #if DEBUG_LEAST_SQUARES | 
 |     LOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n), | 
 |             vectorToString(x, m).string(), vectorToString(y, m).string()); | 
 | #endif | 
 |  | 
 |     // Expand the X vector to a matrix A. | 
 |     float a[n][m]; // column-major order | 
 |     for (uint32_t h = 0; h < m; h++) { | 
 |         a[0][h] = 1; | 
 |         for (uint32_t i = 1; i < n; i++) { | 
 |             a[i][h] = a[i - 1][h] * x[h]; | 
 |         } | 
 |     } | 
 | #if DEBUG_LEAST_SQUARES | 
 |     LOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string()); | 
 | #endif | 
 |  | 
 |     // Apply the Gram-Schmidt process to A to obtain its QR decomposition. | 
 |     float q[n][m]; // orthonormal basis, column-major order | 
 |     float r[n][n]; // upper triangular matrix, row-major order | 
 |     for (uint32_t j = 0; j < n; j++) { | 
 |         for (uint32_t h = 0; h < m; h++) { | 
 |             q[j][h] = a[j][h]; | 
 |         } | 
 |         for (uint32_t i = 0; i < j; i++) { | 
 |             float dot = vectorDot(&q[j][0], &q[i][0], m); | 
 |             for (uint32_t h = 0; h < m; h++) { | 
 |                 q[j][h] -= dot * q[i][h]; | 
 |             } | 
 |         } | 
 |  | 
 |         float norm = vectorNorm(&q[j][0], m); | 
 |         if (norm < 0.000001f) { | 
 |             // vectors are linearly dependent or zero so no solution | 
 | #if DEBUG_LEAST_SQUARES | 
 |             LOGD("  - no solution, norm=%f", norm); | 
 | #endif | 
 |             return false; | 
 |         } | 
 |  | 
 |         float invNorm = 1.0f / norm; | 
 |         for (uint32_t h = 0; h < m; h++) { | 
 |             q[j][h] *= invNorm; | 
 |         } | 
 |         for (uint32_t i = 0; i < n; i++) { | 
 |             r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); | 
 |         } | 
 |     } | 
 | #if DEBUG_LEAST_SQUARES | 
 |     LOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string()); | 
 |     LOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string()); | 
 |  | 
 |     // calculate QR, if we factored A correctly then QR should equal A | 
 |     float qr[n][m]; | 
 |     for (uint32_t h = 0; h < m; h++) { | 
 |         for (uint32_t i = 0; i < n; i++) { | 
 |             qr[i][h] = 0; | 
 |             for (uint32_t j = 0; j < n; j++) { | 
 |                 qr[i][h] += q[j][h] * r[j][i]; | 
 |             } | 
 |         } | 
 |     } | 
 |     LOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string()); | 
 | #endif | 
 |  | 
 |     // Solve R B = Qt Y to find B.  This is easy because R is upper triangular. | 
 |     // We just work from bottom-right to top-left calculating B's coefficients. | 
 |     for (uint32_t i = n; i-- != 0; ) { | 
 |         outB[i] = vectorDot(&q[i][0], y, m); | 
 |         for (uint32_t j = n - 1; j > i; j--) { | 
 |             outB[i] -= r[i][j] * outB[j]; | 
 |         } | 
 |         outB[i] /= r[i][i]; | 
 |     } | 
 | #if DEBUG_LEAST_SQUARES | 
 |     LOGD("  - b=%s", vectorToString(outB, n).string()); | 
 | #endif | 
 |  | 
 |     // Calculate the coefficient of determination as 1 - (SSerr / SStot) where | 
 |     // SSerr is the residual sum of squares (squared variance of the error), | 
 |     // and SStot is the total sum of squares (squared variance of the data). | 
 |     float ymean = 0; | 
 |     for (uint32_t h = 0; h < m; h++) { | 
 |         ymean += y[h]; | 
 |     } | 
 |     ymean /= m; | 
 |  | 
 |     float sserr = 0; | 
 |     float sstot = 0; | 
 |     for (uint32_t h = 0; h < m; h++) { | 
 |         float err = y[h] - outB[0]; | 
 |         float term = 1; | 
 |         for (uint32_t i = 1; i < n; i++) { | 
 |             term *= x[h]; | 
 |             err -= term * outB[i]; | 
 |         } | 
 |         sserr += err * err; | 
 |         float var = y[h] - ymean; | 
 |         sstot += var * var; | 
 |     } | 
 |     *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; | 
 | #if DEBUG_LEAST_SQUARES | 
 |     LOGD("  - sserr=%f", sserr); | 
 |     LOGD("  - sstot=%f", sstot); | 
 |     LOGD("  - det=%f", *outDet); | 
 | #endif | 
 |     return true; | 
 | } | 
 |  | 
 | bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { | 
 |     Estimator estimator; | 
 |     if (getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator)) { | 
 |         if (estimator.degree >= 1) { | 
 |             *outVx = estimator.xCoeff[1]; | 
 |             *outVy = estimator.yCoeff[1]; | 
 |             return true; | 
 |         } | 
 |     } | 
 |     *outVx = 0; | 
 |     *outVy = 0; | 
 |     return false; | 
 | } | 
 |  | 
 | bool VelocityTracker::getEstimator(uint32_t id, uint32_t degree, nsecs_t horizon, | 
 |         Estimator* outEstimator) const { | 
 |     outEstimator->clear(); | 
 |  | 
 |     // Iterate over movement samples in reverse time order and collect samples. | 
 |     float x[HISTORY_SIZE]; | 
 |     float y[HISTORY_SIZE]; | 
 |     float time[HISTORY_SIZE]; | 
 |     uint32_t m = 0; | 
 |     uint32_t index = mIndex; | 
 |     const Movement& newestMovement = mMovements[mIndex]; | 
 |     do { | 
 |         const Movement& movement = mMovements[index]; | 
 |         if (!movement.idBits.hasBit(id)) { | 
 |             break; | 
 |         } | 
 |  | 
 |         nsecs_t age = newestMovement.eventTime - movement.eventTime; | 
 |         if (age > horizon) { | 
 |             break; | 
 |         } | 
 |  | 
 |         const Position& position = movement.getPosition(id); | 
 |         x[m] = position.x; | 
 |         y[m] = position.y; | 
 |         time[m] = -age * 0.000000001f; | 
 |         index = (index == 0 ? HISTORY_SIZE : index) - 1; | 
 |     } while (++m < HISTORY_SIZE); | 
 |  | 
 |     if (m == 0) { | 
 |         return false; // no data | 
 |     } | 
 |  | 
 |     // Calculate a least squares polynomial fit. | 
 |     if (degree > Estimator::MAX_DEGREE) { | 
 |         degree = Estimator::MAX_DEGREE; | 
 |     } | 
 |     if (degree > m - 1) { | 
 |         degree = m - 1; | 
 |     } | 
 |     if (degree >= 1) { | 
 |         float xdet, ydet; | 
 |         uint32_t n = degree + 1; | 
 |         if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet) | 
 |                 && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) { | 
 |             outEstimator->degree = degree; | 
 |             outEstimator->confidence = xdet * ydet; | 
 | #if DEBUG_LEAST_SQUARES | 
 |             LOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", | 
 |                     int(outEstimator->degree), | 
 |                     vectorToString(outEstimator->xCoeff, n).string(), | 
 |                     vectorToString(outEstimator->yCoeff, n).string(), | 
 |                     outEstimator->confidence); | 
 | #endif | 
 |             return true; | 
 |         } | 
 |     } | 
 |  | 
 |     // No velocity data available for this pointer, but we do have its current position. | 
 |     outEstimator->xCoeff[0] = x[0]; | 
 |     outEstimator->yCoeff[0] = y[0]; | 
 |     outEstimator->degree = 0; | 
 |     outEstimator->confidence = 1; | 
 |     return true; | 
 | } | 
 |  | 
 |  | 
 | // --- VelocityControl --- | 
 |  | 
 | const nsecs_t VelocityControl::STOP_TIME; | 
 |  | 
 | VelocityControl::VelocityControl() { | 
 |     reset(); | 
 | } | 
 |  | 
 | void VelocityControl::setParameters(const VelocityControlParameters& parameters) { | 
 |     mParameters = parameters; | 
 |     reset(); | 
 | } | 
 |  | 
 | void VelocityControl::reset() { | 
 |     mLastMovementTime = LLONG_MIN; | 
 |     mRawPosition.x = 0; | 
 |     mRawPosition.y = 0; | 
 |     mVelocityTracker.clear(); | 
 | } | 
 |  | 
 | void VelocityControl::move(nsecs_t eventTime, float* deltaX, float* deltaY) { | 
 |     if ((deltaX && *deltaX) || (deltaY && *deltaY)) { | 
 |         if (eventTime >= mLastMovementTime + STOP_TIME) { | 
 | #if DEBUG_ACCELERATION | 
 |             LOGD("VelocityControl: stopped, last movement was %0.3fms ago", | 
 |                     (eventTime - mLastMovementTime) * 0.000001f); | 
 | #endif | 
 |             reset(); | 
 |         } | 
 |  | 
 |         mLastMovementTime = eventTime; | 
 |         if (deltaX) { | 
 |             mRawPosition.x += *deltaX; | 
 |         } | 
 |         if (deltaY) { | 
 |             mRawPosition.y += *deltaY; | 
 |         } | 
 |         mVelocityTracker.addMovement(eventTime, BitSet32(BitSet32::valueForBit(0)), &mRawPosition); | 
 |  | 
 |         float vx, vy; | 
 |         float scale = mParameters.scale; | 
 |         if (mVelocityTracker.getVelocity(0, &vx, &vy)) { | 
 |             float speed = hypotf(vx, vy) * scale; | 
 |             if (speed >= mParameters.highThreshold) { | 
 |                 // Apply full acceleration above the high speed threshold. | 
 |                 scale *= mParameters.acceleration; | 
 |             } else if (speed > mParameters.lowThreshold) { | 
 |                 // Linearly interpolate the acceleration to apply between the low and high | 
 |                 // speed thresholds. | 
 |                 scale *= 1 + (speed - mParameters.lowThreshold) | 
 |                         / (mParameters.highThreshold - mParameters.lowThreshold) | 
 |                         * (mParameters.acceleration - 1); | 
 |             } | 
 |  | 
 | #if DEBUG_ACCELERATION | 
 |             LOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): " | 
 |                     "vx=%0.3f, vy=%0.3f, speed=%0.3f, accel=%0.3f", | 
 |                     mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold, | 
 |                     mParameters.acceleration, | 
 |                     vx, vy, speed, scale / mParameters.scale); | 
 | #endif | 
 |         } else { | 
 | #if DEBUG_ACCELERATION | 
 |             LOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): unknown velocity", | 
 |                     mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold, | 
 |                     mParameters.acceleration); | 
 | #endif | 
 |         } | 
 |  | 
 |         if (deltaX) { | 
 |             *deltaX *= scale; | 
 |         } | 
 |         if (deltaY) { | 
 |             *deltaY *= scale; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | // --- InputDeviceInfo --- | 
 |  | 
 | InputDeviceInfo::InputDeviceInfo() { | 
 |     initialize(-1, String8("uninitialized device info")); | 
 | } | 
 |  | 
 | InputDeviceInfo::InputDeviceInfo(const InputDeviceInfo& other) : | 
 |         mId(other.mId), mName(other.mName), mSources(other.mSources), | 
 |         mKeyboardType(other.mKeyboardType), | 
 |         mMotionRanges(other.mMotionRanges) { | 
 | } | 
 |  | 
 | InputDeviceInfo::~InputDeviceInfo() { | 
 | } | 
 |  | 
 | void InputDeviceInfo::initialize(int32_t id, const String8& name) { | 
 |     mId = id; | 
 |     mName = name; | 
 |     mSources = 0; | 
 |     mKeyboardType = AINPUT_KEYBOARD_TYPE_NONE; | 
 |     mMotionRanges.clear(); | 
 | } | 
 |  | 
 | const InputDeviceInfo::MotionRange* InputDeviceInfo::getMotionRange( | 
 |         int32_t axis, uint32_t source) const { | 
 |     size_t numRanges = mMotionRanges.size(); | 
 |     for (size_t i = 0; i < numRanges; i++) { | 
 |         const MotionRange& range = mMotionRanges.itemAt(i); | 
 |         if (range.axis == axis && range.source == source) { | 
 |             return ⦥ | 
 |         } | 
 |     } | 
 |     return NULL; | 
 | } | 
 |  | 
 | void InputDeviceInfo::addSource(uint32_t source) { | 
 |     mSources |= source; | 
 | } | 
 |  | 
 | void InputDeviceInfo::addMotionRange(int32_t axis, uint32_t source, float min, float max, | 
 |         float flat, float fuzz) { | 
 |     MotionRange range = { axis, source, min, max, flat, fuzz }; | 
 |     mMotionRanges.add(range); | 
 | } | 
 |  | 
 | void InputDeviceInfo::addMotionRange(const MotionRange& range) { | 
 |     mMotionRanges.add(range); | 
 | } | 
 |  | 
 | } // namespace android |