|  | /* | 
|  | * Copyright (C) 2011 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "SensorDevice.h" | 
|  | #include "SensorFusion.h" | 
|  | #include "SensorService.h" | 
|  |  | 
|  | namespace android { | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | ANDROID_SINGLETON_STATIC_INSTANCE(SensorFusion) | 
|  |  | 
|  | SensorFusion::SensorFusion() | 
|  | : mSensorDevice(SensorDevice::getInstance()), | 
|  | mEnabled(false), mGyroTime(0) | 
|  | { | 
|  | sensor_t const* list; | 
|  | Sensor uncalibratedGyro; | 
|  | ssize_t count = mSensorDevice.getSensorList(&list); | 
|  | if (count > 0) { | 
|  | for (size_t i=0 ; i<size_t(count) ; i++) { | 
|  | if (list[i].type == SENSOR_TYPE_ACCELEROMETER) { | 
|  | mAcc = Sensor(list + i); | 
|  | } | 
|  | if (list[i].type == SENSOR_TYPE_MAGNETIC_FIELD) { | 
|  | mMag = Sensor(list + i); | 
|  | } | 
|  | if (list[i].type == SENSOR_TYPE_GYROSCOPE) { | 
|  | mGyro = Sensor(list + i); | 
|  | } | 
|  | if (list[i].type == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) { | 
|  | uncalibratedGyro = Sensor(list + i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Use the uncalibrated gyroscope for sensor fusion when available | 
|  | if (uncalibratedGyro.getType() == SENSOR_TYPE_GYROSCOPE_UNCALIBRATED) { | 
|  | mGyro = uncalibratedGyro; | 
|  | } | 
|  |  | 
|  | // 200 Hz for gyro events is a good compromise between precision | 
|  | // and power/cpu usage. | 
|  | mEstimatedGyroRate = 200; | 
|  | mTargetDelayNs = 1000000000LL/mEstimatedGyroRate; | 
|  | mFusion.init(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SensorFusion::process(const sensors_event_t& event) { | 
|  | if (event.type == mGyro.getType()) { | 
|  | if (mGyroTime != 0) { | 
|  | const float dT = (event.timestamp - mGyroTime) / 1000000000.0f; | 
|  | mFusion.handleGyro(vec3_t(event.data), dT); | 
|  | // here we estimate the gyro rate (useful for debugging) | 
|  | const float freq = 1 / dT; | 
|  | if (freq >= 100 && freq<1000) { // filter values obviously wrong | 
|  | const float alpha = 1 / (1 + dT); // 1s time-constant | 
|  | mEstimatedGyroRate = freq + (mEstimatedGyroRate - freq)*alpha; | 
|  | } | 
|  | } | 
|  | mGyroTime = event.timestamp; | 
|  | } else if (event.type == SENSOR_TYPE_MAGNETIC_FIELD) { | 
|  | const vec3_t mag(event.data); | 
|  | mFusion.handleMag(mag); | 
|  | } else if (event.type == SENSOR_TYPE_ACCELEROMETER) { | 
|  | const vec3_t acc(event.data); | 
|  | mFusion.handleAcc(acc); | 
|  | mAttitude = mFusion.getAttitude(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> inline T min(T a, T b) { return a<b ? a : b; } | 
|  | template <typename T> inline T max(T a, T b) { return a>b ? a : b; } | 
|  |  | 
|  | status_t SensorFusion::activate(void* ident, bool enabled) { | 
|  |  | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, | 
|  | "SensorFusion::activate(ident=%p, enabled=%d)", | 
|  | ident, enabled); | 
|  |  | 
|  | const ssize_t idx = mClients.indexOf(ident); | 
|  | if (enabled) { | 
|  | if (idx < 0) { | 
|  | mClients.add(ident); | 
|  | } | 
|  | } else { | 
|  | if (idx >= 0) { | 
|  | mClients.removeItemsAt(idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | mSensorDevice.activate(ident, mAcc.getHandle(), enabled); | 
|  | mSensorDevice.activate(ident, mMag.getHandle(), enabled); | 
|  | mSensorDevice.activate(ident, mGyro.getHandle(), enabled); | 
|  |  | 
|  | const bool newState = mClients.size() != 0; | 
|  | if (newState != mEnabled) { | 
|  | mEnabled = newState; | 
|  | if (newState) { | 
|  | mFusion.init(); | 
|  | mGyroTime = 0; | 
|  | } | 
|  | } | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | status_t SensorFusion::setDelay(void* ident, int64_t ns) { | 
|  | // Call batch with timeout zero instead of setDelay(). | 
|  | mSensorDevice.batch(ident, mAcc.getHandle(), 0, ns, 0); | 
|  | mSensorDevice.batch(ident, mMag.getHandle(), 0, ms2ns(20), 0); | 
|  | mSensorDevice.batch(ident, mGyro.getHandle(), 0, mTargetDelayNs, 0); | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  |  | 
|  | float SensorFusion::getPowerUsage() const { | 
|  | float power =   mAcc.getPowerUsage() + | 
|  | mMag.getPowerUsage() + | 
|  | mGyro.getPowerUsage(); | 
|  | return power; | 
|  | } | 
|  |  | 
|  | int32_t SensorFusion::getMinDelay() const { | 
|  | return mAcc.getMinDelay(); | 
|  | } | 
|  |  | 
|  | void SensorFusion::dump(String8& result) { | 
|  | const Fusion& fusion(mFusion); | 
|  | result.appendFormat("9-axis fusion %s (%zd clients), gyro-rate=%7.2fHz, " | 
|  | "q=< %g, %g, %g, %g > (%g), " | 
|  | "b=< %g, %g, %g >\n", | 
|  | mEnabled ? "enabled" : "disabled", | 
|  | mClients.size(), | 
|  | mEstimatedGyroRate, | 
|  | fusion.getAttitude().x, | 
|  | fusion.getAttitude().y, | 
|  | fusion.getAttitude().z, | 
|  | fusion.getAttitude().w, | 
|  | length(fusion.getAttitude()), | 
|  | fusion.getBias().x, | 
|  | fusion.getBias().y, | 
|  | fusion.getBias().z); | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | }; // namespace android |