|  | /* | 
|  | * Copyright 2018 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "Scheduler" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include "Scheduler.h" | 
|  |  | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> | 
|  | #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> | 
|  | #include <configstore/Utils.h> | 
|  | #include <cutils/properties.h> | 
|  | #include <input/InputWindow.h> | 
|  | #include <system/window.h> | 
|  | #include <ui/DisplayStatInfo.h> | 
|  | #include <utils/Timers.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cinttypes> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  |  | 
|  | #include "../Layer.h" | 
|  | #include "DispSync.h" | 
|  | #include "DispSyncSource.h" | 
|  | #include "EventControlThread.h" | 
|  | #include "EventThread.h" | 
|  | #include "InjectVSyncSource.h" | 
|  | #include "OneShotTimer.h" | 
|  | #include "SchedulerUtils.h" | 
|  | #include "SurfaceFlingerProperties.h" | 
|  | #include "Timer.h" | 
|  | #include "VSyncDispatchTimerQueue.h" | 
|  | #include "VSyncPredictor.h" | 
|  | #include "VSyncReactor.h" | 
|  |  | 
|  | #define RETURN_IF_INVALID_HANDLE(handle, ...)                        \ | 
|  | do {                                                             \ | 
|  | if (mConnections.count(handle) == 0) {                       \ | 
|  | ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ | 
|  | return __VA_ARGS__;                                      \ | 
|  | }                                                            \ | 
|  | } while (false) | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | std::unique_ptr<DispSync> createDispSync() { | 
|  | // TODO (140302863) remove this and use the vsync_reactor system. | 
|  | if (property_get_bool("debug.sf.vsync_reactor", true)) { | 
|  | // TODO (144707443) tune Predictor tunables. | 
|  | static constexpr int default_rate = 60; | 
|  | static constexpr auto initial_period = | 
|  | std::chrono::duration<nsecs_t, std::ratio<1, default_rate>>(1); | 
|  | static constexpr size_t vsyncTimestampHistorySize = 20; | 
|  | static constexpr size_t minimumSamplesForPrediction = 6; | 
|  | static constexpr uint32_t discardOutlierPercent = 20; | 
|  | auto tracker = std::make_unique< | 
|  | scheduler::VSyncPredictor>(std::chrono::duration_cast<std::chrono::nanoseconds>( | 
|  | initial_period) | 
|  | .count(), | 
|  | vsyncTimestampHistorySize, minimumSamplesForPrediction, | 
|  | discardOutlierPercent); | 
|  |  | 
|  | static constexpr auto vsyncMoveThreshold = | 
|  | std::chrono::duration_cast<std::chrono::nanoseconds>(3ms); | 
|  | static constexpr auto timerSlack = | 
|  | std::chrono::duration_cast<std::chrono::nanoseconds>(500us); | 
|  | auto dispatch = std::make_unique< | 
|  | scheduler::VSyncDispatchTimerQueue>(std::make_unique<scheduler::Timer>(), *tracker, | 
|  | timerSlack.count(), vsyncMoveThreshold.count()); | 
|  |  | 
|  | static constexpr size_t pendingFenceLimit = 20; | 
|  | return std::make_unique<scheduler::VSyncReactor>(std::make_unique<scheduler::SystemClock>(), | 
|  | std::move(dispatch), std::move(tracker), | 
|  | pendingFenceLimit); | 
|  | } else { | 
|  | return std::make_unique<impl::DispSync>("SchedulerDispSync", | 
|  | sysprop::running_without_sync_framework(true)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Scheduler::Scheduler(impl::EventControlThread::SetVSyncEnabledFunction function, | 
|  | const scheduler::RefreshRateConfigs& refreshRateConfig, | 
|  | ISchedulerCallback& schedulerCallback, bool useContentDetectionV2, | 
|  | bool useContentDetection) | 
|  | : mPrimaryDispSync(createDispSync()), | 
|  | mEventControlThread(new impl::EventControlThread(std::move(function))), | 
|  | mSupportKernelTimer(sysprop::support_kernel_idle_timer(false)), | 
|  | mSchedulerCallback(schedulerCallback), | 
|  | mRefreshRateConfigs(refreshRateConfig), | 
|  | mUseContentDetection(useContentDetection), | 
|  | mUseContentDetectionV2(useContentDetectionV2) { | 
|  | using namespace sysprop; | 
|  |  | 
|  | if (mUseContentDetectionV2) { | 
|  | mLayerHistory = std::make_unique<scheduler::impl::LayerHistoryV2>(); | 
|  | } else { | 
|  | mLayerHistory = std::make_unique<scheduler::impl::LayerHistory>(); | 
|  | } | 
|  |  | 
|  | const int setIdleTimerMs = property_get_int32("debug.sf.set_idle_timer_ms", 0); | 
|  |  | 
|  | if (const auto millis = setIdleTimerMs ? setIdleTimerMs : set_idle_timer_ms(0); millis > 0) { | 
|  | const auto callback = mSupportKernelTimer ? &Scheduler::kernelIdleTimerCallback | 
|  | : &Scheduler::idleTimerCallback; | 
|  | mIdleTimer.emplace( | 
|  | std::chrono::milliseconds(millis), | 
|  | [this, callback] { std::invoke(callback, this, TimerState::Reset); }, | 
|  | [this, callback] { std::invoke(callback, this, TimerState::Expired); }); | 
|  | mIdleTimer->start(); | 
|  | } | 
|  |  | 
|  | if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { | 
|  | // Touch events are coming to SF every 100ms, so the timer needs to be higher than that | 
|  | mTouchTimer.emplace( | 
|  | std::chrono::milliseconds(millis), | 
|  | [this] { touchTimerCallback(TimerState::Reset); }, | 
|  | [this] { touchTimerCallback(TimerState::Expired); }); | 
|  | mTouchTimer->start(); | 
|  | } | 
|  |  | 
|  | if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { | 
|  | mDisplayPowerTimer.emplace( | 
|  | std::chrono::milliseconds(millis), | 
|  | [this] { displayPowerTimerCallback(TimerState::Reset); }, | 
|  | [this] { displayPowerTimerCallback(TimerState::Expired); }); | 
|  | mDisplayPowerTimer->start(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Scheduler::Scheduler(std::unique_ptr<DispSync> primaryDispSync, | 
|  | std::unique_ptr<EventControlThread> eventControlThread, | 
|  | const scheduler::RefreshRateConfigs& configs, | 
|  | ISchedulerCallback& schedulerCallback, bool useContentDetectionV2, | 
|  | bool useContentDetection) | 
|  | : mPrimaryDispSync(std::move(primaryDispSync)), | 
|  | mEventControlThread(std::move(eventControlThread)), | 
|  | mSupportKernelTimer(false), | 
|  | mSchedulerCallback(schedulerCallback), | 
|  | mRefreshRateConfigs(configs), | 
|  | mUseContentDetection(useContentDetection), | 
|  | mUseContentDetectionV2(useContentDetectionV2) {} | 
|  |  | 
|  | Scheduler::~Scheduler() { | 
|  | // Ensure the OneShotTimer threads are joined before we start destroying state. | 
|  | mDisplayPowerTimer.reset(); | 
|  | mTouchTimer.reset(); | 
|  | mIdleTimer.reset(); | 
|  | } | 
|  |  | 
|  | DispSync& Scheduler::getPrimaryDispSync() { | 
|  | return *mPrimaryDispSync; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource(const char* name, | 
|  | nsecs_t phaseOffsetNs) { | 
|  | return std::make_unique<DispSyncSource>(mPrimaryDispSync.get(), phaseOffsetNs, | 
|  | true /* traceVsync */, name); | 
|  | } | 
|  |  | 
|  | Scheduler::ConnectionHandle Scheduler::createConnection( | 
|  | const char* connectionName, nsecs_t phaseOffsetNs, | 
|  | impl::EventThread::InterceptVSyncsCallback interceptCallback) { | 
|  | auto vsyncSource = makePrimaryDispSyncSource(connectionName, phaseOffsetNs); | 
|  | auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), | 
|  | std::move(interceptCallback)); | 
|  | return createConnection(std::move(eventThread)); | 
|  | } | 
|  |  | 
|  | Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) { | 
|  | const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; | 
|  | ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); | 
|  |  | 
|  | auto connection = | 
|  | createConnectionInternal(eventThread.get(), ISurfaceComposer::eConfigChangedSuppress); | 
|  |  | 
|  | mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | sp<EventThreadConnection> Scheduler::createConnectionInternal( | 
|  | EventThread* eventThread, ISurfaceComposer::ConfigChanged configChanged) { | 
|  | return eventThread->createEventConnection([&] { resync(); }, configChanged); | 
|  | } | 
|  |  | 
|  | sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( | 
|  | ConnectionHandle handle, ISurfaceComposer::ConfigChanged configChanged) { | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  | return createConnectionInternal(mConnections[handle].thread.get(), configChanged); | 
|  | } | 
|  |  | 
|  | sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) { | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  | return mConnections[handle].connection; | 
|  | } | 
|  |  | 
|  | void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, | 
|  | bool connected) { | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | mConnections[handle].thread->onHotplugReceived(displayId, connected); | 
|  | } | 
|  |  | 
|  | void Scheduler::onScreenAcquired(ConnectionHandle handle) { | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | mConnections[handle].thread->onScreenAcquired(); | 
|  | } | 
|  |  | 
|  | void Scheduler::onScreenReleased(ConnectionHandle handle) { | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | mConnections[handle].thread->onScreenReleased(); | 
|  | } | 
|  |  | 
|  | void Scheduler::onConfigChanged(ConnectionHandle handle, PhysicalDisplayId displayId, | 
|  | HwcConfigIndexType configId, nsecs_t vsyncPeriod) { | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | mConnections[handle].thread->onConfigChanged(displayId, configId, vsyncPeriod); | 
|  | } | 
|  |  | 
|  | size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) { | 
|  | RETURN_IF_INVALID_HANDLE(handle, 0); | 
|  | return mConnections[handle].thread->getEventThreadConnectionCount(); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(ConnectionHandle handle, std::string& result) const { | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | mConnections.at(handle).thread->dump(result); | 
|  | } | 
|  |  | 
|  | void Scheduler::setPhaseOffset(ConnectionHandle handle, nsecs_t phaseOffset) { | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | mConnections[handle].thread->setPhaseOffset(phaseOffset); | 
|  | } | 
|  |  | 
|  | void Scheduler::getDisplayStatInfo(DisplayStatInfo* stats) { | 
|  | stats->vsyncTime = mPrimaryDispSync->computeNextRefresh(0, systemTime()); | 
|  | stats->vsyncPeriod = mPrimaryDispSync->getPeriod(); | 
|  | } | 
|  |  | 
|  | Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) { | 
|  | if (mInjectVSyncs == enable) { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling"); | 
|  |  | 
|  | if (!mInjectorConnectionHandle) { | 
|  | auto vsyncSource = std::make_unique<InjectVSyncSource>(); | 
|  | mVSyncInjector = vsyncSource.get(); | 
|  |  | 
|  | auto eventThread = | 
|  | std::make_unique<impl::EventThread>(std::move(vsyncSource), | 
|  | impl::EventThread::InterceptVSyncsCallback()); | 
|  |  | 
|  | mInjectorConnectionHandle = createConnection(std::move(eventThread)); | 
|  | } | 
|  |  | 
|  | mInjectVSyncs = enable; | 
|  | return mInjectorConnectionHandle; | 
|  | } | 
|  |  | 
|  | bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime) { | 
|  | if (!mInjectVSyncs || !mVSyncInjector) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Scheduler::enableHardwareVsync() { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { | 
|  | mPrimaryDispSync->beginResync(); | 
|  | mEventControlThread->setVsyncEnabled(true); | 
|  | mPrimaryHWVsyncEnabled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::disableHardwareVsync(bool makeUnavailable) { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (mPrimaryHWVsyncEnabled) { | 
|  | mEventControlThread->setVsyncEnabled(false); | 
|  | mPrimaryDispSync->endResync(); | 
|  | mPrimaryHWVsyncEnabled = false; | 
|  | } | 
|  | if (makeUnavailable) { | 
|  | mHWVsyncAvailable = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (makeAvailable) { | 
|  | mHWVsyncAvailable = makeAvailable; | 
|  | } else if (!mHWVsyncAvailable) { | 
|  | // Hardware vsync is not currently available, so abort the resync | 
|  | // attempt for now | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (period <= 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | setVsyncPeriod(period); | 
|  | } | 
|  |  | 
|  | void Scheduler::resync() { | 
|  | static constexpr nsecs_t kIgnoreDelay = ms2ns(750); | 
|  |  | 
|  | const nsecs_t now = systemTime(); | 
|  | const nsecs_t last = mLastResyncTime.exchange(now); | 
|  |  | 
|  | if (now - last > kIgnoreDelay) { | 
|  | resyncToHardwareVsync(false, mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setVsyncPeriod(nsecs_t period) { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | mPrimaryDispSync->setPeriod(period); | 
|  |  | 
|  | if (!mPrimaryHWVsyncEnabled) { | 
|  | mPrimaryDispSync->beginResync(); | 
|  | mEventControlThread->setVsyncEnabled(true); | 
|  | mPrimaryHWVsyncEnabled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod, | 
|  | bool* periodFlushed) { | 
|  | bool needsHwVsync = false; | 
|  | *periodFlushed = false; | 
|  | { // Scope for the lock | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (mPrimaryHWVsyncEnabled) { | 
|  | needsHwVsync = | 
|  | mPrimaryDispSync->addResyncSample(timestamp, hwcVsyncPeriod, periodFlushed); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (needsHwVsync) { | 
|  | enableHardwareVsync(); | 
|  | } else { | 
|  | disableHardwareVsync(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) { | 
|  | if (mPrimaryDispSync->addPresentFence(fenceTime)) { | 
|  | enableHardwareVsync(); | 
|  | } else { | 
|  | disableHardwareVsync(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setIgnorePresentFences(bool ignore) { | 
|  | mPrimaryDispSync->setIgnorePresentFences(ignore); | 
|  | } | 
|  |  | 
|  | nsecs_t Scheduler::getDispSyncExpectedPresentTime(nsecs_t now) { | 
|  | return mPrimaryDispSync->expectedPresentTime(now); | 
|  | } | 
|  |  | 
|  | void Scheduler::registerLayer(Layer* layer) { | 
|  | if (!mLayerHistory) return; | 
|  |  | 
|  | // If the content detection feature is off, all layers are registered at NoVote. We still | 
|  | // keep the layer history, since we use it for other features (like Frame Rate API), so layers | 
|  | // still need to be registered. | 
|  | if (!mUseContentDetection) { | 
|  | mLayerHistory->registerLayer(layer, mRefreshRateConfigs.getMinRefreshRate().getFps(), | 
|  | mRefreshRateConfigs.getMaxRefreshRate().getFps(), | 
|  | scheduler::LayerHistory::LayerVoteType::NoVote); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // In V1 of content detection, all layers are registered as Heuristic (unless it's wallpaper). | 
|  | if (!mUseContentDetectionV2) { | 
|  | const auto lowFps = mRefreshRateConfigs.getMinRefreshRate().getFps(); | 
|  | const auto highFps = layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER | 
|  | ? lowFps | 
|  | : mRefreshRateConfigs.getMaxRefreshRate().getFps(); | 
|  |  | 
|  | mLayerHistory->registerLayer(layer, lowFps, highFps, | 
|  | scheduler::LayerHistory::LayerVoteType::Heuristic); | 
|  | } else { | 
|  | if (layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER) { | 
|  | // Running Wallpaper at Min is considered as part of content detection. | 
|  | mLayerHistory->registerLayer(layer, mRefreshRateConfigs.getMinRefreshRate().getFps(), | 
|  | mRefreshRateConfigs.getMaxRefreshRate().getFps(), | 
|  | scheduler::LayerHistory::LayerVoteType::Min); | 
|  | } else if (layer->getWindowType() == InputWindowInfo::TYPE_STATUS_BAR) { | 
|  | mLayerHistory->registerLayer(layer, mRefreshRateConfigs.getMinRefreshRate().getFps(), | 
|  | mRefreshRateConfigs.getMaxRefreshRate().getFps(), | 
|  | scheduler::LayerHistory::LayerVoteType::NoVote); | 
|  | } else { | 
|  | mLayerHistory->registerLayer(layer, mRefreshRateConfigs.getMinRefreshRate().getFps(), | 
|  | mRefreshRateConfigs.getMaxRefreshRate().getFps(), | 
|  | scheduler::LayerHistory::LayerVoteType::Heuristic); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime) { | 
|  | if (mLayerHistory) { | 
|  | mLayerHistory->record(layer, presentTime, systemTime()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::chooseRefreshRateForContent() { | 
|  | if (!mLayerHistory) return; | 
|  |  | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | scheduler::LayerHistory::Summary summary = mLayerHistory->summarize(systemTime()); | 
|  | HwcConfigIndexType newConfigId; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | if (mFeatures.contentRequirements == summary) { | 
|  | return; | 
|  | } | 
|  | mFeatures.contentRequirements = summary; | 
|  | mFeatures.contentDetectionV1 = | 
|  | !summary.empty() ? ContentDetectionState::On : ContentDetectionState::Off; | 
|  |  | 
|  | newConfigId = calculateRefreshRateConfigIndexType(); | 
|  | if (mFeatures.configId == newConfigId) { | 
|  | return; | 
|  | } | 
|  | mFeatures.configId = newConfigId; | 
|  | auto& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId); | 
|  | mSchedulerCallback.changeRefreshRate(newRefreshRate, ConfigEvent::Changed); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::resetIdleTimer() { | 
|  | if (mIdleTimer) { | 
|  | mIdleTimer->reset(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::notifyTouchEvent() { | 
|  | if (!mTouchTimer) return; | 
|  |  | 
|  | // Touch event will boost the refresh rate to performance. | 
|  | // Clear Layer History to get fresh FPS detection. | 
|  | // NOTE: Instead of checking all the layers, we should be checking the layer | 
|  | // that is currently on top. b/142507166 will give us this capability. | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | if (mLayerHistory) { | 
|  | // Layer History will be cleared based on RefreshRateConfigs::getRefreshRateForContentV2 | 
|  |  | 
|  | mTouchTimer->reset(); | 
|  |  | 
|  | if (mSupportKernelTimer && mIdleTimer) { | 
|  | mIdleTimer->reset(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setDisplayPowerState(bool normal) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | mFeatures.isDisplayPowerStateNormal = normal; | 
|  | } | 
|  |  | 
|  | if (mDisplayPowerTimer) { | 
|  | mDisplayPowerTimer->reset(); | 
|  | } | 
|  |  | 
|  | // Display Power event will boost the refresh rate to performance. | 
|  | // Clear Layer History to get fresh FPS detection | 
|  | if (mLayerHistory) { | 
|  | mLayerHistory->clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::kernelIdleTimerCallback(TimerState state) { | 
|  | ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state)); | 
|  |  | 
|  | // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate | 
|  | // magic number | 
|  | const auto& refreshRate = mRefreshRateConfigs.getCurrentRefreshRate(); | 
|  | constexpr float FPS_THRESHOLD_FOR_KERNEL_TIMER = 65.0f; | 
|  | if (state == TimerState::Reset && refreshRate.getFps() > FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
|  | // If we're not in performance mode then the kernel timer shouldn't do | 
|  | // anything, as the refresh rate during DPU power collapse will be the | 
|  | // same. | 
|  | resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod()); | 
|  | } else if (state == TimerState::Expired && | 
|  | refreshRate.getFps() <= FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
|  | // Disable HW VSYNC if the timer expired, as we don't need it enabled if | 
|  | // we're not pushing frames, and if we're in PERFORMANCE mode then we'll | 
|  | // need to update the DispSync model anyway. | 
|  | disableHardwareVsync(false /* makeUnavailable */); | 
|  | } | 
|  |  | 
|  | mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); | 
|  | } | 
|  |  | 
|  | void Scheduler::idleTimerCallback(TimerState state) { | 
|  | handleTimerStateChanged(&mFeatures.idleTimer, state, false /* eventOnContentDetection */); | 
|  | ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::touchTimerCallback(TimerState state) { | 
|  | const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; | 
|  | handleTimerStateChanged(&mFeatures.touch, touch, true /* eventOnContentDetection */); | 
|  | ATRACE_INT("TouchState", static_cast<int>(touch)); | 
|  | } | 
|  |  | 
|  | void Scheduler::displayPowerTimerCallback(TimerState state) { | 
|  | handleTimerStateChanged(&mFeatures.displayPowerTimer, state, | 
|  | true /* eventOnContentDetection */); | 
|  | ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(std::string& result) const { | 
|  | using base::StringAppendF; | 
|  | const char* const states[] = {"off", "on"}; | 
|  |  | 
|  | StringAppendF(&result, "+  Idle timer: %s\n", | 
|  | mIdleTimer ? mIdleTimer->dump().c_str() : states[0]); | 
|  | StringAppendF(&result, "+  Touch timer: %s\n", | 
|  | mTouchTimer ? mTouchTimer->dump().c_str() : states[0]); | 
|  | StringAppendF(&result, "+  Use content detection: %s\n\n", | 
|  | sysprop::use_content_detection_for_refresh_rate(false) ? "on" : "off"); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | void Scheduler::handleTimerStateChanged(T* currentState, T newState, bool eventOnContentDetection) { | 
|  | ConfigEvent event = ConfigEvent::None; | 
|  | HwcConfigIndexType newConfigId; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | if (*currentState == newState) { | 
|  | return; | 
|  | } | 
|  | *currentState = newState; | 
|  | newConfigId = calculateRefreshRateConfigIndexType(); | 
|  | if (mFeatures.configId == newConfigId) { | 
|  | return; | 
|  | } | 
|  | mFeatures.configId = newConfigId; | 
|  | if (eventOnContentDetection && !mFeatures.contentRequirements.empty()) { | 
|  | event = ConfigEvent::Changed; | 
|  | } | 
|  | } | 
|  | const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId); | 
|  | mSchedulerCallback.changeRefreshRate(newRefreshRate, event); | 
|  | } | 
|  |  | 
|  | HwcConfigIndexType Scheduler::calculateRefreshRateConfigIndexType() { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | // NOTE: If we remove the kernel idle timer, and use our internal idle timer, this | 
|  | // code will have to be refactored. If Display Power is not in normal operation we want to be in | 
|  | // performance mode. When coming back to normal mode, a grace period is given with | 
|  | // DisplayPowerTimer. | 
|  | if (mDisplayPowerTimer && | 
|  | (!mFeatures.isDisplayPowerStateNormal || | 
|  | mFeatures.displayPowerTimer == TimerState::Reset)) { | 
|  | return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId(); | 
|  | } | 
|  |  | 
|  | if (!mUseContentDetectionV2) { | 
|  | // As long as touch is active we want to be in performance mode. | 
|  | if (mTouchTimer && mFeatures.touch == TouchState::Active) { | 
|  | return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If timer has expired as it means there is no new content on the screen. | 
|  | if (mIdleTimer && mFeatures.idleTimer == TimerState::Expired) { | 
|  | return mRefreshRateConfigs.getMinRefreshRateByPolicy().getConfigId(); | 
|  | } | 
|  |  | 
|  | if (!mUseContentDetectionV2) { | 
|  | // If content detection is off we choose performance as we don't know the content fps. | 
|  | if (mFeatures.contentDetectionV1 == ContentDetectionState::Off) { | 
|  | // NOTE: V1 always calls this, but this is not a default behavior for V2. | 
|  | return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId(); | 
|  | } | 
|  |  | 
|  | // Content detection is on, find the appropriate refresh rate with minimal error | 
|  | return mRefreshRateConfigs.getRefreshRateForContent(mFeatures.contentRequirements) | 
|  | .getConfigId(); | 
|  | } | 
|  |  | 
|  | bool touchConsidered; | 
|  | const auto& ret = | 
|  | mRefreshRateConfigs | 
|  | .getRefreshRateForContentV2(mFeatures.contentRequirements, | 
|  | mTouchTimer && | 
|  | mFeatures.touch == TouchState::Active, | 
|  | &touchConsidered) | 
|  | .getConfigId(); | 
|  | if (touchConsidered) { | 
|  | // Clear layer history if refresh rate was selected based on touch to allow | 
|  | // the hueristic to pick up with the new rate. | 
|  | mLayerHistory->clear(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | std::optional<HwcConfigIndexType> Scheduler::getPreferredConfigId() { | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | // Make sure that the default config ID is first updated, before returned. | 
|  | if (mFeatures.configId.has_value()) { | 
|  | mFeatures.configId = calculateRefreshRateConfigIndexType(); | 
|  | } | 
|  | return mFeatures.configId; | 
|  | } | 
|  |  | 
|  | void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { | 
|  | if (timeline.refreshRequired) { | 
|  | mSchedulerCallback.repaintEverythingForHWC(); | 
|  | } | 
|  |  | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); | 
|  |  | 
|  | const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); | 
|  | if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { | 
|  | mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::onDisplayRefreshed(nsecs_t timestamp) { | 
|  | bool callRepaint = false; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { | 
|  | if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) { | 
|  | mLastVsyncPeriodChangeTimeline->refreshRequired = false; | 
|  | } else { | 
|  | // We need to send another refresh as refreshTimeNanos is still in the future | 
|  | callRepaint = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (callRepaint) { | 
|  | mSchedulerCallback.repaintEverythingForHWC(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::onPrimaryDisplayAreaChanged(uint32_t displayArea) { | 
|  | if (mLayerHistory) { | 
|  | mLayerHistory->setDisplayArea(displayArea); | 
|  | } | 
|  | } | 
|  |  | 
|  | } // namespace android |