| /* | 
 |  * Copyright 2019 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <android-base/stringprintf.h> | 
 | #include <compositionengine/CompositionEngine.h> | 
 | #include <compositionengine/Layer.h> | 
 | #include <compositionengine/LayerFE.h> | 
 | #include <compositionengine/Output.h> | 
 | #include <compositionengine/impl/LayerCompositionState.h> | 
 | #include <compositionengine/impl/OutputCompositionState.h> | 
 | #include <compositionengine/impl/OutputLayer.h> | 
 | #include <compositionengine/impl/OutputLayerCompositionState.h> | 
 |  | 
 | #include "DisplayHardware/HWComposer.h" | 
 |  | 
 | namespace android::compositionengine { | 
 |  | 
 | OutputLayer::~OutputLayer() = default; | 
 |  | 
 | namespace impl { | 
 |  | 
 | namespace { | 
 |  | 
 | FloatRect reduce(const FloatRect& win, const Region& exclude) { | 
 |     if (CC_LIKELY(exclude.isEmpty())) { | 
 |         return win; | 
 |     } | 
 |     // Convert through Rect (by rounding) for lack of FloatRegion | 
 |     return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); | 
 | } | 
 |  | 
 | } // namespace | 
 |  | 
 | std::unique_ptr<compositionengine::OutputLayer> createOutputLayer( | 
 |         const CompositionEngine& compositionEngine, std::optional<DisplayId> displayId, | 
 |         const compositionengine::Output& output, std::shared_ptr<compositionengine::Layer> layer, | 
 |         sp<compositionengine::LayerFE> layerFE) { | 
 |     auto result = std::make_unique<OutputLayer>(output, layer, layerFE); | 
 |     result->initialize(compositionEngine, displayId); | 
 |     return result; | 
 | } | 
 |  | 
 | OutputLayer::OutputLayer(const Output& output, std::shared_ptr<Layer> layer, sp<LayerFE> layerFE) | 
 |       : mOutput(output), mLayer(layer), mLayerFE(layerFE) {} | 
 |  | 
 | OutputLayer::~OutputLayer() = default; | 
 |  | 
 | void OutputLayer::initialize(const CompositionEngine& compositionEngine, | 
 |                              std::optional<DisplayId> displayId) { | 
 |     if (!displayId) { | 
 |         return; | 
 |     } | 
 |  | 
 |     auto& hwc = compositionEngine.getHwComposer(); | 
 |  | 
 |     mState.hwc.emplace(std::shared_ptr<HWC2::Layer>(hwc.createLayer(*displayId), | 
 |                                                     [&hwc, displayId](HWC2::Layer* layer) { | 
 |                                                         hwc.destroyLayer(*displayId, layer); | 
 |                                                     })); | 
 | } | 
 |  | 
 | const compositionengine::Output& OutputLayer::getOutput() const { | 
 |     return mOutput; | 
 | } | 
 |  | 
 | compositionengine::Layer& OutputLayer::getLayer() const { | 
 |     return *mLayer; | 
 | } | 
 |  | 
 | compositionengine::LayerFE& OutputLayer::getLayerFE() const { | 
 |     return *mLayerFE; | 
 | } | 
 |  | 
 | const OutputLayerCompositionState& OutputLayer::getState() const { | 
 |     return mState; | 
 | } | 
 |  | 
 | OutputLayerCompositionState& OutputLayer::editState() { | 
 |     return mState; | 
 | } | 
 |  | 
 | Rect OutputLayer::calculateInitialCrop() const { | 
 |     const auto& layerState = mLayer->getState().frontEnd; | 
 |  | 
 |     // apply the projection's clipping to the window crop in | 
 |     // layerstack space, and convert-back to layer space. | 
 |     // if there are no window scaling involved, this operation will map to full | 
 |     // pixels in the buffer. | 
 |  | 
 |     FloatRect activeCropFloat = | 
 |             reduce(layerState.geomLayerBounds, layerState.geomActiveTransparentRegion); | 
 |  | 
 |     const Rect& viewport = mOutput.getState().viewport; | 
 |     const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
 |     const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; | 
 |     // Transform to screen space. | 
 |     activeCropFloat = layerTransform.transform(activeCropFloat); | 
 |     activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect()); | 
 |     // Back to layer space to work with the content crop. | 
 |     activeCropFloat = inverseLayerTransform.transform(activeCropFloat); | 
 |  | 
 |     // This needs to be here as transform.transform(Rect) computes the | 
 |     // transformed rect and then takes the bounding box of the result before | 
 |     // returning. This means | 
 |     // transform.inverse().transform(transform.transform(Rect)) != Rect | 
 |     // in which case we need to make sure the final rect is clipped to the | 
 |     // display bounds. | 
 |     Rect activeCrop{activeCropFloat}; | 
 |     if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) { | 
 |         activeCrop.clear(); | 
 |     } | 
 |     return activeCrop; | 
 | } | 
 |  | 
 | FloatRect OutputLayer::calculateOutputSourceCrop() const { | 
 |     const auto& layerState = mLayer->getState().frontEnd; | 
 |     const auto& outputState = mOutput.getState(); | 
 |  | 
 |     if (!layerState.geomUsesSourceCrop) { | 
 |         return {}; | 
 |     } | 
 |  | 
 |     // the content crop is the area of the content that gets scaled to the | 
 |     // layer's size. This is in buffer space. | 
 |     FloatRect crop = layerState.geomContentCrop.toFloatRect(); | 
 |  | 
 |     // In addition there is a WM-specified crop we pull from our drawing state. | 
 |     Rect activeCrop = calculateInitialCrop(); | 
 |     const Rect& bufferSize = layerState.geomBufferSize; | 
 |  | 
 |     int winWidth = bufferSize.getWidth(); | 
 |     int winHeight = bufferSize.getHeight(); | 
 |  | 
 |     // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1]) | 
 |     // if display frame hasn't been set and the parent is an unbounded layer. | 
 |     if (winWidth < 0 && winHeight < 0) { | 
 |         return crop; | 
 |     } | 
 |  | 
 |     // Transform the window crop to match the buffer coordinate system, | 
 |     // which means using the inverse of the current transform set on the | 
 |     // SurfaceFlingerConsumer. | 
 |     uint32_t invTransform = layerState.geomBufferTransform; | 
 |     if (layerState.geomBufferUsesDisplayInverseTransform) { | 
 |         /* | 
 |          * the code below applies the primary display's inverse transform to the | 
 |          * buffer | 
 |          */ | 
 |         uint32_t invTransformOrient = outputState.orientation; | 
 |         // calculate the inverse transform | 
 |         if (invTransformOrient & HAL_TRANSFORM_ROT_90) { | 
 |             invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
 |         } | 
 |         // and apply to the current transform | 
 |         invTransform = | 
 |                 (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation(); | 
 |     } | 
 |  | 
 |     if (invTransform & HAL_TRANSFORM_ROT_90) { | 
 |         // If the activeCrop has been rotate the ends are rotated but not | 
 |         // the space itself so when transforming ends back we can't rely on | 
 |         // a modification of the axes of rotation. To account for this we | 
 |         // need to reorient the inverse rotation in terms of the current | 
 |         // axes of rotation. | 
 |         bool is_h_flipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0; | 
 |         bool is_v_flipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0; | 
 |         if (is_h_flipped == is_v_flipped) { | 
 |             invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
 |         } | 
 |         std::swap(winWidth, winHeight); | 
 |     } | 
 |     const Rect winCrop = | 
 |             activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight()); | 
 |  | 
 |     // below, crop is intersected with winCrop expressed in crop's coordinate space | 
 |     float xScale = crop.getWidth() / float(winWidth); | 
 |     float yScale = crop.getHeight() / float(winHeight); | 
 |  | 
 |     float insetL = winCrop.left * xScale; | 
 |     float insetT = winCrop.top * yScale; | 
 |     float insetR = (winWidth - winCrop.right) * xScale; | 
 |     float insetB = (winHeight - winCrop.bottom) * yScale; | 
 |  | 
 |     crop.left += insetL; | 
 |     crop.top += insetT; | 
 |     crop.right -= insetR; | 
 |     crop.bottom -= insetB; | 
 |  | 
 |     return crop; | 
 | } | 
 |  | 
 | Rect OutputLayer::calculateOutputDisplayFrame() const { | 
 |     const auto& layerState = mLayer->getState().frontEnd; | 
 |     const auto& outputState = mOutput.getState(); | 
 |  | 
 |     // apply the layer's transform, followed by the display's global transform | 
 |     // here we're guaranteed that the layer's transform preserves rects | 
 |     Region activeTransparentRegion = layerState.geomActiveTransparentRegion; | 
 |     const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
 |     const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; | 
 |     const Rect& bufferSize = layerState.geomBufferSize; | 
 |     Rect activeCrop = layerState.geomCrop; | 
 |     if (!activeCrop.isEmpty() && bufferSize.isValid()) { | 
 |         activeCrop = layerTransform.transform(activeCrop); | 
 |         if (!activeCrop.intersect(outputState.viewport, &activeCrop)) { | 
 |             activeCrop.clear(); | 
 |         } | 
 |         activeCrop = inverseLayerTransform.transform(activeCrop, true); | 
 |         // This needs to be here as transform.transform(Rect) computes the | 
 |         // transformed rect and then takes the bounding box of the result before | 
 |         // returning. This means | 
 |         // transform.inverse().transform(transform.transform(Rect)) != Rect | 
 |         // in which case we need to make sure the final rect is clipped to the | 
 |         // display bounds. | 
 |         if (!activeCrop.intersect(bufferSize, &activeCrop)) { | 
 |             activeCrop.clear(); | 
 |         } | 
 |         // mark regions outside the crop as transparent | 
 |         activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top)); | 
 |         activeTransparentRegion.orSelf( | 
 |                 Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight())); | 
 |         activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); | 
 |         activeTransparentRegion.orSelf( | 
 |                 Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom)); | 
 |     } | 
 |  | 
 |     // reduce uses a FloatRect to provide more accuracy during the | 
 |     // transformation. We then round upon constructing 'frame'. | 
 |     Rect frame{ | 
 |             layerTransform.transform(reduce(layerState.geomLayerBounds, activeTransparentRegion))}; | 
 |     if (!frame.intersect(outputState.viewport, &frame)) { | 
 |         frame.clear(); | 
 |     } | 
 |     const ui::Transform displayTransform{outputState.transform}; | 
 |  | 
 |     return displayTransform.transform(frame); | 
 | } | 
 |  | 
 | uint32_t OutputLayer::calculateOutputRelativeBufferTransform() const { | 
 |     const auto& layerState = mLayer->getState().frontEnd; | 
 |     const auto& outputState = mOutput.getState(); | 
 |  | 
 |     /* | 
 |      * Transformations are applied in this order: | 
 |      * 1) buffer orientation/flip/mirror | 
 |      * 2) state transformation (window manager) | 
 |      * 3) layer orientation (screen orientation) | 
 |      * (NOTE: the matrices are multiplied in reverse order) | 
 |      */ | 
 |     const ui::Transform& layerTransform = layerState.geomLayerTransform; | 
 |     const ui::Transform displayTransform{outputState.orientation}; | 
 |     const ui::Transform bufferTransform{layerState.geomBufferTransform}; | 
 |     ui::Transform transform(displayTransform * layerTransform * bufferTransform); | 
 |  | 
 |     if (layerState.geomBufferUsesDisplayInverseTransform) { | 
 |         /* | 
 |          * the code below applies the primary display's inverse transform to the | 
 |          * buffer | 
 |          */ | 
 |         uint32_t invTransform = outputState.orientation; | 
 |         // calculate the inverse transform | 
 |         if (invTransform & HAL_TRANSFORM_ROT_90) { | 
 |             invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; | 
 |         } | 
 |  | 
 |         /* | 
 |          * Here we cancel out the orientation component of the WM transform. | 
 |          * The scaling and translate components are already included in our bounds | 
 |          * computation so it's enough to just omit it in the composition. | 
 |          * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why. | 
 |          */ | 
 |         transform = ui::Transform(invTransform) * displayTransform * bufferTransform; | 
 |     } | 
 |  | 
 |     // this gives us only the "orientation" component of the transform | 
 |     return transform.getOrientation(); | 
 | } // namespace impl | 
 |  | 
 | void OutputLayer::updateCompositionState(bool includeGeometry) { | 
 |     if (includeGeometry) { | 
 |         mState.displayFrame = calculateOutputDisplayFrame(); | 
 |         mState.sourceCrop = calculateOutputSourceCrop(); | 
 |         mState.bufferTransform = | 
 |                 static_cast<Hwc2::Transform>(calculateOutputRelativeBufferTransform()); | 
 |  | 
 |         if ((mLayer->getState().frontEnd.isSecure && !mOutput.getState().isSecure) || | 
 |             (mState.bufferTransform & ui::Transform::ROT_INVALID)) { | 
 |             mState.forceClientComposition = true; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::writeStateToHWC(bool includeGeometry) const { | 
 |     // Skip doing this if there is no HWC interface | 
 |     if (!mState.hwc) { | 
 |         return; | 
 |     } | 
 |  | 
 |     auto& hwcLayer = (*mState.hwc).hwcLayer; | 
 |     if (!hwcLayer) { | 
 |         ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s", | 
 |               mLayerFE->getDebugName(), mOutput.getName().c_str()); | 
 |         return; | 
 |     } | 
 |  | 
 |     if (includeGeometry) { | 
 |         // Output dependent state | 
 |  | 
 |         if (auto error = hwcLayer->setDisplayFrame(mState.displayFrame); | 
 |             error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", | 
 |                   mLayerFE->getDebugName(), mState.displayFrame.left, mState.displayFrame.top, | 
 |                   mState.displayFrame.right, mState.displayFrame.bottom, to_string(error).c_str(), | 
 |                   static_cast<int32_t>(error)); | 
 |         } | 
 |  | 
 |         if (auto error = hwcLayer->setSourceCrop(mState.sourceCrop); error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " | 
 |                   "%s (%d)", | 
 |                   mLayerFE->getDebugName(), mState.sourceCrop.left, mState.sourceCrop.top, | 
 |                   mState.sourceCrop.right, mState.sourceCrop.bottom, to_string(error).c_str(), | 
 |                   static_cast<int32_t>(error)); | 
 |         } | 
 |  | 
 |         if (auto error = hwcLayer->setZOrder(mState.z); error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set Z %u: %s (%d)", mLayerFE->getDebugName(), mState.z, | 
 |                   to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         } | 
 |  | 
 |         if (auto error = | 
 |                     hwcLayer->setTransform(static_cast<HWC2::Transform>(mState.bufferTransform)); | 
 |             error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set transform %s: %s (%d)", mLayerFE->getDebugName(), | 
 |                   toString(mState.bufferTransform).c_str(), to_string(error).c_str(), | 
 |                   static_cast<int32_t>(error)); | 
 |         } | 
 |  | 
 |         // Output independent state | 
 |  | 
 |         const auto& outputIndependentState = mLayer->getState().frontEnd; | 
 |  | 
 |         if (auto error = hwcLayer->setBlendMode( | 
 |                     static_cast<HWC2::BlendMode>(outputIndependentState.blendMode)); | 
 |             error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set blend mode %s: %s (%d)", mLayerFE->getDebugName(), | 
 |                   toString(outputIndependentState.blendMode).c_str(), to_string(error).c_str(), | 
 |                   static_cast<int32_t>(error)); | 
 |         } | 
 |  | 
 |         if (auto error = hwcLayer->setPlaneAlpha(outputIndependentState.alpha); | 
 |             error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", mLayerFE->getDebugName(), | 
 |                   outputIndependentState.alpha, to_string(error).c_str(), | 
 |                   static_cast<int32_t>(error)); | 
 |         } | 
 |  | 
 |         if (auto error = | 
 |                     hwcLayer->setInfo(outputIndependentState.type, outputIndependentState.appId); | 
 |             error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set info %s (%d)", mLayerFE->getDebugName(), | 
 |                   to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void OutputLayer::dump(std::string& out) const { | 
 |     using android::base::StringAppendF; | 
 |  | 
 |     StringAppendF(&out, "  - Output Layer %p (Composition layer %p) (%s)\n", this, mLayer.get(), | 
 |                   mLayerFE->getDebugName()); | 
 |     mState.dump(out); | 
 | } | 
 |  | 
 | } // namespace impl | 
 | } // namespace android::compositionengine |