blob: 03c8e80d045eaa9212383d5b49118268caeb6ffa [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#include <cstdint>
#undef LOG_TAG
#define LOG_TAG "RenderEngine"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <sync/sync.h>
#include <ui/BlurRegion.h>
#include <ui/GraphicBuffer.h>
#include <utils/Trace.h>
#include "../gl/GLExtensions.h"
#include "SkiaGLRenderEngine.h"
#include "filters/BlurFilter.h"
#include <GrContextOptions.h>
#include <SkCanvas.h>
#include <SkColorFilter.h>
#include <SkColorMatrix.h>
#include <SkColorSpace.h>
#include <SkImage.h>
#include <SkImageFilters.h>
#include <SkShadowUtils.h>
#include <SkSurface.h>
#include <gl/GrGLInterface.h>
#include <sync/sync.h>
#include <ui/GraphicBuffer.h>
#include <utils/Trace.h>
#include <cmath>
#include "../gl/GLExtensions.h"
#include "SkiaGLRenderEngine.h"
#include "filters/BlurFilter.h"
extern "C" EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
bool checkGlError(const char* op, int lineNumber);
namespace android {
namespace renderengine {
namespace skia {
static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute,
EGLint wanted, EGLConfig* outConfig) {
EGLint numConfigs = -1, n = 0;
eglGetConfigs(dpy, nullptr, 0, &numConfigs);
std::vector<EGLConfig> configs(numConfigs, EGL_NO_CONFIG_KHR);
eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n);
configs.resize(n);
if (!configs.empty()) {
if (attribute != EGL_NONE) {
for (EGLConfig config : configs) {
EGLint value = 0;
eglGetConfigAttrib(dpy, config, attribute, &value);
if (wanted == value) {
*outConfig = config;
return NO_ERROR;
}
}
} else {
// just pick the first one
*outConfig = configs[0];
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType,
EGLConfig* config) {
// select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
// it is to be used with WIFI displays
status_t err;
EGLint wantedAttribute;
EGLint wantedAttributeValue;
std::vector<EGLint> attribs;
if (renderableType) {
const ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(format);
const bool is1010102 = pixelFormat == ui::PixelFormat::RGBA_1010102;
// Default to 8 bits per channel.
const EGLint tmpAttribs[] = {
EGL_RENDERABLE_TYPE,
renderableType,
EGL_RECORDABLE_ANDROID,
EGL_TRUE,
EGL_SURFACE_TYPE,
EGL_WINDOW_BIT | EGL_PBUFFER_BIT,
EGL_FRAMEBUFFER_TARGET_ANDROID,
EGL_TRUE,
EGL_RED_SIZE,
is1010102 ? 10 : 8,
EGL_GREEN_SIZE,
is1010102 ? 10 : 8,
EGL_BLUE_SIZE,
is1010102 ? 10 : 8,
EGL_ALPHA_SIZE,
is1010102 ? 2 : 8,
EGL_NONE,
};
std::copy(tmpAttribs, tmpAttribs + (sizeof(tmpAttribs) / sizeof(EGLint)),
std::back_inserter(attribs));
wantedAttribute = EGL_NONE;
wantedAttributeValue = EGL_NONE;
} else {
// if no renderable type specified, fallback to a simplified query
wantedAttribute = EGL_NATIVE_VISUAL_ID;
wantedAttributeValue = format;
}
err = selectConfigForAttribute(display, attribs.data(), wantedAttribute, wantedAttributeValue,
config);
if (err == NO_ERROR) {
EGLint caveat;
if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat))
ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
}
return err;
}
// Converts an android dataspace to a supported SkColorSpace
// Supported dataspaces are
// 1. sRGB
// 2. Display P3
// 3. BT2020 PQ
// 4. BT2020 HLG
// Unknown primaries are mapped to BT709, and unknown transfer functions
// are mapped to sRGB.
static sk_sp<SkColorSpace> toColorSpace(ui::Dataspace dataspace) {
skcms_Matrix3x3 gamut;
switch (dataspace & HAL_DATASPACE_STANDARD_MASK) {
case HAL_DATASPACE_STANDARD_BT709:
gamut = SkNamedGamut::kSRGB;
break;
case HAL_DATASPACE_STANDARD_BT2020:
gamut = SkNamedGamut::kRec2020;
break;
case HAL_DATASPACE_STANDARD_DCI_P3:
gamut = SkNamedGamut::kDisplayP3;
break;
default:
ALOGV("Unsupported Gamut: %d, defaulting to sRGB", dataspace);
gamut = SkNamedGamut::kSRGB;
break;
}
switch (dataspace & HAL_DATASPACE_TRANSFER_MASK) {
case HAL_DATASPACE_TRANSFER_LINEAR:
return SkColorSpace::MakeRGB(SkNamedTransferFn::kLinear, gamut);
case HAL_DATASPACE_TRANSFER_SRGB:
return SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, gamut);
case HAL_DATASPACE_TRANSFER_ST2084:
return SkColorSpace::MakeRGB(SkNamedTransferFn::kPQ, gamut);
case HAL_DATASPACE_TRANSFER_HLG:
return SkColorSpace::MakeRGB(SkNamedTransferFn::kHLG, gamut);
default:
ALOGV("Unsupported Gamma: %d, defaulting to sRGB transfer", dataspace);
return SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, gamut);
}
}
std::unique_ptr<SkiaGLRenderEngine> SkiaGLRenderEngine::create(
const RenderEngineCreationArgs& args) {
// initialize EGL for the default display
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (!eglInitialize(display, nullptr, nullptr)) {
LOG_ALWAYS_FATAL("failed to initialize EGL");
}
const auto eglVersion = eglQueryStringImplementationANDROID(display, EGL_VERSION);
if (!eglVersion) {
checkGlError(__FUNCTION__, __LINE__);
LOG_ALWAYS_FATAL("eglQueryStringImplementationANDROID(EGL_VERSION) failed");
}
const auto eglExtensions = eglQueryStringImplementationANDROID(display, EGL_EXTENSIONS);
if (!eglExtensions) {
checkGlError(__FUNCTION__, __LINE__);
LOG_ALWAYS_FATAL("eglQueryStringImplementationANDROID(EGL_EXTENSIONS) failed");
}
auto& extensions = gl::GLExtensions::getInstance();
extensions.initWithEGLStrings(eglVersion, eglExtensions);
// The code assumes that ES2 or later is available if this extension is
// supported.
EGLConfig config = EGL_NO_CONFIG_KHR;
if (!extensions.hasNoConfigContext()) {
config = chooseEglConfig(display, args.pixelFormat, /*logConfig*/ true);
}
bool useContextPriority =
extensions.hasContextPriority() && args.contextPriority == ContextPriority::HIGH;
EGLContext protectedContext = EGL_NO_CONTEXT;
if (args.enableProtectedContext && extensions.hasProtectedContent()) {
protectedContext = createEglContext(display, config, nullptr, useContextPriority,
Protection::PROTECTED);
ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context");
}
EGLContext ctxt = createEglContext(display, config, protectedContext, useContextPriority,
Protection::UNPROTECTED);
// if can't create a GL context, we can only abort.
LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed");
EGLSurface placeholder = EGL_NO_SURFACE;
if (!extensions.hasSurfacelessContext()) {
placeholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat,
Protection::UNPROTECTED);
LOG_ALWAYS_FATAL_IF(placeholder == EGL_NO_SURFACE, "can't create placeholder pbuffer");
}
EGLBoolean success = eglMakeCurrent(display, placeholder, placeholder, ctxt);
LOG_ALWAYS_FATAL_IF(!success, "can't make placeholder pbuffer current");
extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER),
glGetString(GL_VERSION), glGetString(GL_EXTENSIONS));
EGLSurface protectedPlaceholder = EGL_NO_SURFACE;
if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) {
protectedPlaceholder = createPlaceholderEglPbufferSurface(display, config, args.pixelFormat,
Protection::PROTECTED);
ALOGE_IF(protectedPlaceholder == EGL_NO_SURFACE,
"can't create protected placeholder pbuffer");
}
// initialize the renderer while GL is current
std::unique_ptr<SkiaGLRenderEngine> engine =
std::make_unique<SkiaGLRenderEngine>(args, display, config, ctxt, placeholder,
protectedContext, protectedPlaceholder);
ALOGI("OpenGL ES informations:");
ALOGI("vendor : %s", extensions.getVendor());
ALOGI("renderer : %s", extensions.getRenderer());
ALOGI("version : %s", extensions.getVersion());
ALOGI("extensions: %s", extensions.getExtensions());
ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize());
ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims());
return engine;
}
EGLConfig SkiaGLRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) {
status_t err;
EGLConfig config;
// First try to get an ES3 config
err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config);
if (err != NO_ERROR) {
// If ES3 fails, try to get an ES2 config
err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config);
if (err != NO_ERROR) {
// If ES2 still doesn't work, probably because we're on the emulator.
// try a simplified query
ALOGW("no suitable EGLConfig found, trying a simpler query");
err = selectEGLConfig(display, format, 0, &config);
if (err != NO_ERROR) {
// this EGL is too lame for android
LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up");
}
}
}
if (logConfig) {
// print some debugging info
EGLint r, g, b, a;
eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r);
eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g);
eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b);
eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a);
ALOGI("EGL information:");
ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR));
ALOGI("version : %s", eglQueryString(display, EGL_VERSION));
ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS));
ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported");
ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config);
}
return config;
}
SkiaGLRenderEngine::SkiaGLRenderEngine(const RenderEngineCreationArgs& args, EGLDisplay display,
EGLConfig config, EGLContext ctxt, EGLSurface placeholder,
EGLContext protectedContext, EGLSurface protectedPlaceholder)
: mEGLDisplay(display),
mEGLConfig(config),
mEGLContext(ctxt),
mPlaceholderSurface(placeholder),
mProtectedEGLContext(protectedContext),
mProtectedPlaceholderSurface(protectedPlaceholder),
mUseColorManagement(args.useColorManagement) {
// Suppress unused field warnings for things we definitely will need/use
// These EGL fields will all be needed for toggling between protected & unprotected contexts
// Or we need different RE instances for that
(void)mEGLDisplay;
(void)mEGLConfig;
(void)mEGLContext;
(void)mPlaceholderSurface;
(void)mProtectedEGLContext;
(void)mProtectedPlaceholderSurface;
sk_sp<const GrGLInterface> glInterface(GrGLCreateNativeInterface());
LOG_ALWAYS_FATAL_IF(!glInterface.get());
GrContextOptions options;
options.fPreferExternalImagesOverES3 = true;
options.fDisableDistanceFieldPaths = true;
mGrContext = GrDirectContext::MakeGL(std::move(glInterface), options);
if (args.supportsBackgroundBlur) {
mBlurFilter = new BlurFilter();
}
}
base::unique_fd SkiaGLRenderEngine::flush() {
ATRACE_CALL();
if (!gl::GLExtensions::getInstance().hasNativeFenceSync()) {
return base::unique_fd();
}
EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr);
if (sync == EGL_NO_SYNC_KHR) {
ALOGW("failed to create EGL native fence sync: %#x", eglGetError());
return base::unique_fd();
}
// native fence fd will not be populated until flush() is done.
glFlush();
// get the fence fd
base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync));
eglDestroySyncKHR(mEGLDisplay, sync);
if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
ALOGW("failed to dup EGL native fence sync: %#x", eglGetError());
}
return fenceFd;
}
bool SkiaGLRenderEngine::waitFence(base::unique_fd fenceFd) {
if (!gl::GLExtensions::getInstance().hasNativeFenceSync() ||
!gl::GLExtensions::getInstance().hasWaitSync()) {
return false;
}
// release the fd and transfer the ownership to EGLSync
EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd.release(), EGL_NONE};
EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
if (sync == EGL_NO_SYNC_KHR) {
ALOGE("failed to create EGL native fence sync: %#x", eglGetError());
return false;
}
// XXX: The spec draft is inconsistent as to whether this should return an
// EGLint or void. Ignore the return value for now, as it's not strictly
// needed.
eglWaitSyncKHR(mEGLDisplay, sync, 0);
EGLint error = eglGetError();
eglDestroySyncKHR(mEGLDisplay, sync);
if (error != EGL_SUCCESS) {
ALOGE("failed to wait for EGL native fence sync: %#x", error);
return false;
}
return true;
}
static bool hasUsage(const AHardwareBuffer_Desc& desc, uint64_t usage) {
return !!(desc.usage & usage);
}
static float toDegrees(uint32_t transform) {
switch (transform) {
case ui::Transform::ROT_90:
return 90.0;
case ui::Transform::ROT_180:
return 180.0;
case ui::Transform::ROT_270:
return 270.0;
default:
return 0.0;
}
}
static SkColorMatrix toSkColorMatrix(const mat4& matrix) {
return SkColorMatrix(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0], 0, matrix[0][1],
matrix[1][1], matrix[2][1], matrix[3][1], 0, matrix[0][2], matrix[1][2],
matrix[2][2], matrix[3][2], 0, matrix[0][3], matrix[1][3], matrix[2][3],
matrix[3][3], 0);
}
void SkiaGLRenderEngine::unbindExternalTextureBuffer(uint64_t bufferId) {
std::lock_guard<std::mutex> lock(mRenderingMutex);
mImageCache.erase(bufferId);
}
status_t SkiaGLRenderEngine::drawLayers(const DisplaySettings& display,
const std::vector<const LayerSettings*>& layers,
const sp<GraphicBuffer>& buffer,
const bool useFramebufferCache,
base::unique_fd&& bufferFence, base::unique_fd* drawFence) {
ATRACE_NAME("SkiaGL::drawLayers");
std::lock_guard<std::mutex> lock(mRenderingMutex);
if (layers.empty()) {
ALOGV("Drawing empty layer stack");
return NO_ERROR;
}
if (bufferFence.get() >= 0) {
// Duplicate the fence for passing to waitFence.
base::unique_fd bufferFenceDup(dup(bufferFence.get()));
if (bufferFenceDup < 0 || !waitFence(std::move(bufferFenceDup))) {
ATRACE_NAME("Waiting before draw");
sync_wait(bufferFence.get(), -1);
}
}
if (buffer == nullptr) {
ALOGE("No output buffer provided. Aborting GPU composition.");
return BAD_VALUE;
}
AHardwareBuffer_Desc bufferDesc;
AHardwareBuffer_describe(buffer->toAHardwareBuffer(), &bufferDesc);
LOG_ALWAYS_FATAL_IF(!hasUsage(bufferDesc, AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE),
"missing usage");
sk_sp<SkSurface> surface;
if (useFramebufferCache) {
auto iter = mSurfaceCache.find(buffer->getId());
if (iter != mSurfaceCache.end()) {
ALOGV("Cache hit!");
surface = iter->second;
}
}
if (!surface) {
surface = SkSurface::MakeFromAHardwareBuffer(mGrContext.get(), buffer->toAHardwareBuffer(),
GrSurfaceOrigin::kTopLeft_GrSurfaceOrigin,
mUseColorManagement
? toColorSpace(display.outputDataspace)
: SkColorSpace::MakeSRGB(),
nullptr);
if (useFramebufferCache && surface) {
ALOGD("Adding to cache");
mSurfaceCache.insert({buffer->getId(), surface});
}
}
if (!surface) {
ALOGE("Failed to make surface");
return BAD_VALUE;
}
auto canvas = surface->getCanvas();
// Clear the entire canvas with a transparent black to prevent ghost images.
canvas->clear(SK_ColorTRANSPARENT);
canvas->save();
// Before doing any drawing, let's make sure that we'll start at the origin of the display.
// Some displays don't start at 0,0 for example when we're mirroring the screen. Also, virtual
// displays might have different scaling when compared to the physical screen.
canvas->clipRect(getSkRect(display.physicalDisplay));
canvas->translate(display.physicalDisplay.left, display.physicalDisplay.top);
const auto clipWidth = display.clip.width();
const auto clipHeight = display.clip.height();
auto rotatedClipWidth = clipWidth;
auto rotatedClipHeight = clipHeight;
// Scale is contingent on the rotation result.
if (display.orientation & ui::Transform::ROT_90) {
std::swap(rotatedClipWidth, rotatedClipHeight);
}
const auto scaleX = static_cast<SkScalar>(display.physicalDisplay.width()) /
static_cast<SkScalar>(rotatedClipWidth);
const auto scaleY = static_cast<SkScalar>(display.physicalDisplay.height()) /
static_cast<SkScalar>(rotatedClipHeight);
canvas->scale(scaleX, scaleY);
// Canvas rotation is done by centering the clip window at the origin, rotating, translating
// back so that the top left corner of the clip is at (0, 0).
canvas->translate(rotatedClipWidth / 2, rotatedClipHeight / 2);
canvas->rotate(toDegrees(display.orientation));
canvas->translate(-clipWidth / 2, -clipHeight / 2);
canvas->translate(-display.clip.left, -display.clip.top);
for (const auto& layer : layers) {
SkPaint paint;
const auto& bounds = layer->geometry.boundaries;
const auto dest = getSkRect(bounds);
std::unordered_map<uint32_t, sk_sp<SkSurface>> cachedBlurs;
if (mBlurFilter) {
if (layer->backgroundBlurRadius > 0) {
ATRACE_NAME("BackgroundBlur");
auto blurredSurface =
mBlurFilter->draw(canvas, surface, layer->backgroundBlurRadius);
cachedBlurs[layer->backgroundBlurRadius] = blurredSurface;
}
if (layer->blurRegions.size() > 0) {
for (auto region : layer->blurRegions) {
if (cachedBlurs[region.blurRadius]) {
continue;
}
ATRACE_NAME("BlurRegion");
auto blurredSurface = mBlurFilter->generate(canvas, surface, region.blurRadius);
cachedBlurs[region.blurRadius] = blurredSurface;
}
}
}
if (layer->source.buffer.buffer) {
ATRACE_NAME("DrawImage");
const auto& item = layer->source.buffer;
const auto bufferWidth = item.buffer->getBounds().width();
const auto bufferHeight = item.buffer->getBounds().height();
sk_sp<SkImage> image;
auto iter = mImageCache.find(item.buffer->getId());
if (iter != mImageCache.end()) {
image = iter->second;
} else {
image = SkImage::MakeFromAHardwareBuffer(item.buffer->toAHardwareBuffer(),
item.usePremultipliedAlpha
? kPremul_SkAlphaType
: kUnpremul_SkAlphaType,
mUseColorManagement
? toColorSpace(
layer->sourceDataspace)
: SkColorSpace::MakeSRGB());
mImageCache.insert({item.buffer->getId(), image});
}
SkMatrix matrix;
if (layer->geometry.roundedCornersRadius > 0) {
const auto roundedRect = getRoundedRect(layer);
matrix.setTranslate(roundedRect.getBounds().left() - dest.left(),
roundedRect.getBounds().top() - dest.top());
} else {
matrix.setIdentity();
}
auto texMatrix = getSkM44(item.textureTransform).asM33();
// textureTansform was intended to be passed directly into a shader, so when
// building the total matrix with the textureTransform we need to first
// normalize it, then apply the textureTransform, then scale back up.
matrix.postScale(1.0f / bufferWidth, 1.0f / bufferHeight);
auto rotatedBufferWidth = bufferWidth;
auto rotatedBufferHeight = bufferHeight;
// Swap the buffer width and height if we're rotating, so that we
// scale back up by the correct factors post-rotation.
if (texMatrix.getSkewX() <= -0.5f || texMatrix.getSkewX() >= 0.5f) {
std::swap(rotatedBufferWidth, rotatedBufferHeight);
// TODO: clean this up.
// GLESRenderEngine specifies its texture coordinates in
// CW orientation under OpenGL conventions, when they probably should have
// been CCW instead. The net result is that orientation
// transforms are applied in the reverse
// direction to render the correct result, because SurfaceFlinger uses the inverse
// of the display transform to correct for that. But this means that
// the tex transform passed by SkiaGLRenderEngine will rotate
// individual layers in the reverse orientation. Hack around it
// by injected a 180 degree rotation, but ultimately this is
// a bug in how SurfaceFlinger invokes the RenderEngine
// interface, so the proper fix should live there, and GLESRenderEngine
// should be fixed accordingly.
matrix.postRotate(180, 0.5, 0.5);
}
matrix.postConcat(texMatrix);
matrix.postScale(rotatedBufferWidth, rotatedBufferHeight);
paint.setShader(image->makeShader(matrix));
} else {
ATRACE_NAME("DrawColor");
const auto color = layer->source.solidColor;
paint.setShader(SkShaders::Color(SkColor4f{.fR = color.r,
.fG = color.g,
.fB = color.b,
layer->alpha},
nullptr));
}
paint.setColorFilter(SkColorFilters::Matrix(toSkColorMatrix(display.colorTransform)));
// Layers have a local transform matrix that should be applied to them.
canvas->save();
canvas->concat(getSkM44(layer->geometry.positionTransform));
for (const auto effectRegion : layer->blurRegions) {
drawBlurRegion(canvas, effectRegion, dest, cachedBlurs[effectRegion.blurRadius]);
}
if (layer->shadow.length > 0) {
const auto rect = layer->geometry.roundedCornersRadius > 0
? getSkRect(layer->geometry.roundedCornersCrop)
: dest;
drawShadow(canvas, rect, layer->geometry.roundedCornersRadius, layer->shadow);
}
if (layer->geometry.roundedCornersRadius > 0) {
canvas->drawRRect(getRoundedRect(layer), paint);
} else {
canvas->drawRect(dest, paint);
}
canvas->restore();
}
{
ATRACE_NAME("flush surface");
surface->flush();
}
canvas->restore();
if (drawFence != nullptr) {
*drawFence = flush();
}
// If flush failed or we don't support native fences, we need to force the
// gl command stream to be executed.
bool requireSync = drawFence == nullptr || drawFence->get() < 0;
if (requireSync) {
ATRACE_BEGIN("Submit(sync=true)");
} else {
ATRACE_BEGIN("Submit(sync=false)");
}
bool success = mGrContext->submit(requireSync);
ATRACE_END();
if (!success) {
ALOGE("Failed to flush RenderEngine commands");
// Chances are, something illegal happened (either the caller passed
// us bad parameters, or we messed up our shader generation).
return INVALID_OPERATION;
}
// checkErrors();
return NO_ERROR;
}
inline SkRect SkiaGLRenderEngine::getSkRect(const FloatRect& rect) {
return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom);
}
inline SkRect SkiaGLRenderEngine::getSkRect(const Rect& rect) {
return SkRect::MakeLTRB(rect.left, rect.top, rect.right, rect.bottom);
}
inline SkRRect SkiaGLRenderEngine::getRoundedRect(const LayerSettings* layer) {
const auto rect = getSkRect(layer->geometry.roundedCornersCrop);
const auto cornerRadius = layer->geometry.roundedCornersRadius;
return SkRRect::MakeRectXY(rect, cornerRadius, cornerRadius);
}
inline SkColor SkiaGLRenderEngine::getSkColor(const vec4& color) {
return SkColorSetARGB(color.a * 255, color.r * 255, color.g * 255, color.b * 255);
}
inline SkM44 SkiaGLRenderEngine::getSkM44(const mat4& matrix) {
return SkM44(matrix[0][0], matrix[1][0], matrix[2][0], matrix[3][0],
matrix[0][1], matrix[1][1], matrix[2][1], matrix[3][1],
matrix[0][2], matrix[1][2], matrix[2][2], matrix[3][2],
matrix[0][3], matrix[1][3], matrix[2][3], matrix[3][3]);
}
inline SkPoint3 SkiaGLRenderEngine::getSkPoint3(const vec3& vector) {
return SkPoint3::Make(vector.x, vector.y, vector.z);
}
size_t SkiaGLRenderEngine::getMaxTextureSize() const {
return mGrContext->maxTextureSize();
}
size_t SkiaGLRenderEngine::getMaxViewportDims() const {
return mGrContext->maxRenderTargetSize();
}
void SkiaGLRenderEngine::drawShadow(SkCanvas* canvas, const SkRect& casterRect, float cornerRadius,
const ShadowSettings& settings) {
ATRACE_CALL();
const float casterZ = settings.length / 2.0f;
const auto shadowShape = cornerRadius > 0
? SkPath::RRect(SkRRect::MakeRectXY(casterRect, cornerRadius, cornerRadius))
: SkPath::Rect(casterRect);
const auto flags =
settings.casterIsTranslucent ? kTransparentOccluder_ShadowFlag : kNone_ShadowFlag;
SkShadowUtils::DrawShadow(canvas, shadowShape, SkPoint3::Make(0, 0, casterZ),
getSkPoint3(settings.lightPos), settings.lightRadius,
getSkColor(settings.ambientColor), getSkColor(settings.spotColor),
flags);
}
void SkiaGLRenderEngine::drawBlurRegion(SkCanvas* canvas, const BlurRegion& effectRegion,
const SkRect& layerBoundaries,
sk_sp<SkSurface> blurredSurface) {
ATRACE_CALL();
SkPaint paint;
paint.setAlpha(static_cast<int>(effectRegion.alpha * 255));
const auto rect = SkRect::MakeLTRB(effectRegion.left, effectRegion.top, effectRegion.right,
effectRegion.bottom);
const auto matrix = mBlurFilter->getShaderMatrix(
SkMatrix::MakeTrans(layerBoundaries.left(), layerBoundaries.top()));
paint.setShader(blurredSurface->makeImageSnapshot()->makeShader(matrix));
if (effectRegion.cornerRadiusTL > 0 || effectRegion.cornerRadiusTR > 0 ||
effectRegion.cornerRadiusBL > 0 || effectRegion.cornerRadiusBR > 0) {
const SkVector radii[4] =
{SkVector::Make(effectRegion.cornerRadiusTL, effectRegion.cornerRadiusTL),
SkVector::Make(effectRegion.cornerRadiusTR, effectRegion.cornerRadiusTR),
SkVector::Make(effectRegion.cornerRadiusBL, effectRegion.cornerRadiusBL),
SkVector::Make(effectRegion.cornerRadiusBR, effectRegion.cornerRadiusBR)};
SkRRect roundedRect;
roundedRect.setRectRadii(rect, radii);
canvas->drawRRect(roundedRect, paint);
} else {
canvas->drawRect(rect, paint);
}
}
EGLContext SkiaGLRenderEngine::createEglContext(EGLDisplay display, EGLConfig config,
EGLContext shareContext, bool useContextPriority,
Protection protection) {
EGLint renderableType = 0;
if (config == EGL_NO_CONFIG_KHR) {
renderableType = EGL_OPENGL_ES3_BIT;
} else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) {
LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE");
}
EGLint contextClientVersion = 0;
if (renderableType & EGL_OPENGL_ES3_BIT) {
contextClientVersion = 3;
} else if (renderableType & EGL_OPENGL_ES2_BIT) {
contextClientVersion = 2;
} else if (renderableType & EGL_OPENGL_ES_BIT) {
contextClientVersion = 1;
} else {
LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs");
}
std::vector<EGLint> contextAttributes;
contextAttributes.reserve(7);
contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION);
contextAttributes.push_back(contextClientVersion);
if (useContextPriority) {
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG);
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG);
}
if (protection == Protection::PROTECTED) {
contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT);
contextAttributes.push_back(EGL_TRUE);
}
contextAttributes.push_back(EGL_NONE);
EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data());
if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) {
// eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus
// EGL_NO_CONTEXT so that we can abort.
if (config != EGL_NO_CONFIG_KHR) {
return context;
}
// If |config| is EGL_NO_CONFIG_KHR, we speculatively try to create GLES 3 context, so we
// should try to fall back to GLES 2.
contextAttributes[1] = 2;
context = eglCreateContext(display, config, shareContext, contextAttributes.data());
}
return context;
}
EGLSurface SkiaGLRenderEngine::createPlaceholderEglPbufferSurface(EGLDisplay display,
EGLConfig config, int hwcFormat,
Protection protection) {
EGLConfig placeholderConfig = config;
if (placeholderConfig == EGL_NO_CONFIG_KHR) {
placeholderConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true);
}
std::vector<EGLint> attributes;
attributes.reserve(7);
attributes.push_back(EGL_WIDTH);
attributes.push_back(1);
attributes.push_back(EGL_HEIGHT);
attributes.push_back(1);
if (protection == Protection::PROTECTED) {
attributes.push_back(EGL_PROTECTED_CONTENT_EXT);
attributes.push_back(EGL_TRUE);
}
attributes.push_back(EGL_NONE);
return eglCreatePbufferSurface(display, placeholderConfig, attributes.data());
}
void SkiaGLRenderEngine::cleanFramebufferCache() {
mSurfaceCache.clear();
}
} // namespace skia
} // namespace renderengine
} // namespace android