| /* | 
 |  * Copyright 2018 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #undef LOG_TAG | 
 | #define LOG_TAG "Scheduler" | 
 | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
 |  | 
 | #include "Scheduler.h" | 
 |  | 
 | #include <android-base/properties.h> | 
 | #include <android-base/stringprintf.h> | 
 | #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> | 
 | #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> | 
 | #include <configstore/Utils.h> | 
 | #include <ftl/fake_guard.h> | 
 | #include <ftl/small_map.h> | 
 | #include <gui/WindowInfo.h> | 
 | #include <system/window.h> | 
 | #include <utils/Timers.h> | 
 | #include <utils/Trace.h> | 
 |  | 
 | #include <FrameTimeline/FrameTimeline.h> | 
 | #include <algorithm> | 
 | #include <cinttypes> | 
 | #include <cstdint> | 
 | #include <functional> | 
 | #include <memory> | 
 | #include <numeric> | 
 |  | 
 | #include "../Layer.h" | 
 | #include "DispSyncSource.h" | 
 | #include "Display/DisplayMap.h" | 
 | #include "EventThread.h" | 
 | #include "FrameRateOverrideMappings.h" | 
 | #include "OneShotTimer.h" | 
 | #include "SurfaceFlingerProperties.h" | 
 | #include "VSyncPredictor.h" | 
 | #include "VSyncReactor.h" | 
 |  | 
 | #define RETURN_IF_INVALID_HANDLE(handle, ...)                        \ | 
 |     do {                                                             \ | 
 |         if (mConnections.count(handle) == 0) {                       \ | 
 |             ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ | 
 |             return __VA_ARGS__;                                      \ | 
 |         }                                                            \ | 
 |     } while (false) | 
 |  | 
 | namespace android::scheduler { | 
 |  | 
 | Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features) | 
 |       : impl::MessageQueue(compositor), mFeatures(features), mSchedulerCallback(callback) {} | 
 |  | 
 | Scheduler::~Scheduler() { | 
 |     // Stop timers and wait for their threads to exit. | 
 |     mDisplayPowerTimer.reset(); | 
 |     mTouchTimer.reset(); | 
 |  | 
 |     // Stop idle timer and clear callbacks, as the RefreshRateConfigs may outlive the Scheduler. | 
 |     setRefreshRateConfigs(nullptr); | 
 | } | 
 |  | 
 | void Scheduler::startTimers() { | 
 |     using namespace sysprop; | 
 |     using namespace std::string_literals; | 
 |  | 
 |     if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { | 
 |         // Touch events are coming to SF every 100ms, so the timer needs to be higher than that | 
 |         mTouchTimer.emplace( | 
 |                 "TouchTimer", std::chrono::milliseconds(millis), | 
 |                 [this] { touchTimerCallback(TimerState::Reset); }, | 
 |                 [this] { touchTimerCallback(TimerState::Expired); }); | 
 |         mTouchTimer->start(); | 
 |     } | 
 |  | 
 |     if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { | 
 |         mDisplayPowerTimer.emplace( | 
 |                 "DisplayPowerTimer", std::chrono::milliseconds(millis), | 
 |                 [this] { displayPowerTimerCallback(TimerState::Reset); }, | 
 |                 [this] { displayPowerTimerCallback(TimerState::Expired); }); | 
 |         mDisplayPowerTimer->start(); | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::setRefreshRateConfigs(std::shared_ptr<RefreshRateConfigs> configs) { | 
 |     // The current RefreshRateConfigs instance may outlive this call, so unbind its idle timer. | 
 |     { | 
 |         // mRefreshRateConfigsLock is not locked here to avoid the deadlock | 
 |         // as the callback can attempt to acquire the lock before stopIdleTimer can finish | 
 |         // the execution. It's safe to FakeGuard as main thread is the only thread that | 
 |         // writes to the mRefreshRateConfigs. | 
 |         ftl::FakeGuard guard(mRefreshRateConfigsLock); | 
 |         if (mRefreshRateConfigs) { | 
 |             mRefreshRateConfigs->stopIdleTimer(); | 
 |             mRefreshRateConfigs->clearIdleTimerCallbacks(); | 
 |         } | 
 |     } | 
 |     { | 
 |         // Clear state that depends on the current instance. | 
 |         std::scoped_lock lock(mPolicyLock); | 
 |         mPolicy = {}; | 
 |     } | 
 |  | 
 |     std::scoped_lock lock(mRefreshRateConfigsLock); | 
 |     mRefreshRateConfigs = std::move(configs); | 
 |     if (!mRefreshRateConfigs) return; | 
 |  | 
 |     mRefreshRateConfigs->setIdleTimerCallbacks( | 
 |             {.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); }, | 
 |                           .onExpired = [this] { idleTimerCallback(TimerState::Expired); }}, | 
 |              .kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); }, | 
 |                         .onExpired = [this] { kernelIdleTimerCallback(TimerState::Expired); }}}); | 
 |  | 
 |     mRefreshRateConfigs->startIdleTimer(); | 
 | } | 
 |  | 
 | void Scheduler::registerDisplay(sp<const DisplayDevice> display) { | 
 |     const bool ok = mDisplays.try_emplace(display->getPhysicalId(), std::move(display)).second; | 
 |     ALOGE_IF(!ok, "%s: Duplicate display", __func__); | 
 | } | 
 |  | 
 | void Scheduler::unregisterDisplay(PhysicalDisplayId displayId) { | 
 |     mDisplays.erase(displayId); | 
 | } | 
 |  | 
 | void Scheduler::run() { | 
 |     while (true) { | 
 |         waitMessage(); | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::onFrameSignal(ICompositor& compositor, VsyncId vsyncId, | 
 |                               TimePoint expectedVsyncTime) { | 
 |     const TimePoint frameTime = SchedulerClock::now(); | 
 |  | 
 |     if (!compositor.commit(frameTime, vsyncId, expectedVsyncTime)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     compositor.composite(frameTime, vsyncId); | 
 |     compositor.sample(); | 
 | } | 
 |  | 
 | void Scheduler::createVsyncSchedule(FeatureFlags features) { | 
 |     mVsyncSchedule.emplace(features); | 
 | } | 
 |  | 
 | std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource( | 
 |         const char* name, std::chrono::nanoseconds workDuration, | 
 |         std::chrono::nanoseconds readyDuration, bool traceVsync) { | 
 |     return std::make_unique<scheduler::DispSyncSource>(mVsyncSchedule->getDispatch(), | 
 |                                                        mVsyncSchedule->getTracker(), workDuration, | 
 |                                                        readyDuration, traceVsync, name); | 
 | } | 
 |  | 
 | std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const { | 
 |     const auto refreshRateConfigs = holdRefreshRateConfigs(); | 
 |     const bool supportsFrameRateOverrideByContent = | 
 |             refreshRateConfigs->supportsFrameRateOverrideByContent(); | 
 |     return mFrameRateOverrideMappings | 
 |             .getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent); | 
 | } | 
 |  | 
 | bool Scheduler::isVsyncValid(TimePoint expectedVsyncTimestamp, uid_t uid) const { | 
 |     const auto frameRate = getFrameRateOverride(uid); | 
 |     if (!frameRate.has_value()) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     return mVsyncSchedule->getTracker().isVSyncInPhase(expectedVsyncTimestamp.ns(), *frameRate); | 
 | } | 
 |  | 
 | impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const { | 
 |     std::scoped_lock lock(mRefreshRateConfigsLock); | 
 |  | 
 |     return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) { | 
 |         return !isVsyncValid(TimePoint::fromNs(expectedVsyncTimestamp), uid); | 
 |     }; | 
 | } | 
 |  | 
 | impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const { | 
 |     return [this](uid_t uid) { | 
 |         const Fps refreshRate = holdRefreshRateConfigs()->getActiveModePtr()->getFps(); | 
 |         const nsecs_t currentPeriod = mVsyncSchedule->period().ns() ?: refreshRate.getPeriodNsecs(); | 
 |  | 
 |         const auto frameRate = getFrameRateOverride(uid); | 
 |         if (!frameRate.has_value()) { | 
 |             return currentPeriod; | 
 |         } | 
 |  | 
 |         const auto divisor = RefreshRateConfigs::getFrameRateDivisor(refreshRate, *frameRate); | 
 |         if (divisor <= 1) { | 
 |             return currentPeriod; | 
 |         } | 
 |         return currentPeriod * divisor; | 
 |     }; | 
 | } | 
 |  | 
 | ConnectionHandle Scheduler::createConnection(const char* connectionName, | 
 |                                              frametimeline::TokenManager* tokenManager, | 
 |                                              std::chrono::nanoseconds workDuration, | 
 |                                              std::chrono::nanoseconds readyDuration) { | 
 |     auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration); | 
 |     auto throttleVsync = makeThrottleVsyncCallback(); | 
 |     auto getVsyncPeriod = makeGetVsyncPeriodFunction(); | 
 |     auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), tokenManager, | 
 |                                                            std::move(throttleVsync), | 
 |                                                            std::move(getVsyncPeriod)); | 
 |     return createConnection(std::move(eventThread)); | 
 | } | 
 |  | 
 | ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) { | 
 |     const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; | 
 |     ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); | 
 |  | 
 |     auto connection = createConnectionInternal(eventThread.get()); | 
 |  | 
 |     std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |     mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); | 
 |     return handle; | 
 | } | 
 |  | 
 | sp<EventThreadConnection> Scheduler::createConnectionInternal( | 
 |         EventThread* eventThread, EventRegistrationFlags eventRegistration) { | 
 |     return eventThread->createEventConnection([&] { resync(); }, eventRegistration); | 
 | } | 
 |  | 
 | sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( | 
 |         ConnectionHandle handle, EventRegistrationFlags eventRegistration) { | 
 |     std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |     RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
 |     return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration); | 
 | } | 
 |  | 
 | sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) { | 
 |     std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |     RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
 |     return mConnections[handle].connection; | 
 | } | 
 |  | 
 | void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, | 
 |                                   bool connected) { | 
 |     android::EventThread* thread; | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |         RETURN_IF_INVALID_HANDLE(handle); | 
 |         thread = mConnections[handle].thread.get(); | 
 |     } | 
 |  | 
 |     thread->onHotplugReceived(displayId, connected); | 
 | } | 
 |  | 
 | void Scheduler::onScreenAcquired(ConnectionHandle handle) { | 
 |     android::EventThread* thread; | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |         RETURN_IF_INVALID_HANDLE(handle); | 
 |         thread = mConnections[handle].thread.get(); | 
 |     } | 
 |     thread->onScreenAcquired(); | 
 |     mScreenAcquired = true; | 
 | } | 
 |  | 
 | void Scheduler::onScreenReleased(ConnectionHandle handle) { | 
 |     android::EventThread* thread; | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |         RETURN_IF_INVALID_HANDLE(handle); | 
 |         thread = mConnections[handle].thread.get(); | 
 |     } | 
 |     thread->onScreenReleased(); | 
 |     mScreenAcquired = false; | 
 | } | 
 |  | 
 | void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) { | 
 |     const auto refreshRateConfigs = holdRefreshRateConfigs(); | 
 |     const bool supportsFrameRateOverrideByContent = | 
 |             refreshRateConfigs->supportsFrameRateOverrideByContent(); | 
 |  | 
 |     std::vector<FrameRateOverride> overrides = | 
 |             mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent); | 
 |  | 
 |     android::EventThread* thread; | 
 |     { | 
 |         std::lock_guard lock(mConnectionsLock); | 
 |         RETURN_IF_INVALID_HANDLE(handle); | 
 |         thread = mConnections[handle].thread.get(); | 
 |     } | 
 |     thread->onFrameRateOverridesChanged(displayId, std::move(overrides)); | 
 | } | 
 |  | 
 | void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) { | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mPolicyLock); | 
 |         // Cache the last reported modes for primary display. | 
 |         mPolicy.cachedModeChangedParams = {handle, mode}; | 
 |  | 
 |         // Invalidate content based refresh rate selection so it could be calculated | 
 |         // again for the new refresh rate. | 
 |         mPolicy.contentRequirements.clear(); | 
 |     } | 
 |     onNonPrimaryDisplayModeChanged(handle, mode); | 
 | } | 
 |  | 
 | void Scheduler::dispatchCachedReportedMode() { | 
 |     // Check optional fields first. | 
 |     if (!mPolicy.mode) { | 
 |         ALOGW("No mode ID found, not dispatching cached mode."); | 
 |         return; | 
 |     } | 
 |     if (!mPolicy.cachedModeChangedParams) { | 
 |         ALOGW("No mode changed params found, not dispatching cached mode."); | 
 |         return; | 
 |     } | 
 |  | 
 |     // If the mode is not the current mode, this means that a | 
 |     // mode change is in progress. In that case we shouldn't dispatch an event | 
 |     // as it will be dispatched when the current mode changes. | 
 |     if (std::scoped_lock lock(mRefreshRateConfigsLock); | 
 |         mRefreshRateConfigs->getActiveModePtr() != mPolicy.mode) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // If there is no change from cached mode, there is no need to dispatch an event | 
 |     if (mPolicy.mode == mPolicy.cachedModeChangedParams->mode) { | 
 |         return; | 
 |     } | 
 |  | 
 |     mPolicy.cachedModeChangedParams->mode = mPolicy.mode; | 
 |     onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->handle, | 
 |                                    mPolicy.cachedModeChangedParams->mode); | 
 | } | 
 |  | 
 | void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) { | 
 |     android::EventThread* thread; | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |         RETURN_IF_INVALID_HANDLE(handle); | 
 |         thread = mConnections[handle].thread.get(); | 
 |     } | 
 |     thread->onModeChanged(mode); | 
 | } | 
 |  | 
 | size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) { | 
 |     std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |     RETURN_IF_INVALID_HANDLE(handle, 0); | 
 |     return mConnections[handle].thread->getEventThreadConnectionCount(); | 
 | } | 
 |  | 
 | void Scheduler::dump(ConnectionHandle handle, std::string& result) const { | 
 |     android::EventThread* thread; | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |         RETURN_IF_INVALID_HANDLE(handle); | 
 |         thread = mConnections.at(handle).thread.get(); | 
 |     } | 
 |     thread->dump(result); | 
 | } | 
 |  | 
 | void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration, | 
 |                             std::chrono::nanoseconds readyDuration) { | 
 |     android::EventThread* thread; | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mConnectionsLock); | 
 |         RETURN_IF_INVALID_HANDLE(handle); | 
 |         thread = mConnections[handle].thread.get(); | 
 |     } | 
 |     thread->setDuration(workDuration, readyDuration); | 
 | } | 
 |  | 
 | void Scheduler::enableHardwareVsync() { | 
 |     std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
 |     if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { | 
 |         mVsyncSchedule->getTracker().resetModel(); | 
 |         mSchedulerCallback.setVsyncEnabled(true); | 
 |         mPrimaryHWVsyncEnabled = true; | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::disableHardwareVsync(bool makeUnavailable) { | 
 |     std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
 |     if (mPrimaryHWVsyncEnabled) { | 
 |         mSchedulerCallback.setVsyncEnabled(false); | 
 |         mPrimaryHWVsyncEnabled = false; | 
 |     } | 
 |     if (makeUnavailable) { | 
 |         mHWVsyncAvailable = false; | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::resyncToHardwareVsync(bool makeAvailable, Fps refreshRate) { | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
 |         if (makeAvailable) { | 
 |             mHWVsyncAvailable = makeAvailable; | 
 |         } else if (!mHWVsyncAvailable) { | 
 |             // Hardware vsync is not currently available, so abort the resync | 
 |             // attempt for now | 
 |             return; | 
 |         } | 
 |     } | 
 |  | 
 |     setVsyncPeriod(refreshRate.getPeriodNsecs()); | 
 | } | 
 |  | 
 | void Scheduler::resync() { | 
 |     static constexpr nsecs_t kIgnoreDelay = ms2ns(750); | 
 |  | 
 |     const nsecs_t now = systemTime(); | 
 |     const nsecs_t last = mLastResyncTime.exchange(now); | 
 |  | 
 |     if (now - last > kIgnoreDelay) { | 
 |         const auto refreshRate = [&] { | 
 |             std::scoped_lock lock(mRefreshRateConfigsLock); | 
 |             return mRefreshRateConfigs->getActiveModePtr()->getFps(); | 
 |         }(); | 
 |         resyncToHardwareVsync(false, refreshRate); | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::setVsyncPeriod(nsecs_t period) { | 
 |     if (period <= 0) return; | 
 |  | 
 |     std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
 |     mVsyncSchedule->getController().startPeriodTransition(period); | 
 |  | 
 |     if (!mPrimaryHWVsyncEnabled) { | 
 |         mVsyncSchedule->getTracker().resetModel(); | 
 |         mSchedulerCallback.setVsyncEnabled(true); | 
 |         mPrimaryHWVsyncEnabled = true; | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod, | 
 |                                 bool* periodFlushed) { | 
 |     bool needsHwVsync = false; | 
 |     *periodFlushed = false; | 
 |     { // Scope for the lock | 
 |         std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
 |         if (mPrimaryHWVsyncEnabled) { | 
 |             needsHwVsync = | 
 |                     mVsyncSchedule->getController().addHwVsyncTimestamp(timestamp, hwcVsyncPeriod, | 
 |                                                                         periodFlushed); | 
 |         } | 
 |     } | 
 |  | 
 |     if (needsHwVsync) { | 
 |         enableHardwareVsync(); | 
 |     } else { | 
 |         disableHardwareVsync(false); | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::addPresentFence(std::shared_ptr<FenceTime> fence) { | 
 |     if (mVsyncSchedule->getController().addPresentFence(std::move(fence))) { | 
 |         enableHardwareVsync(); | 
 |     } else { | 
 |         disableHardwareVsync(false); | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::registerLayer(Layer* layer) { | 
 |     // If the content detection feature is off, we still keep the layer history, | 
 |     // since we use it for other features (like Frame Rate API), so layers | 
 |     // still need to be registered. | 
 |     mLayerHistory.registerLayer(layer, mFeatures.test(Feature::kContentDetection)); | 
 | } | 
 |  | 
 | void Scheduler::deregisterLayer(Layer* layer) { | 
 |     mLayerHistory.deregisterLayer(layer); | 
 | } | 
 |  | 
 | void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime, | 
 |                                    LayerHistory::LayerUpdateType updateType) { | 
 |     { | 
 |         std::scoped_lock lock(mRefreshRateConfigsLock); | 
 |         if (!mRefreshRateConfigs->canSwitch()) return; | 
 |     } | 
 |  | 
 |     mLayerHistory.record(layer, presentTime, systemTime(), updateType); | 
 | } | 
 |  | 
 | void Scheduler::setModeChangePending(bool pending) { | 
 |     mLayerHistory.setModeChangePending(pending); | 
 | } | 
 |  | 
 | void Scheduler::setDefaultFrameRateCompatibility(Layer* layer) { | 
 |     mLayerHistory.setDefaultFrameRateCompatibility(layer, | 
 |                                                    mFeatures.test(Feature::kContentDetection)); | 
 | } | 
 |  | 
 | void Scheduler::chooseRefreshRateForContent() { | 
 |     const auto configs = holdRefreshRateConfigs(); | 
 |     if (!configs->canSwitch()) return; | 
 |  | 
 |     ATRACE_CALL(); | 
 |  | 
 |     LayerHistory::Summary summary = mLayerHistory.summarize(*configs, systemTime()); | 
 |     applyPolicy(&Policy::contentRequirements, std::move(summary)); | 
 | } | 
 |  | 
 | void Scheduler::resetIdleTimer() { | 
 |     std::scoped_lock lock(mRefreshRateConfigsLock); | 
 |     mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ false); | 
 | } | 
 |  | 
 | void Scheduler::onTouchHint() { | 
 |     if (mTouchTimer) { | 
 |         mTouchTimer->reset(); | 
 |  | 
 |         std::scoped_lock lock(mRefreshRateConfigsLock); | 
 |         mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ true); | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::setDisplayPowerMode(hal::PowerMode powerMode) { | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mPolicyLock); | 
 |         mPolicy.displayPowerMode = powerMode; | 
 |     } | 
 |     mVsyncSchedule->getController().setDisplayPowerMode(powerMode); | 
 |  | 
 |     if (mDisplayPowerTimer) { | 
 |         mDisplayPowerTimer->reset(); | 
 |     } | 
 |  | 
 |     // Display Power event will boost the refresh rate to performance. | 
 |     // Clear Layer History to get fresh FPS detection | 
 |     mLayerHistory.clear(); | 
 | } | 
 |  | 
 | void Scheduler::kernelIdleTimerCallback(TimerState state) { | 
 |     ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state)); | 
 |  | 
 |     // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate | 
 |     // magic number | 
 |     const Fps refreshRate = [&] { | 
 |         std::scoped_lock lock(mRefreshRateConfigsLock); | 
 |         return mRefreshRateConfigs->getActiveModePtr()->getFps(); | 
 |     }(); | 
 |  | 
 |     constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz; | 
 |     using namespace fps_approx_ops; | 
 |  | 
 |     if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
 |         // If we're not in performance mode then the kernel timer shouldn't do | 
 |         // anything, as the refresh rate during DPU power collapse will be the | 
 |         // same. | 
 |         resyncToHardwareVsync(true /* makeAvailable */, refreshRate); | 
 |     } else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
 |         // Disable HW VSYNC if the timer expired, as we don't need it enabled if | 
 |         // we're not pushing frames, and if we're in PERFORMANCE mode then we'll | 
 |         // need to update the VsyncController model anyway. | 
 |         disableHardwareVsync(false /* makeUnavailable */); | 
 |     } | 
 |  | 
 |     mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); | 
 | } | 
 |  | 
 | void Scheduler::idleTimerCallback(TimerState state) { | 
 |     applyPolicy(&Policy::idleTimer, state); | 
 |     ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state)); | 
 | } | 
 |  | 
 | void Scheduler::touchTimerCallback(TimerState state) { | 
 |     const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; | 
 |     // Touch event will boost the refresh rate to performance. | 
 |     // Clear layer history to get fresh FPS detection. | 
 |     // NOTE: Instead of checking all the layers, we should be checking the layer | 
 |     // that is currently on top. b/142507166 will give us this capability. | 
 |     if (applyPolicy(&Policy::touch, touch).touch) { | 
 |         mLayerHistory.clear(); | 
 |     } | 
 |     ATRACE_INT("TouchState", static_cast<int>(touch)); | 
 | } | 
 |  | 
 | void Scheduler::displayPowerTimerCallback(TimerState state) { | 
 |     applyPolicy(&Policy::displayPowerTimer, state); | 
 |     ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state)); | 
 | } | 
 |  | 
 | void Scheduler::dump(std::string& result) const { | 
 |     using base::StringAppendF; | 
 |  | 
 |     StringAppendF(&result, "+  Touch timer: %s\n", | 
 |                   mTouchTimer ? mTouchTimer->dump().c_str() : "off"); | 
 |     StringAppendF(&result, "+  Content detection: %s %s\n\n", | 
 |                   mFeatures.test(Feature::kContentDetection) ? "on" : "off", | 
 |                   mLayerHistory.dump().c_str()); | 
 |  | 
 |     mFrameRateOverrideMappings.dump(result); | 
 |  | 
 |     { | 
 |         std::lock_guard lock(mHWVsyncLock); | 
 |         StringAppendF(&result, | 
 |                       "mScreenAcquired=%d mPrimaryHWVsyncEnabled=%d mHWVsyncAvailable=%d\n", | 
 |                       mScreenAcquired.load(), mPrimaryHWVsyncEnabled, mHWVsyncAvailable); | 
 |     } | 
 | } | 
 |  | 
 | void Scheduler::dumpVsync(std::string& out) const { | 
 |     mVsyncSchedule->dump(out); | 
 | } | 
 |  | 
 | bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) { | 
 |     const auto refreshRateConfigs = holdRefreshRateConfigs(); | 
 |  | 
 |     // we always update mFrameRateOverridesByContent here | 
 |     // supportsFrameRateOverridesByContent will be checked | 
 |     // when getting FrameRateOverrides from mFrameRateOverrideMappings | 
 |     if (!consideredSignals.idle) { | 
 |         const auto frameRateOverrides = | 
 |                 refreshRateConfigs->getFrameRateOverrides(mPolicy.contentRequirements, | 
 |                                                           displayRefreshRate, consideredSignals); | 
 |         return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides); | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | template <typename S, typename T> | 
 | auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals { | 
 |     DisplayModePtr newMode; | 
 |     GlobalSignals consideredSignals; | 
 |     std::vector<DisplayModeConfig> displayModeConfigs; | 
 |  | 
 |     bool refreshRateChanged = false; | 
 |     bool frameRateOverridesChanged; | 
 |  | 
 |     const auto refreshRateConfigs = holdRefreshRateConfigs(); | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mPolicyLock); | 
 |  | 
 |         auto& currentState = mPolicy.*statePtr; | 
 |         if (currentState == newState) return {}; | 
 |         currentState = std::forward<T>(newState); | 
 |  | 
 |         displayModeConfigs = getBestDisplayModeConfigs(); | 
 |  | 
 |         // mPolicy holds the current mode, using the current mode we find out | 
 |         // what display is currently being tracked through the policy and | 
 |         // then find the DisplayModeConfig for that display. So that | 
 |         // later we check if the policy mode has changed for the same display in policy. | 
 |         // If mPolicy mode isn't available then we take the first display from the best display | 
 |         // modes as the candidate for policy changes and frame rate overrides. | 
 |         // TODO(b/240743786) Update the single display based assumptions and make mode changes | 
 |         // and mPolicy per display. | 
 |         const DisplayModeConfig& displayModeConfigForCurrentPolicy = mPolicy.mode | 
 |                 ? *std::find_if(displayModeConfigs.begin(), displayModeConfigs.end(), | 
 |                                 [&](const auto& displayModeConfig) REQUIRES(mPolicyLock) { | 
 |                                     return displayModeConfig.displayModePtr | 
 |                                                    ->getPhysicalDisplayId() == | 
 |                                             mPolicy.mode->getPhysicalDisplayId(); | 
 |                                 }) | 
 |                 : displayModeConfigs.front(); | 
 |  | 
 |         newMode = displayModeConfigForCurrentPolicy.displayModePtr; | 
 |         consideredSignals = displayModeConfigForCurrentPolicy.signals; | 
 |         frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, newMode->getFps()); | 
 |  | 
 |         if (mPolicy.mode == newMode) { | 
 |             // We don't need to change the display mode, but we might need to send an event | 
 |             // about a mode change, since it was suppressed if previously considered idle. | 
 |             if (!consideredSignals.idle) { | 
 |                 dispatchCachedReportedMode(); | 
 |             } | 
 |         } else { | 
 |             mPolicy.mode = newMode; | 
 |             refreshRateChanged = true; | 
 |         } | 
 |     } | 
 |     if (refreshRateChanged) { | 
 |         mSchedulerCallback.requestDisplayModes(std::move(displayModeConfigs)); | 
 |     } | 
 |     if (frameRateOverridesChanged) { | 
 |         mSchedulerCallback.triggerOnFrameRateOverridesChanged(); | 
 |     } | 
 |     return consideredSignals; | 
 | } | 
 |  | 
 | std::vector<DisplayModeConfig> Scheduler::getBestDisplayModeConfigs() const { | 
 |     ATRACE_CALL(); | 
 |  | 
 |     using Rankings = std::pair<std::vector<RefreshRateRanking>, GlobalSignals>; | 
 |     display::PhysicalDisplayVector<Rankings> perDisplayRankings; | 
 |  | 
 |     // Tallies the score of a refresh rate across `displayCount` displays. | 
 |     struct RefreshRateTally { | 
 |         explicit RefreshRateTally(float score) : score(score) {} | 
 |  | 
 |         float score; | 
 |         size_t displayCount = 1; | 
 |     }; | 
 |  | 
 |     // Chosen to exceed a typical number of refresh rates across displays. | 
 |     constexpr size_t kStaticCapacity = 8; | 
 |     ftl::SmallMap<Fps, RefreshRateTally, kStaticCapacity, FpsApproxEqual> refreshRateTallies; | 
 |  | 
 |     const auto globalSignals = makeGlobalSignals(); | 
 |  | 
 |     for (const auto& [id, display] : mDisplays) { | 
 |         auto [rankings, signals] = | 
 |                 display->holdRefreshRateConfigs() | 
 |                         ->getRankedRefreshRates(mPolicy.contentRequirements, globalSignals); | 
 |  | 
 |         for (const auto& [modePtr, score] : rankings) { | 
 |             const auto [it, inserted] = refreshRateTallies.try_emplace(modePtr->getFps(), score); | 
 |  | 
 |             if (!inserted) { | 
 |                 auto& tally = it->second; | 
 |                 tally.score += score; | 
 |                 tally.displayCount++; | 
 |             } | 
 |         } | 
 |  | 
 |         perDisplayRankings.emplace_back(std::move(rankings), signals); | 
 |     } | 
 |  | 
 |     auto maxScoreIt = refreshRateTallies.cbegin(); | 
 |  | 
 |     // Find the first refresh rate common to all displays. | 
 |     while (maxScoreIt != refreshRateTallies.cend() && | 
 |            maxScoreIt->second.displayCount != mDisplays.size()) { | 
 |         ++maxScoreIt; | 
 |     } | 
 |  | 
 |     if (maxScoreIt != refreshRateTallies.cend()) { | 
 |         // Choose the highest refresh rate common to all displays, if any. | 
 |         for (auto it = maxScoreIt + 1; it != refreshRateTallies.cend(); ++it) { | 
 |             const auto [fps, tally] = *it; | 
 |  | 
 |             if (tally.displayCount == mDisplays.size() && tally.score > maxScoreIt->second.score) { | 
 |                 maxScoreIt = it; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     const std::optional<Fps> chosenFps = maxScoreIt != refreshRateTallies.cend() | 
 |             ? std::make_optional(maxScoreIt->first) | 
 |             : std::nullopt; | 
 |  | 
 |     std::vector<DisplayModeConfig> displayModeConfigs; | 
 |     displayModeConfigs.reserve(mDisplays.size()); | 
 |  | 
 |     using fps_approx_ops::operator==; | 
 |  | 
 |     for (const auto& [rankings, signals] : perDisplayRankings) { | 
 |         if (!chosenFps) { | 
 |             displayModeConfigs.emplace_back(signals, rankings.front().displayModePtr); | 
 |             continue; | 
 |         } | 
 |  | 
 |         for (const auto& ranking : rankings) { | 
 |             const auto& modePtr = ranking.displayModePtr; | 
 |             if (modePtr->getFps() == *chosenFps) { | 
 |                 displayModeConfigs.emplace_back(signals, modePtr); | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 |     return displayModeConfigs; | 
 | } | 
 |  | 
 | GlobalSignals Scheduler::makeGlobalSignals() const { | 
 |     const bool powerOnImminent = mDisplayPowerTimer && | 
 |             (mPolicy.displayPowerMode != hal::PowerMode::ON || | 
 |              mPolicy.displayPowerTimer == TimerState::Reset); | 
 |  | 
 |     return {.touch = mTouchTimer && mPolicy.touch == TouchState::Active, | 
 |             .idle = mPolicy.idleTimer == TimerState::Expired, | 
 |             .powerOnImminent = powerOnImminent}; | 
 | } | 
 |  | 
 | DisplayModePtr Scheduler::getPreferredDisplayMode() { | 
 |     std::lock_guard<std::mutex> lock(mPolicyLock); | 
 |     // Make sure the stored mode is up to date. | 
 |     if (mPolicy.mode) { | 
 |         const auto configs = holdRefreshRateConfigs(); | 
 |         const auto rankings = | 
 |                 configs->getRankedRefreshRates(mPolicy.contentRequirements, makeGlobalSignals()) | 
 |                         .first; | 
 |  | 
 |         mPolicy.mode = rankings.front().displayModePtr; | 
 |     } | 
 |     return mPolicy.mode; | 
 | } | 
 |  | 
 | void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { | 
 |     std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
 |     mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); | 
 |  | 
 |     const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); | 
 |     if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { | 
 |         mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; | 
 |     } | 
 | } | 
 |  | 
 | bool Scheduler::onPostComposition(nsecs_t presentTime) { | 
 |     std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
 |     if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { | 
 |         if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) { | 
 |             // We need to composite again as refreshTimeNanos is still in the future. | 
 |             return true; | 
 |         } | 
 |  | 
 |         mLastVsyncPeriodChangeTimeline->refreshRequired = false; | 
 |     } | 
 |     return false; | 
 | } | 
 |  | 
 | void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) { | 
 |     mLayerHistory.setDisplayArea(displayArea); | 
 | } | 
 |  | 
 | void Scheduler::setGameModeRefreshRateForUid(FrameRateOverride frameRateOverride) { | 
 |     if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { | 
 |         return; | 
 |     } | 
 |  | 
 |     mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride); | 
 | } | 
 |  | 
 | void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) { | 
 |     if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { | 
 |         return; | 
 |     } | 
 |  | 
 |     mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride); | 
 | } | 
 |  | 
 | } // namespace android::scheduler |