| /* | 
 |  * Copyright (C) 2007 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | //#define LOG_NDEBUG 0 | 
 | #undef LOG_TAG | 
 | #define LOG_TAG "Layer" | 
 | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
 |  | 
 | #include <stdlib.h> | 
 | #include <stdint.h> | 
 | #include <sys/types.h> | 
 | #include <math.h> | 
 |  | 
 | #include <cutils/compiler.h> | 
 | #include <cutils/native_handle.h> | 
 | #include <cutils/properties.h> | 
 |  | 
 | #include <utils/Errors.h> | 
 | #include <utils/Log.h> | 
 | #include <utils/NativeHandle.h> | 
 | #include <utils/StopWatch.h> | 
 | #include <utils/Trace.h> | 
 |  | 
 | #include <ui/GraphicBuffer.h> | 
 | #include <ui/PixelFormat.h> | 
 |  | 
 | #include <gui/BufferItem.h> | 
 | #include <gui/Surface.h> | 
 |  | 
 | #include "clz.h" | 
 | #include "Colorizer.h" | 
 | #include "DisplayDevice.h" | 
 | #include "Layer.h" | 
 | #include "MonitoredProducer.h" | 
 | #include "SurfaceFlinger.h" | 
 |  | 
 | #include "DisplayHardware/HWComposer.h" | 
 |  | 
 | #include "RenderEngine/RenderEngine.h" | 
 |  | 
 | #include <mutex> | 
 |  | 
 | #define DEBUG_RESIZE    0 | 
 |  | 
 | namespace android { | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 |  | 
 | int32_t Layer::sSequence = 1; | 
 |  | 
 | Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client, | 
 |         const String8& name, uint32_t w, uint32_t h, uint32_t flags) | 
 |     :   contentDirty(false), | 
 |         sequence(uint32_t(android_atomic_inc(&sSequence))), | 
 |         mFlinger(flinger), | 
 |         mTextureName(-1U), | 
 |         mPremultipliedAlpha(true), | 
 |         mName("unnamed"), | 
 |         mFormat(PIXEL_FORMAT_NONE), | 
 |         mTransactionFlags(0), | 
 |         mPendingStateMutex(), | 
 |         mPendingStates(), | 
 |         mQueuedFrames(0), | 
 |         mSidebandStreamChanged(false), | 
 |         mCurrentTransform(0), | 
 |         mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), | 
 |         mOverrideScalingMode(-1), | 
 |         mCurrentOpacity(true), | 
 |         mCurrentFrameNumber(0), | 
 |         mRefreshPending(false), | 
 |         mFrameLatencyNeeded(false), | 
 |         mFiltering(false), | 
 |         mNeedsFiltering(false), | 
 |         mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2), | 
 | #ifndef USE_HWC2 | 
 |         mIsGlesComposition(false), | 
 | #endif | 
 |         mProtectedByApp(false), | 
 |         mHasSurface(false), | 
 |         mClientRef(client), | 
 |         mPotentialCursor(false), | 
 |         mQueueItemLock(), | 
 |         mQueueItemCondition(), | 
 |         mQueueItems(), | 
 |         mLastFrameNumberReceived(0), | 
 |         mUpdateTexImageFailed(false), | 
 |         mAutoRefresh(false), | 
 |         mFreezePositionUpdates(false) | 
 | { | 
 | #ifdef USE_HWC2 | 
 |     ALOGV("Creating Layer %s", name.string()); | 
 | #endif | 
 |  | 
 |     mCurrentCrop.makeInvalid(); | 
 |     mFlinger->getRenderEngine().genTextures(1, &mTextureName); | 
 |     mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName); | 
 |  | 
 |     uint32_t layerFlags = 0; | 
 |     if (flags & ISurfaceComposerClient::eHidden) | 
 |         layerFlags |= layer_state_t::eLayerHidden; | 
 |     if (flags & ISurfaceComposerClient::eOpaque) | 
 |         layerFlags |= layer_state_t::eLayerOpaque; | 
 |     if (flags & ISurfaceComposerClient::eSecure) | 
 |         layerFlags |= layer_state_t::eLayerSecure; | 
 |  | 
 |     if (flags & ISurfaceComposerClient::eNonPremultiplied) | 
 |         mPremultipliedAlpha = false; | 
 |  | 
 |     mName = name; | 
 |  | 
 |     mCurrentState.active.w = w; | 
 |     mCurrentState.active.h = h; | 
 |     mCurrentState.active.transform.set(0, 0); | 
 |     mCurrentState.crop.makeInvalid(); | 
 |     mCurrentState.finalCrop.makeInvalid(); | 
 |     mCurrentState.z = 0; | 
 | #ifdef USE_HWC2 | 
 |     mCurrentState.alpha = 1.0f; | 
 | #else | 
 |     mCurrentState.alpha = 0xFF; | 
 | #endif | 
 |     mCurrentState.layerStack = 0; | 
 |     mCurrentState.flags = layerFlags; | 
 |     mCurrentState.sequence = 0; | 
 |     mCurrentState.requested = mCurrentState.active; | 
 |  | 
 |     // drawing state & current state are identical | 
 |     mDrawingState = mCurrentState; | 
 |  | 
 | #ifdef USE_HWC2 | 
 |     const auto& hwc = flinger->getHwComposer(); | 
 |     const auto& activeConfig = hwc.getActiveConfig(HWC_DISPLAY_PRIMARY); | 
 |     nsecs_t displayPeriod = activeConfig->getVsyncPeriod(); | 
 | #else | 
 |     nsecs_t displayPeriod = | 
 |             flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY); | 
 | #endif | 
 |     mFrameTracker.setDisplayRefreshPeriod(displayPeriod); | 
 | } | 
 |  | 
 | void Layer::onFirstRef() { | 
 |     // Creates a custom BufferQueue for SurfaceFlingerConsumer to use | 
 |     sp<IGraphicBufferProducer> producer; | 
 |     sp<IGraphicBufferConsumer> consumer; | 
 |     BufferQueue::createBufferQueue(&producer, &consumer); | 
 |     mProducer = new MonitoredProducer(producer, mFlinger); | 
 |     mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName, | 
 |             this); | 
 |     mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0)); | 
 |     mSurfaceFlingerConsumer->setContentsChangedListener(this); | 
 |     mSurfaceFlingerConsumer->setName(mName); | 
 |  | 
 | #ifndef TARGET_DISABLE_TRIPLE_BUFFERING | 
 |     mProducer->setMaxDequeuedBufferCount(2); | 
 | #endif | 
 |  | 
 |     const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice()); | 
 |     updateTransformHint(hw); | 
 | } | 
 |  | 
 | Layer::~Layer() { | 
 |   sp<Client> c(mClientRef.promote()); | 
 |     if (c != 0) { | 
 |         c->detachLayer(this); | 
 |     } | 
 |  | 
 |     for (auto& point : mRemoteSyncPoints) { | 
 |         point->setTransactionApplied(); | 
 |     } | 
 |     for (auto& point : mLocalSyncPoints) { | 
 |         point->setFrameAvailable(); | 
 |     } | 
 |     mFlinger->deleteTextureAsync(mTextureName); | 
 |     mFrameTracker.logAndResetStats(mName); | 
 | } | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 | // callbacks | 
 | // --------------------------------------------------------------------------- | 
 |  | 
 | #ifdef USE_HWC2 | 
 | void Layer::onLayerDisplayed(const sp<Fence>& releaseFence) { | 
 |     if (mHwcLayers.empty()) { | 
 |         return; | 
 |     } | 
 |     mSurfaceFlingerConsumer->setReleaseFence(releaseFence); | 
 | } | 
 | #else | 
 | void Layer::onLayerDisplayed(const sp<const DisplayDevice>& /* hw */, | 
 |         HWComposer::HWCLayerInterface* layer) { | 
 |     if (layer) { | 
 |         layer->onDisplayed(); | 
 |         mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence()); | 
 |     } | 
 | } | 
 | #endif | 
 |  | 
 | void Layer::onFrameAvailable(const BufferItem& item) { | 
 |     // Add this buffer from our internal queue tracker | 
 |     { // Autolock scope | 
 |         Mutex::Autolock lock(mQueueItemLock); | 
 |  | 
 |         // Reset the frame number tracker when we receive the first buffer after | 
 |         // a frame number reset | 
 |         if (item.mFrameNumber == 1) { | 
 |             mLastFrameNumberReceived = 0; | 
 |         } | 
 |  | 
 |         // Ensure that callbacks are handled in order | 
 |         while (item.mFrameNumber != mLastFrameNumberReceived + 1) { | 
 |             status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, | 
 |                     ms2ns(500)); | 
 |             if (result != NO_ERROR) { | 
 |                 ALOGE("[%s] Timed out waiting on callback", mName.string()); | 
 |             } | 
 |         } | 
 |  | 
 |         mQueueItems.push_back(item); | 
 |         android_atomic_inc(&mQueuedFrames); | 
 |  | 
 |         // Wake up any pending callbacks | 
 |         mLastFrameNumberReceived = item.mFrameNumber; | 
 |         mQueueItemCondition.broadcast(); | 
 |     } | 
 |  | 
 |     mFlinger->signalLayerUpdate(); | 
 | } | 
 |  | 
 | void Layer::onFrameReplaced(const BufferItem& item) { | 
 |     { // Autolock scope | 
 |         Mutex::Autolock lock(mQueueItemLock); | 
 |  | 
 |         // Ensure that callbacks are handled in order | 
 |         while (item.mFrameNumber != mLastFrameNumberReceived + 1) { | 
 |             status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, | 
 |                     ms2ns(500)); | 
 |             if (result != NO_ERROR) { | 
 |                 ALOGE("[%s] Timed out waiting on callback", mName.string()); | 
 |             } | 
 |         } | 
 |  | 
 |         if (mQueueItems.empty()) { | 
 |             ALOGE("Can't replace a frame on an empty queue"); | 
 |             return; | 
 |         } | 
 |         mQueueItems.editItemAt(mQueueItems.size() - 1) = item; | 
 |  | 
 |         // Wake up any pending callbacks | 
 |         mLastFrameNumberReceived = item.mFrameNumber; | 
 |         mQueueItemCondition.broadcast(); | 
 |     } | 
 | } | 
 |  | 
 | void Layer::onSidebandStreamChanged() { | 
 |     if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) { | 
 |         // mSidebandStreamChanged was false | 
 |         mFlinger->signalLayerUpdate(); | 
 |     } | 
 | } | 
 |  | 
 | // called with SurfaceFlinger::mStateLock from the drawing thread after | 
 | // the layer has been remove from the current state list (and just before | 
 | // it's removed from the drawing state list) | 
 | void Layer::onRemoved() { | 
 |     mSurfaceFlingerConsumer->abandon(); | 
 | } | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 | // set-up | 
 | // --------------------------------------------------------------------------- | 
 |  | 
 | const String8& Layer::getName() const { | 
 |     return mName; | 
 | } | 
 |  | 
 | status_t Layer::setBuffers( uint32_t w, uint32_t h, | 
 |                             PixelFormat format, uint32_t flags) | 
 | { | 
 |     uint32_t const maxSurfaceDims = min( | 
 |             mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims()); | 
 |  | 
 |     // never allow a surface larger than what our underlying GL implementation | 
 |     // can handle. | 
 |     if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) { | 
 |         ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h)); | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     mFormat = format; | 
 |  | 
 |     mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false; | 
 |     mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false; | 
 |     mCurrentOpacity = getOpacityForFormat(format); | 
 |  | 
 |     mSurfaceFlingerConsumer->setDefaultBufferSize(w, h); | 
 |     mSurfaceFlingerConsumer->setDefaultBufferFormat(format); | 
 |     mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0)); | 
 |  | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | /* | 
 |  * The layer handle is just a BBinder object passed to the client | 
 |  * (remote process) -- we don't keep any reference on our side such that | 
 |  * the dtor is called when the remote side let go of its reference. | 
 |  * | 
 |  * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for | 
 |  * this layer when the handle is destroyed. | 
 |  */ | 
 | class Layer::Handle : public BBinder, public LayerCleaner { | 
 |     public: | 
 |         Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) | 
 |             : LayerCleaner(flinger, layer), owner(layer) {} | 
 |  | 
 |         wp<Layer> owner; | 
 | }; | 
 |  | 
 | sp<IBinder> Layer::getHandle() { | 
 |     Mutex::Autolock _l(mLock); | 
 |  | 
 |     LOG_ALWAYS_FATAL_IF(mHasSurface, | 
 |             "Layer::getHandle() has already been called"); | 
 |  | 
 |     mHasSurface = true; | 
 |  | 
 |     return new Handle(mFlinger, this); | 
 | } | 
 |  | 
 | sp<IGraphicBufferProducer> Layer::getProducer() const { | 
 |     return mProducer; | 
 | } | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 | // h/w composer set-up | 
 | // --------------------------------------------------------------------------- | 
 |  | 
 | Rect Layer::getContentCrop() const { | 
 |     // this is the crop rectangle that applies to the buffer | 
 |     // itself (as opposed to the window) | 
 |     Rect crop; | 
 |     if (!mCurrentCrop.isEmpty()) { | 
 |         // if the buffer crop is defined, we use that | 
 |         crop = mCurrentCrop; | 
 |     } else if (mActiveBuffer != NULL) { | 
 |         // otherwise we use the whole buffer | 
 |         crop = mActiveBuffer->getBounds(); | 
 |     } else { | 
 |         // if we don't have a buffer yet, we use an empty/invalid crop | 
 |         crop.makeInvalid(); | 
 |     } | 
 |     return crop; | 
 | } | 
 |  | 
 | static Rect reduce(const Rect& win, const Region& exclude) { | 
 |     if (CC_LIKELY(exclude.isEmpty())) { | 
 |         return win; | 
 |     } | 
 |     if (exclude.isRect()) { | 
 |         return win.reduce(exclude.getBounds()); | 
 |     } | 
 |     return Region(win).subtract(exclude).getBounds(); | 
 | } | 
 |  | 
 | Rect Layer::computeBounds() const { | 
 |     const Layer::State& s(getDrawingState()); | 
 |     return computeBounds(s.activeTransparentRegion); | 
 | } | 
 |  | 
 | Rect Layer::computeBounds(const Region& activeTransparentRegion) const { | 
 |     const Layer::State& s(getDrawingState()); | 
 |     Rect win(s.active.w, s.active.h); | 
 |  | 
 |     if (!s.crop.isEmpty()) { | 
 |         win.intersect(s.crop, &win); | 
 |     } | 
 |     // subtract the transparent region and snap to the bounds | 
 |     return reduce(win, activeTransparentRegion); | 
 | } | 
 |  | 
 | FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const { | 
 |     // the content crop is the area of the content that gets scaled to the | 
 |     // layer's size. | 
 |     FloatRect crop(getContentCrop()); | 
 |  | 
 |     // the crop is the area of the window that gets cropped, but not | 
 |     // scaled in any ways. | 
 |     const State& s(getDrawingState()); | 
 |  | 
 |     // apply the projection's clipping to the window crop in | 
 |     // layerstack space, and convert-back to layer space. | 
 |     // if there are no window scaling involved, this operation will map to full | 
 |     // pixels in the buffer. | 
 |     // FIXME: the 3 lines below can produce slightly incorrect clipping when we have | 
 |     // a viewport clipping and a window transform. we should use floating point to fix this. | 
 |  | 
 |     Rect activeCrop(s.active.w, s.active.h); | 
 |     if (!s.crop.isEmpty()) { | 
 |         activeCrop = s.crop; | 
 |     } | 
 |  | 
 |     activeCrop = s.active.transform.transform(activeCrop); | 
 |     if (!activeCrop.intersect(hw->getViewport(), &activeCrop)) { | 
 |         activeCrop.clear(); | 
 |     } | 
 |     if (!s.finalCrop.isEmpty()) { | 
 |         if(!activeCrop.intersect(s.finalCrop, &activeCrop)) { | 
 |             activeCrop.clear(); | 
 |         } | 
 |     } | 
 |     activeCrop = s.active.transform.inverse().transform(activeCrop); | 
 |  | 
 |     // This needs to be here as transform.transform(Rect) computes the | 
 |     // transformed rect and then takes the bounding box of the result before | 
 |     // returning. This means | 
 |     // transform.inverse().transform(transform.transform(Rect)) != Rect | 
 |     // in which case we need to make sure the final rect is clipped to the | 
 |     // display bounds. | 
 |     if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { | 
 |         activeCrop.clear(); | 
 |     } | 
 |  | 
 |     // subtract the transparent region and snap to the bounds | 
 |     activeCrop = reduce(activeCrop, s.activeTransparentRegion); | 
 |  | 
 |     // Transform the window crop to match the buffer coordinate system, | 
 |     // which means using the inverse of the current transform set on the | 
 |     // SurfaceFlingerConsumer. | 
 |     uint32_t invTransform = mCurrentTransform; | 
 |     if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) { | 
 |         /* | 
 |          * the code below applies the primary display's inverse transform to the | 
 |          * buffer | 
 |          */ | 
 |         uint32_t invTransformOrient = | 
 |                 DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
 |         // calculate the inverse transform | 
 |         if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
 |             invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | | 
 |                     NATIVE_WINDOW_TRANSFORM_FLIP_H; | 
 |         } | 
 |         // and apply to the current transform | 
 |         invTransform = (Transform(invTransformOrient) * Transform(invTransform)) | 
 |                 .getOrientation(); | 
 |     } | 
 |  | 
 |     int winWidth = s.active.w; | 
 |     int winHeight = s.active.h; | 
 |     if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
 |         // If the activeCrop has been rotate the ends are rotated but not | 
 |         // the space itself so when transforming ends back we can't rely on | 
 |         // a modification of the axes of rotation. To account for this we | 
 |         // need to reorient the inverse rotation in terms of the current | 
 |         // axes of rotation. | 
 |         bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0; | 
 |         bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0; | 
 |         if (is_h_flipped == is_v_flipped) { | 
 |             invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | | 
 |                     NATIVE_WINDOW_TRANSFORM_FLIP_H; | 
 |         } | 
 |         winWidth = s.active.h; | 
 |         winHeight = s.active.w; | 
 |     } | 
 |     const Rect winCrop = activeCrop.transform( | 
 |             invTransform, s.active.w, s.active.h); | 
 |  | 
 |     // below, crop is intersected with winCrop expressed in crop's coordinate space | 
 |     float xScale = crop.getWidth()  / float(winWidth); | 
 |     float yScale = crop.getHeight() / float(winHeight); | 
 |  | 
 |     float insetL = winCrop.left                 * xScale; | 
 |     float insetT = winCrop.top                  * yScale; | 
 |     float insetR = (winWidth - winCrop.right )  * xScale; | 
 |     float insetB = (winHeight - winCrop.bottom) * yScale; | 
 |  | 
 |     crop.left   += insetL; | 
 |     crop.top    += insetT; | 
 |     crop.right  -= insetR; | 
 |     crop.bottom -= insetB; | 
 |  | 
 |     return crop; | 
 | } | 
 |  | 
 | #ifdef USE_HWC2 | 
 | void Layer::setGeometry(const sp<const DisplayDevice>& displayDevice) | 
 | #else | 
 | void Layer::setGeometry( | 
 |     const sp<const DisplayDevice>& hw, | 
 |         HWComposer::HWCLayerInterface& layer) | 
 | #endif | 
 | { | 
 | #ifdef USE_HWC2 | 
 |     const auto hwcId = displayDevice->getHwcDisplayId(); | 
 |     auto& hwcInfo = mHwcLayers[hwcId]; | 
 | #else | 
 |     layer.setDefaultState(); | 
 | #endif | 
 |  | 
 |     // enable this layer | 
 | #ifdef USE_HWC2 | 
 |     hwcInfo.forceClientComposition = false; | 
 |  | 
 |     if (isSecure() && !displayDevice->isSecure()) { | 
 |         hwcInfo.forceClientComposition = true; | 
 |     } | 
 |  | 
 |     auto& hwcLayer = hwcInfo.layer; | 
 | #else | 
 |     layer.setSkip(false); | 
 |  | 
 |     if (isSecure() && !hw->isSecure()) { | 
 |         layer.setSkip(true); | 
 |     } | 
 | #endif | 
 |  | 
 |     // this gives us only the "orientation" component of the transform | 
 |     const State& s(getDrawingState()); | 
 | #ifdef USE_HWC2 | 
 |     if (!isOpaque(s) || s.alpha != 1.0f) { | 
 |         auto blendMode = mPremultipliedAlpha ? | 
 |                 HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage; | 
 |         auto error = hwcLayer->setBlendMode(blendMode); | 
 |         ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set blend mode %s:" | 
 |                 " %s (%d)", mName.string(), to_string(blendMode).c_str(), | 
 |                 to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 | #else | 
 |     if (!isOpaque(s) || s.alpha != 0xFF) { | 
 |         layer.setBlending(mPremultipliedAlpha ? | 
 |                 HWC_BLENDING_PREMULT : | 
 |                 HWC_BLENDING_COVERAGE); | 
 |     } | 
 | #endif | 
 |  | 
 |     // apply the layer's transform, followed by the display's global transform | 
 |     // here we're guaranteed that the layer's transform preserves rects | 
 |     Region activeTransparentRegion(s.activeTransparentRegion); | 
 |     if (!s.crop.isEmpty()) { | 
 |         Rect activeCrop(s.crop); | 
 |         activeCrop = s.active.transform.transform(activeCrop); | 
 | #ifdef USE_HWC2 | 
 |         if(!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) { | 
 | #else | 
 |         if(!activeCrop.intersect(hw->getViewport(), &activeCrop)) { | 
 | #endif | 
 |             activeCrop.clear(); | 
 |         } | 
 |         activeCrop = s.active.transform.inverse().transform(activeCrop); | 
 |         // This needs to be here as transform.transform(Rect) computes the | 
 |         // transformed rect and then takes the bounding box of the result before | 
 |         // returning. This means | 
 |         // transform.inverse().transform(transform.transform(Rect)) != Rect | 
 |         // in which case we need to make sure the final rect is clipped to the | 
 |         // display bounds. | 
 |         if(!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { | 
 |             activeCrop.clear(); | 
 |         } | 
 |         // mark regions outside the crop as transparent | 
 |         activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top)); | 
 |         activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom, | 
 |                 s.active.w, s.active.h)); | 
 |         activeTransparentRegion.orSelf(Rect(0, activeCrop.top, | 
 |                 activeCrop.left, activeCrop.bottom)); | 
 |         activeTransparentRegion.orSelf(Rect(activeCrop.right, activeCrop.top, | 
 |                 s.active.w, activeCrop.bottom)); | 
 |     } | 
 |     Rect frame(s.active.transform.transform(computeBounds(activeTransparentRegion))); | 
 |     if (!s.finalCrop.isEmpty()) { | 
 |         if(!frame.intersect(s.finalCrop, &frame)) { | 
 |             frame.clear(); | 
 |         } | 
 |     } | 
 | #ifdef USE_HWC2 | 
 |     if (!frame.intersect(displayDevice->getViewport(), &frame)) { | 
 |         frame.clear(); | 
 |     } | 
 |     const Transform& tr(displayDevice->getTransform()); | 
 |     Rect transformedFrame = tr.transform(frame); | 
 |     auto error = hwcLayer->setDisplayFrame(transformedFrame); | 
 |     ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set display frame " | 
 |             "[%d, %d, %d, %d]: %s (%d)", mName.string(), transformedFrame.left, | 
 |             transformedFrame.top, transformedFrame.right, | 
 |             transformedFrame.bottom, to_string(error).c_str(), | 
 |             static_cast<int32_t>(error)); | 
 |  | 
 |     FloatRect sourceCrop = computeCrop(displayDevice); | 
 |     error = hwcLayer->setSourceCrop(sourceCrop); | 
 |     ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set source crop " | 
 |             "[%.3f, %.3f, %.3f, %.3f]: %s (%d)", mName.string(), | 
 |             sourceCrop.left, sourceCrop.top, sourceCrop.right, | 
 |             sourceCrop.bottom, to_string(error).c_str(), | 
 |             static_cast<int32_t>(error)); | 
 |  | 
 |     error = hwcLayer->setPlaneAlpha(s.alpha); | 
 |     ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set plane alpha %.3f: " | 
 |             "%s (%d)", mName.string(), s.alpha, to_string(error).c_str(), | 
 |             static_cast<int32_t>(error)); | 
 |  | 
 |     error = hwcLayer->setZOrder(s.z); | 
 |     ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)", | 
 |             mName.string(), s.z, to_string(error).c_str(), | 
 |             static_cast<int32_t>(error)); | 
 | #else | 
 |     if (!frame.intersect(hw->getViewport(), &frame)) { | 
 |         frame.clear(); | 
 |     } | 
 |     const Transform& tr(hw->getTransform()); | 
 |     layer.setFrame(tr.transform(frame)); | 
 |     layer.setCrop(computeCrop(hw)); | 
 |     layer.setPlaneAlpha(s.alpha); | 
 | #endif | 
 |  | 
 |     /* | 
 |      * Transformations are applied in this order: | 
 |      * 1) buffer orientation/flip/mirror | 
 |      * 2) state transformation (window manager) | 
 |      * 3) layer orientation (screen orientation) | 
 |      * (NOTE: the matrices are multiplied in reverse order) | 
 |      */ | 
 |  | 
 |     const Transform bufferOrientation(mCurrentTransform); | 
 |     Transform transform(tr * s.active.transform * bufferOrientation); | 
 |  | 
 |     if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) { | 
 |         /* | 
 |          * the code below applies the primary display's inverse transform to the | 
 |          * buffer | 
 |          */ | 
 |         uint32_t invTransform = | 
 |                 DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
 |         // calculate the inverse transform | 
 |         if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
 |             invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | | 
 |                     NATIVE_WINDOW_TRANSFORM_FLIP_H; | 
 |         } | 
 |         // and apply to the current transform | 
 |         transform = Transform(invTransform) * transform; | 
 |     } | 
 |  | 
 |     // this gives us only the "orientation" component of the transform | 
 |     const uint32_t orientation = transform.getOrientation(); | 
 | #ifdef USE_HWC2 | 
 |     if (orientation & Transform::ROT_INVALID) { | 
 |         // we can only handle simple transformation | 
 |         hwcInfo.forceClientComposition = true; | 
 |     } else { | 
 |         auto transform = static_cast<HWC2::Transform>(orientation); | 
 |         auto error = hwcLayer->setTransform(transform); | 
 |         ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set transform %s: " | 
 |                 "%s (%d)", mName.string(), to_string(transform).c_str(), | 
 |                 to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 | #else | 
 |     if (orientation & Transform::ROT_INVALID) { | 
 |         // we can only handle simple transformation | 
 |         layer.setSkip(true); | 
 |     } else { | 
 |         layer.setTransform(orientation); | 
 |     } | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef USE_HWC2 | 
 | void Layer::forceClientComposition(int32_t hwcId) { | 
 |     if (mHwcLayers.count(hwcId) == 0) { | 
 |         ALOGE("forceClientComposition: no HWC layer found (%d)", hwcId); | 
 |         return; | 
 |     } | 
 |  | 
 |     mHwcLayers[hwcId].forceClientComposition = true; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef USE_HWC2 | 
 | void Layer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) { | 
 |     // Apply this display's projection's viewport to the visible region | 
 |     // before giving it to the HWC HAL. | 
 |     const Transform& tr = displayDevice->getTransform(); | 
 |     const auto& viewport = displayDevice->getViewport(); | 
 |     Region visible = tr.transform(visibleRegion.intersect(viewport)); | 
 |     auto hwcId = displayDevice->getHwcDisplayId(); | 
 |     auto& hwcLayer = mHwcLayers[hwcId].layer; | 
 |     auto error = hwcLayer->setVisibleRegion(visible); | 
 |     if (error != HWC2::Error::None) { | 
 |         ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), | 
 |                 to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         visible.dump(LOG_TAG); | 
 |     } | 
 |  | 
 |     error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); | 
 |     if (error != HWC2::Error::None) { | 
 |         ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), | 
 |                 to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         surfaceDamageRegion.dump(LOG_TAG); | 
 |     } | 
 |  | 
 |     // Sideband layers | 
 |     if (mSidebandStream.get()) { | 
 |         setCompositionType(hwcId, HWC2::Composition::Sideband); | 
 |         ALOGV("[%s] Requesting Sideband composition", mName.string()); | 
 |         error = hwcLayer->setSidebandStream(mSidebandStream->handle()); | 
 |         if (error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", | 
 |                     mName.string(), mSidebandStream->handle(), | 
 |                     to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         } | 
 |         return; | 
 |     } | 
 |  | 
 |     // Client layers | 
 |     if (mHwcLayers[hwcId].forceClientComposition || | 
 |             (mActiveBuffer != nullptr && mActiveBuffer->handle == nullptr)) { | 
 |         ALOGV("[%s] Requesting Client composition", mName.string()); | 
 |         setCompositionType(hwcId, HWC2::Composition::Client); | 
 |         return; | 
 |     } | 
 |  | 
 |     // SolidColor layers | 
 |     if (mActiveBuffer == nullptr) { | 
 |         setCompositionType(hwcId, HWC2::Composition::SolidColor); | 
 |  | 
 |         // For now, we only support black for DimLayer | 
 |         error = hwcLayer->setColor({0, 0, 0, 255}); | 
 |         if (error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set color: %s (%d)", mName.string(), | 
 |                     to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         } | 
 |  | 
 |         // Clear out the transform, because it doesn't make sense absent a | 
 |         // source buffer | 
 |         error = hwcLayer->setTransform(HWC2::Transform::None); | 
 |         if (error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to clear transform: %s (%d)", mName.string(), | 
 |                     to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         } | 
 |  | 
 |         return; | 
 |     } | 
 |  | 
 |     // Device or Cursor layers | 
 |     if (mPotentialCursor) { | 
 |         ALOGV("[%s] Requesting Cursor composition", mName.string()); | 
 |         setCompositionType(hwcId, HWC2::Composition::Cursor); | 
 |     } else { | 
 |         ALOGV("[%s] Requesting Device composition", mName.string()); | 
 |         setCompositionType(hwcId, HWC2::Composition::Device); | 
 |     } | 
 |  | 
 |     auto acquireFence = mSurfaceFlingerConsumer->getCurrentFence(); | 
 |     error = hwcLayer->setBuffer(mActiveBuffer->handle, acquireFence); | 
 |     if (error != HWC2::Error::None) { | 
 |         ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(), | 
 |                 mActiveBuffer->handle, to_string(error).c_str(), | 
 |                 static_cast<int32_t>(error)); | 
 |     } | 
 | } | 
 | #else | 
 | void Layer::setPerFrameData(const sp<const DisplayDevice>& hw, | 
 |         HWComposer::HWCLayerInterface& layer) { | 
 |     // we have to set the visible region on every frame because | 
 |     // we currently free it during onLayerDisplayed(), which is called | 
 |     // after HWComposer::commit() -- every frame. | 
 |     // Apply this display's projection's viewport to the visible region | 
 |     // before giving it to the HWC HAL. | 
 |     const Transform& tr = hw->getTransform(); | 
 |     Region visible = tr.transform(visibleRegion.intersect(hw->getViewport())); | 
 |     layer.setVisibleRegionScreen(visible); | 
 |     layer.setSurfaceDamage(surfaceDamageRegion); | 
 |     mIsGlesComposition = (layer.getCompositionType() == HWC_FRAMEBUFFER); | 
 |  | 
 |     if (mSidebandStream.get()) { | 
 |         layer.setSidebandStream(mSidebandStream); | 
 |     } else { | 
 |         // NOTE: buffer can be NULL if the client never drew into this | 
 |         // layer yet, or if we ran out of memory | 
 |         layer.setBuffer(mActiveBuffer); | 
 |     } | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef USE_HWC2 | 
 | void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) { | 
 |     auto hwcId = displayDevice->getHwcDisplayId(); | 
 |     if (mHwcLayers.count(hwcId) == 0 || | 
 |             getCompositionType(hwcId) != HWC2::Composition::Cursor) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // This gives us only the "orientation" component of the transform | 
 |     const State& s(getCurrentState()); | 
 |  | 
 |     // Apply the layer's transform, followed by the display's global transform | 
 |     // Here we're guaranteed that the layer's transform preserves rects | 
 |     Rect win(s.active.w, s.active.h); | 
 |     if (!s.crop.isEmpty()) { | 
 |         win.intersect(s.crop, &win); | 
 |     } | 
 |     // Subtract the transparent region and snap to the bounds | 
 |     Rect bounds = reduce(win, s.activeTransparentRegion); | 
 |     Rect frame(s.active.transform.transform(bounds)); | 
 |     frame.intersect(displayDevice->getViewport(), &frame); | 
 |     if (!s.finalCrop.isEmpty()) { | 
 |         frame.intersect(s.finalCrop, &frame); | 
 |     } | 
 |     auto& displayTransform(displayDevice->getTransform()); | 
 |     auto position = displayTransform.transform(frame); | 
 |  | 
 |     auto error = mHwcLayers[hwcId].layer->setCursorPosition(position.left, | 
 |             position.top); | 
 |     ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set cursor position " | 
 |             "to (%d, %d): %s (%d)", mName.string(), position.left, | 
 |             position.top, to_string(error).c_str(), | 
 |             static_cast<int32_t>(error)); | 
 | } | 
 | #else | 
 | void Layer::setAcquireFence(const sp<const DisplayDevice>& /* hw */, | 
 |         HWComposer::HWCLayerInterface& layer) { | 
 |     int fenceFd = -1; | 
 |  | 
 |     // TODO: there is a possible optimization here: we only need to set the | 
 |     // acquire fence the first time a new buffer is acquired on EACH display. | 
 |  | 
 |     if (layer.getCompositionType() == HWC_OVERLAY || layer.getCompositionType() == HWC_CURSOR_OVERLAY) { | 
 |         sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence(); | 
 |         if (fence->isValid()) { | 
 |             fenceFd = fence->dup(); | 
 |             if (fenceFd == -1) { | 
 |                 ALOGW("failed to dup layer fence, skipping sync: %d", errno); | 
 |             } | 
 |         } | 
 |     } | 
 |     layer.setAcquireFenceFd(fenceFd); | 
 | } | 
 |  | 
 | Rect Layer::getPosition( | 
 |     const sp<const DisplayDevice>& hw) | 
 | { | 
 |     // this gives us only the "orientation" component of the transform | 
 |     const State& s(getCurrentState()); | 
 |  | 
 |     // apply the layer's transform, followed by the display's global transform | 
 |     // here we're guaranteed that the layer's transform preserves rects | 
 |     Rect win(s.active.w, s.active.h); | 
 |     if (!s.crop.isEmpty()) { | 
 |         win.intersect(s.crop, &win); | 
 |     } | 
 |     // subtract the transparent region and snap to the bounds | 
 |     Rect bounds = reduce(win, s.activeTransparentRegion); | 
 |     Rect frame(s.active.transform.transform(bounds)); | 
 |     frame.intersect(hw->getViewport(), &frame); | 
 |     if (!s.finalCrop.isEmpty()) { | 
 |         frame.intersect(s.finalCrop, &frame); | 
 |     } | 
 |     const Transform& tr(hw->getTransform()); | 
 |     return Rect(tr.transform(frame)); | 
 | } | 
 | #endif | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 | // drawing... | 
 | // --------------------------------------------------------------------------- | 
 |  | 
 | void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const { | 
 |     onDraw(hw, clip, false); | 
 | } | 
 |  | 
 | void Layer::draw(const sp<const DisplayDevice>& hw, | 
 |         bool useIdentityTransform) const { | 
 |     onDraw(hw, Region(hw->bounds()), useIdentityTransform); | 
 | } | 
 |  | 
 | void Layer::draw(const sp<const DisplayDevice>& hw) const { | 
 |     onDraw(hw, Region(hw->bounds()), false); | 
 | } | 
 |  | 
 | void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip, | 
 |         bool useIdentityTransform) const | 
 | { | 
 |     ATRACE_CALL(); | 
 |  | 
 |     if (CC_UNLIKELY(mActiveBuffer == 0)) { | 
 |         // the texture has not been created yet, this Layer has | 
 |         // in fact never been drawn into. This happens frequently with | 
 |         // SurfaceView because the WindowManager can't know when the client | 
 |         // has drawn the first time. | 
 |  | 
 |         // If there is nothing under us, we paint the screen in black, otherwise | 
 |         // we just skip this update. | 
 |  | 
 |         // figure out if there is something below us | 
 |         Region under; | 
 |         const SurfaceFlinger::LayerVector& drawingLayers( | 
 |                 mFlinger->mDrawingState.layersSortedByZ); | 
 |         const size_t count = drawingLayers.size(); | 
 |         for (size_t i=0 ; i<count ; ++i) { | 
 |             const sp<Layer>& layer(drawingLayers[i]); | 
 |             if (layer.get() == static_cast<Layer const*>(this)) | 
 |                 break; | 
 |             under.orSelf( hw->getTransform().transform(layer->visibleRegion) ); | 
 |         } | 
 |         // if not everything below us is covered, we plug the holes! | 
 |         Region holes(clip.subtract(under)); | 
 |         if (!holes.isEmpty()) { | 
 |             clearWithOpenGL(hw, holes, 0, 0, 0, 1); | 
 |         } | 
 |         return; | 
 |     } | 
 |  | 
 |     // Bind the current buffer to the GL texture, and wait for it to be | 
 |     // ready for us to draw into. | 
 |     status_t err = mSurfaceFlingerConsumer->bindTextureImage(); | 
 |     if (err != NO_ERROR) { | 
 |         ALOGW("onDraw: bindTextureImage failed (err=%d)", err); | 
 |         // Go ahead and draw the buffer anyway; no matter what we do the screen | 
 |         // is probably going to have something visibly wrong. | 
 |     } | 
 |  | 
 |     bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure()); | 
 |  | 
 |     RenderEngine& engine(mFlinger->getRenderEngine()); | 
 |  | 
 |     if (!blackOutLayer) { | 
 |         // TODO: we could be more subtle with isFixedSize() | 
 |         const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize(); | 
 |  | 
 |         // Query the texture matrix given our current filtering mode. | 
 |         float textureMatrix[16]; | 
 |         mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering); | 
 |         mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix); | 
 |  | 
 |         if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) { | 
 |  | 
 |             /* | 
 |              * the code below applies the primary display's inverse transform to | 
 |              * the texture transform | 
 |              */ | 
 |  | 
 |             // create a 4x4 transform matrix from the display transform flags | 
 |             const mat4 flipH(-1,0,0,0,  0,1,0,0, 0,0,1,0, 1,0,0,1); | 
 |             const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1); | 
 |             const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1); | 
 |  | 
 |             mat4 tr; | 
 |             uint32_t transform = | 
 |                     DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
 |             if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) | 
 |                 tr = tr * rot90; | 
 |             if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) | 
 |                 tr = tr * flipH; | 
 |             if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) | 
 |                 tr = tr * flipV; | 
 |  | 
 |             // calculate the inverse | 
 |             tr = inverse(tr); | 
 |  | 
 |             // and finally apply it to the original texture matrix | 
 |             const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); | 
 |             memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); | 
 |         } | 
 |  | 
 |         // Set things up for texturing. | 
 |         mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight()); | 
 |         mTexture.setFiltering(useFiltering); | 
 |         mTexture.setMatrix(textureMatrix); | 
 |  | 
 |         engine.setupLayerTexturing(mTexture); | 
 |     } else { | 
 |         engine.setupLayerBlackedOut(); | 
 |     } | 
 |     drawWithOpenGL(hw, clip, useIdentityTransform); | 
 |     engine.disableTexturing(); | 
 | } | 
 |  | 
 |  | 
 | void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw, | 
 |         const Region& /* clip */, float red, float green, float blue, | 
 |         float alpha) const | 
 | { | 
 |     RenderEngine& engine(mFlinger->getRenderEngine()); | 
 |     computeGeometry(hw, mMesh, false); | 
 |     engine.setupFillWithColor(red, green, blue, alpha); | 
 |     engine.drawMesh(mMesh); | 
 | } | 
 |  | 
 | void Layer::clearWithOpenGL( | 
 |         const sp<const DisplayDevice>& hw, const Region& clip) const { | 
 |     clearWithOpenGL(hw, clip, 0,0,0,0); | 
 | } | 
 |  | 
 | void Layer::drawWithOpenGL(const sp<const DisplayDevice>& hw, | 
 |         const Region& /* clip */, bool useIdentityTransform) const { | 
 |     const State& s(getDrawingState()); | 
 |  | 
 |     computeGeometry(hw, mMesh, useIdentityTransform); | 
 |  | 
 |     /* | 
 |      * NOTE: the way we compute the texture coordinates here produces | 
 |      * different results than when we take the HWC path -- in the later case | 
 |      * the "source crop" is rounded to texel boundaries. | 
 |      * This can produce significantly different results when the texture | 
 |      * is scaled by a large amount. | 
 |      * | 
 |      * The GL code below is more logical (imho), and the difference with | 
 |      * HWC is due to a limitation of the HWC API to integers -- a question | 
 |      * is suspend is whether we should ignore this problem or revert to | 
 |      * GL composition when a buffer scaling is applied (maybe with some | 
 |      * minimal value)? Or, we could make GL behave like HWC -- but this feel | 
 |      * like more of a hack. | 
 |      */ | 
 |     Rect win(computeBounds()); | 
 |  | 
 |     if (!s.finalCrop.isEmpty()) { | 
 |         win = s.active.transform.transform(win); | 
 |         if (!win.intersect(s.finalCrop, &win)) { | 
 |             win.clear(); | 
 |         } | 
 |         win = s.active.transform.inverse().transform(win); | 
 |         if (!win.intersect(computeBounds(), &win)) { | 
 |             win.clear(); | 
 |         } | 
 |     } | 
 |  | 
 |     float left   = float(win.left)   / float(s.active.w); | 
 |     float top    = float(win.top)    / float(s.active.h); | 
 |     float right  = float(win.right)  / float(s.active.w); | 
 |     float bottom = float(win.bottom) / float(s.active.h); | 
 |  | 
 |     // TODO: we probably want to generate the texture coords with the mesh | 
 |     // here we assume that we only have 4 vertices | 
 |     Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>()); | 
 |     texCoords[0] = vec2(left, 1.0f - top); | 
 |     texCoords[1] = vec2(left, 1.0f - bottom); | 
 |     texCoords[2] = vec2(right, 1.0f - bottom); | 
 |     texCoords[3] = vec2(right, 1.0f - top); | 
 |  | 
 |     RenderEngine& engine(mFlinger->getRenderEngine()); | 
 |     engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), s.alpha); | 
 |     engine.drawMesh(mMesh); | 
 |     engine.disableBlending(); | 
 | } | 
 |  | 
 | #ifdef USE_HWC2 | 
 | void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type, | 
 |         bool callIntoHwc) { | 
 |     if (mHwcLayers.count(hwcId) == 0) { | 
 |         ALOGE("setCompositionType called without a valid HWC layer"); | 
 |         return; | 
 |     } | 
 |     auto& hwcInfo = mHwcLayers[hwcId]; | 
 |     auto& hwcLayer = hwcInfo.layer; | 
 |     ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(), | 
 |             to_string(type).c_str(), static_cast<int>(callIntoHwc)); | 
 |     if (hwcInfo.compositionType != type) { | 
 |         ALOGV("    actually setting"); | 
 |         hwcInfo.compositionType = type; | 
 |         if (callIntoHwc) { | 
 |             auto error = hwcLayer->setCompositionType(type); | 
 |             ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set " | 
 |                     "composition type %s: %s (%d)", mName.string(), | 
 |                     to_string(type).c_str(), to_string(error).c_str(), | 
 |                     static_cast<int32_t>(error)); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | HWC2::Composition Layer::getCompositionType(int32_t hwcId) const { | 
 |     if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) { | 
 |         // If we're querying the composition type for a display that does not | 
 |         // have a HWC counterpart, then it will always be Client | 
 |         return HWC2::Composition::Client; | 
 |     } | 
 |     if (mHwcLayers.count(hwcId) == 0) { | 
 |         ALOGE("getCompositionType called with an invalid HWC layer"); | 
 |         return HWC2::Composition::Invalid; | 
 |     } | 
 |     return mHwcLayers.at(hwcId).compositionType; | 
 | } | 
 |  | 
 | void Layer::setClearClientTarget(int32_t hwcId, bool clear) { | 
 |     if (mHwcLayers.count(hwcId) == 0) { | 
 |         ALOGE("setClearClientTarget called without a valid HWC layer"); | 
 |         return; | 
 |     } | 
 |     mHwcLayers[hwcId].clearClientTarget = clear; | 
 | } | 
 |  | 
 | bool Layer::getClearClientTarget(int32_t hwcId) const { | 
 |     if (mHwcLayers.count(hwcId) == 0) { | 
 |         ALOGE("getClearClientTarget called without a valid HWC layer"); | 
 |         return false; | 
 |     } | 
 |     return mHwcLayers.at(hwcId).clearClientTarget; | 
 | } | 
 | #endif | 
 |  | 
 | uint32_t Layer::getProducerStickyTransform() const { | 
 |     int producerStickyTransform = 0; | 
 |     int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform); | 
 |     if (ret != OK) { | 
 |         ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__, | 
 |                 strerror(-ret), ret); | 
 |         return 0; | 
 |     } | 
 |     return static_cast<uint32_t>(producerStickyTransform); | 
 | } | 
 |  | 
 | bool Layer::latchUnsignaledBuffers() { | 
 |     static bool propertyLoaded = false; | 
 |     static bool latch = false; | 
 |     static std::mutex mutex; | 
 |     std::lock_guard<std::mutex> lock(mutex); | 
 |     if (!propertyLoaded) { | 
 |         char value[PROPERTY_VALUE_MAX] = {}; | 
 |         property_get("debug.sf.latch_unsignaled", value, "0"); | 
 |         latch = atoi(value); | 
 |         propertyLoaded = true; | 
 |     } | 
 |     return latch; | 
 | } | 
 |  | 
 | uint64_t Layer::getHeadFrameNumber() const { | 
 |     Mutex::Autolock lock(mQueueItemLock); | 
 |     if (!mQueueItems.empty()) { | 
 |         return mQueueItems[0].mFrameNumber; | 
 |     } else { | 
 |         return mCurrentFrameNumber; | 
 |     } | 
 | } | 
 |  | 
 | bool Layer::headFenceHasSignaled() const { | 
 | #ifdef USE_HWC2 | 
 |     if (latchUnsignaledBuffers()) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     Mutex::Autolock lock(mQueueItemLock); | 
 |     if (mQueueItems.empty()) { | 
 |         return true; | 
 |     } | 
 |     if (mQueueItems[0].mIsDroppable) { | 
 |         // Even though this buffer's fence may not have signaled yet, it could | 
 |         // be replaced by another buffer before it has a chance to, which means | 
 |         // that it's possible to get into a situation where a buffer is never | 
 |         // able to be latched. To avoid this, grab this buffer anyway. | 
 |         return true; | 
 |     } | 
 |     return mQueueItems[0].mFence->getSignalTime() != INT64_MAX; | 
 | #else | 
 |     return true; | 
 | #endif | 
 | } | 
 |  | 
 | bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) { | 
 |     if (point->getFrameNumber() <= mCurrentFrameNumber) { | 
 |         // Don't bother with a SyncPoint, since we've already latched the | 
 |         // relevant frame | 
 |         return false; | 
 |     } | 
 |  | 
 |     Mutex::Autolock lock(mLocalSyncPointMutex); | 
 |     mLocalSyncPoints.push_back(point); | 
 |     return true; | 
 | } | 
 |  | 
 | void Layer::setFiltering(bool filtering) { | 
 |     mFiltering = filtering; | 
 | } | 
 |  | 
 | bool Layer::getFiltering() const { | 
 |     return mFiltering; | 
 | } | 
 |  | 
 | // As documented in libhardware header, formats in the range | 
 | // 0x100 - 0x1FF are specific to the HAL implementation, and | 
 | // are known to have no alpha channel | 
 | // TODO: move definition for device-specific range into | 
 | // hardware.h, instead of using hard-coded values here. | 
 | #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) | 
 |  | 
 | bool Layer::getOpacityForFormat(uint32_t format) { | 
 |     if (HARDWARE_IS_DEVICE_FORMAT(format)) { | 
 |         return true; | 
 |     } | 
 |     switch (format) { | 
 |         case HAL_PIXEL_FORMAT_RGBA_8888: | 
 |         case HAL_PIXEL_FORMAT_BGRA_8888: | 
 |             return false; | 
 |     } | 
 |     // in all other case, we have no blending (also for unknown formats) | 
 |     return true; | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // local state | 
 | // ---------------------------------------------------------------------------- | 
 |  | 
 | static void boundPoint(vec2* point, const Rect& crop) { | 
 |     if (point->x < crop.left) { | 
 |         point->x = crop.left; | 
 |     } | 
 |     if (point->x > crop.right) { | 
 |         point->x = crop.right; | 
 |     } | 
 |     if (point->y < crop.top) { | 
 |         point->y = crop.top; | 
 |     } | 
 |     if (point->y > crop.bottom) { | 
 |         point->y = crop.bottom; | 
 |     } | 
 | } | 
 |  | 
 | void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh, | 
 |         bool useIdentityTransform) const | 
 | { | 
 |     const Layer::State& s(getDrawingState()); | 
 |     const Transform tr(hw->getTransform()); | 
 |     const uint32_t hw_h = hw->getHeight(); | 
 |     Rect win(s.active.w, s.active.h); | 
 |     if (!s.crop.isEmpty()) { | 
 |         win.intersect(s.crop, &win); | 
 |     } | 
 |     // subtract the transparent region and snap to the bounds | 
 |     win = reduce(win, s.activeTransparentRegion); | 
 |  | 
 |     vec2 lt = vec2(win.left, win.top); | 
 |     vec2 lb = vec2(win.left, win.bottom); | 
 |     vec2 rb = vec2(win.right, win.bottom); | 
 |     vec2 rt = vec2(win.right, win.top); | 
 |  | 
 |     if (!useIdentityTransform) { | 
 |         lt = s.active.transform.transform(lt); | 
 |         lb = s.active.transform.transform(lb); | 
 |         rb = s.active.transform.transform(rb); | 
 |         rt = s.active.transform.transform(rt); | 
 |     } | 
 |  | 
 |     if (!s.finalCrop.isEmpty()) { | 
 |         boundPoint(<, s.finalCrop); | 
 |         boundPoint(&lb, s.finalCrop); | 
 |         boundPoint(&rb, s.finalCrop); | 
 |         boundPoint(&rt, s.finalCrop); | 
 |     } | 
 |  | 
 |     Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); | 
 |     position[0] = tr.transform(lt); | 
 |     position[1] = tr.transform(lb); | 
 |     position[2] = tr.transform(rb); | 
 |     position[3] = tr.transform(rt); | 
 |     for (size_t i=0 ; i<4 ; i++) { | 
 |         position[i].y = hw_h - position[i].y; | 
 |     } | 
 | } | 
 |  | 
 | bool Layer::isOpaque(const Layer::State& s) const | 
 | { | 
 |     // if we don't have a buffer yet, we're translucent regardless of the | 
 |     // layer's opaque flag. | 
 |     if (mActiveBuffer == 0) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // if the layer has the opaque flag, then we're always opaque, | 
 |     // otherwise we use the current buffer's format. | 
 |     return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity; | 
 | } | 
 |  | 
 | bool Layer::isSecure() const | 
 | { | 
 |     const Layer::State& s(mDrawingState); | 
 |     return (s.flags & layer_state_t::eLayerSecure); | 
 | } | 
 |  | 
 | bool Layer::isProtected() const | 
 | { | 
 |     const sp<GraphicBuffer>& activeBuffer(mActiveBuffer); | 
 |     return (activeBuffer != 0) && | 
 |             (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED); | 
 | } | 
 |  | 
 | bool Layer::isFixedSize() const { | 
 |     return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; | 
 | } | 
 |  | 
 | bool Layer::isCropped() const { | 
 |     return !mCurrentCrop.isEmpty(); | 
 | } | 
 |  | 
 | bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const { | 
 |     return mNeedsFiltering || hw->needsFiltering(); | 
 | } | 
 |  | 
 | void Layer::setVisibleRegion(const Region& visibleRegion) { | 
 |     // always called from main thread | 
 |     this->visibleRegion = visibleRegion; | 
 | } | 
 |  | 
 | void Layer::setCoveredRegion(const Region& coveredRegion) { | 
 |     // always called from main thread | 
 |     this->coveredRegion = coveredRegion; | 
 | } | 
 |  | 
 | void Layer::setVisibleNonTransparentRegion(const Region& | 
 |         setVisibleNonTransparentRegion) { | 
 |     // always called from main thread | 
 |     this->visibleNonTransparentRegion = setVisibleNonTransparentRegion; | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // transaction | 
 | // ---------------------------------------------------------------------------- | 
 |  | 
 | void Layer::pushPendingState() { | 
 |     if (!mCurrentState.modified) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // If this transaction is waiting on the receipt of a frame, generate a sync | 
 |     // point and send it to the remote layer. | 
 |     if (mCurrentState.handle != nullptr) { | 
 |         sp<Handle> handle = static_cast<Handle*>(mCurrentState.handle.get()); | 
 |         sp<Layer> handleLayer = handle->owner.promote(); | 
 |         if (handleLayer == nullptr) { | 
 |             ALOGE("[%s] Unable to promote Layer handle", mName.string()); | 
 |             // If we can't promote the layer we are intended to wait on, | 
 |             // then it is expired or otherwise invalid. Allow this transaction | 
 |             // to be applied as per normal (no synchronization). | 
 |             mCurrentState.handle = nullptr; | 
 |         } else { | 
 |             auto syncPoint = std::make_shared<SyncPoint>( | 
 |                     mCurrentState.frameNumber); | 
 |             if (handleLayer->addSyncPoint(syncPoint)) { | 
 |                 mRemoteSyncPoints.push_back(std::move(syncPoint)); | 
 |             } else { | 
 |                 // We already missed the frame we're supposed to synchronize | 
 |                 // on, so go ahead and apply the state update | 
 |                 mCurrentState.handle = nullptr; | 
 |             } | 
 |         } | 
 |  | 
 |         // Wake us up to check if the frame has been received | 
 |         setTransactionFlags(eTransactionNeeded); | 
 |     } | 
 |     mPendingStates.push_back(mCurrentState); | 
 | } | 
 |  | 
 | void Layer::popPendingState(State* stateToCommit) { | 
 |     auto oldFlags = stateToCommit->flags; | 
 |     *stateToCommit = mPendingStates[0]; | 
 |     stateToCommit->flags = (oldFlags & ~stateToCommit->mask) | | 
 |             (stateToCommit->flags & stateToCommit->mask); | 
 |  | 
 |     mPendingStates.removeAt(0); | 
 | } | 
 |  | 
 | bool Layer::applyPendingStates(State* stateToCommit) { | 
 |     bool stateUpdateAvailable = false; | 
 |     while (!mPendingStates.empty()) { | 
 |         if (mPendingStates[0].handle != nullptr) { | 
 |             if (mRemoteSyncPoints.empty()) { | 
 |                 // If we don't have a sync point for this, apply it anyway. It | 
 |                 // will be visually wrong, but it should keep us from getting | 
 |                 // into too much trouble. | 
 |                 ALOGE("[%s] No local sync point found", mName.string()); | 
 |                 popPendingState(stateToCommit); | 
 |                 stateUpdateAvailable = true; | 
 |                 continue; | 
 |             } | 
 |  | 
 |             if (mRemoteSyncPoints.front()->getFrameNumber() != | 
 |                     mPendingStates[0].frameNumber) { | 
 |                 ALOGE("[%s] Unexpected sync point frame number found", | 
 |                         mName.string()); | 
 |  | 
 |                 // Signal our end of the sync point and then dispose of it | 
 |                 mRemoteSyncPoints.front()->setTransactionApplied(); | 
 |                 mRemoteSyncPoints.pop_front(); | 
 |                 continue; | 
 |             } | 
 |  | 
 |             if (mRemoteSyncPoints.front()->frameIsAvailable()) { | 
 |                 // Apply the state update | 
 |                 popPendingState(stateToCommit); | 
 |                 stateUpdateAvailable = true; | 
 |  | 
 |                 // Signal our end of the sync point and then dispose of it | 
 |                 mRemoteSyncPoints.front()->setTransactionApplied(); | 
 |                 mRemoteSyncPoints.pop_front(); | 
 |             } else { | 
 |                 break; | 
 |             } | 
 |         } else { | 
 |             popPendingState(stateToCommit); | 
 |             stateUpdateAvailable = true; | 
 |         } | 
 |     } | 
 |  | 
 |     // If we still have pending updates, wake SurfaceFlinger back up and point | 
 |     // it at this layer so we can process them | 
 |     if (!mPendingStates.empty()) { | 
 |         setTransactionFlags(eTransactionNeeded); | 
 |         mFlinger->setTransactionFlags(eTraversalNeeded); | 
 |     } | 
 |  | 
 |     mCurrentState.modified = false; | 
 |     return stateUpdateAvailable; | 
 | } | 
 |  | 
 | void Layer::notifyAvailableFrames() { | 
 |     auto headFrameNumber = getHeadFrameNumber(); | 
 |     bool headFenceSignaled = headFenceHasSignaled(); | 
 |     Mutex::Autolock lock(mLocalSyncPointMutex); | 
 |     for (auto& point : mLocalSyncPoints) { | 
 |         if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) { | 
 |             point->setFrameAvailable(); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | uint32_t Layer::doTransaction(uint32_t flags) { | 
 |     ATRACE_CALL(); | 
 |  | 
 |     pushPendingState(); | 
 |     Layer::State c = getCurrentState(); | 
 |     if (!applyPendingStates(&c)) { | 
 |         return 0; | 
 |     } | 
 |  | 
 |     const Layer::State& s(getDrawingState()); | 
 |  | 
 |     const bool sizeChanged = (c.requested.w != s.requested.w) || | 
 |                              (c.requested.h != s.requested.h); | 
 |  | 
 |     if (sizeChanged) { | 
 |         // the size changed, we need to ask our client to request a new buffer | 
 |         ALOGD_IF(DEBUG_RESIZE, | 
 |                 "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n" | 
 |                 "  current={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" | 
 |                 "            requested={ wh={%4u,%4u} }}\n" | 
 |                 "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" | 
 |                 "            requested={ wh={%4u,%4u} }}\n", | 
 |                 this, getName().string(), mCurrentTransform, | 
 |                 getEffectiveScalingMode(), | 
 |                 c.active.w, c.active.h, | 
 |                 c.crop.left, | 
 |                 c.crop.top, | 
 |                 c.crop.right, | 
 |                 c.crop.bottom, | 
 |                 c.crop.getWidth(), | 
 |                 c.crop.getHeight(), | 
 |                 c.requested.w, c.requested.h, | 
 |                 s.active.w, s.active.h, | 
 |                 s.crop.left, | 
 |                 s.crop.top, | 
 |                 s.crop.right, | 
 |                 s.crop.bottom, | 
 |                 s.crop.getWidth(), | 
 |                 s.crop.getHeight(), | 
 |                 s.requested.w, s.requested.h); | 
 |  | 
 |         // record the new size, form this point on, when the client request | 
 |         // a buffer, it'll get the new size. | 
 |         mSurfaceFlingerConsumer->setDefaultBufferSize( | 
 |                 c.requested.w, c.requested.h); | 
 |     } | 
 |  | 
 |     const bool resizePending = (c.requested.w != c.active.w) || | 
 |             (c.requested.h != c.active.h); | 
 |     if (!isFixedSize()) { | 
 |         if (resizePending && mSidebandStream == NULL) { | 
 |             // don't let Layer::doTransaction update the drawing state | 
 |             // if we have a pending resize, unless we are in fixed-size mode. | 
 |             // the drawing state will be updated only once we receive a buffer | 
 |             // with the correct size. | 
 |             // | 
 |             // in particular, we want to make sure the clip (which is part | 
 |             // of the geometry state) is latched together with the size but is | 
 |             // latched immediately when no resizing is involved. | 
 |             // | 
 |             // If a sideband stream is attached, however, we want to skip this | 
 |             // optimization so that transactions aren't missed when a buffer | 
 |             // never arrives | 
 |  | 
 |             flags |= eDontUpdateGeometryState; | 
 |         } | 
 |     } | 
 |  | 
 |     // always set active to requested, unless we're asked not to | 
 |     // this is used by Layer, which special cases resizes. | 
 |     if (flags & eDontUpdateGeometryState)  { | 
 |     } else { | 
 |         Layer::State& editCurrentState(getCurrentState()); | 
 |         if (mFreezePositionUpdates) { | 
 |             float tx = c.active.transform.tx(); | 
 |             float ty = c.active.transform.ty(); | 
 |             c.active = c.requested; | 
 |             c.active.transform.set(tx, ty); | 
 |             editCurrentState.active = c.active; | 
 |         } else { | 
 |             editCurrentState.active = editCurrentState.requested; | 
 |             c.active = c.requested; | 
 |         } | 
 |     } | 
 |  | 
 |     if (s.active != c.active) { | 
 |         // invalidate and recompute the visible regions if needed | 
 |         flags |= Layer::eVisibleRegion; | 
 |     } | 
 |  | 
 |     if (c.sequence != s.sequence) { | 
 |         // invalidate and recompute the visible regions if needed | 
 |         flags |= eVisibleRegion; | 
 |         this->contentDirty = true; | 
 |  | 
 |         // we may use linear filtering, if the matrix scales us | 
 |         const uint8_t type = c.active.transform.getType(); | 
 |         mNeedsFiltering = (!c.active.transform.preserveRects() || | 
 |                 (type >= Transform::SCALE)); | 
 |     } | 
 |  | 
 |     // If the layer is hidden, signal and clear out all local sync points so | 
 |     // that transactions for layers depending on this layer's frames becoming | 
 |     // visible are not blocked | 
 |     if (c.flags & layer_state_t::eLayerHidden) { | 
 |         Mutex::Autolock lock(mLocalSyncPointMutex); | 
 |         for (auto& point : mLocalSyncPoints) { | 
 |             point->setFrameAvailable(); | 
 |         } | 
 |         mLocalSyncPoints.clear(); | 
 |     } | 
 |  | 
 |     // Commit the transaction | 
 |     commitTransaction(c); | 
 |     return flags; | 
 | } | 
 |  | 
 | void Layer::commitTransaction(const State& stateToCommit) { | 
 |     mDrawingState = stateToCommit; | 
 | } | 
 |  | 
 | uint32_t Layer::getTransactionFlags(uint32_t flags) { | 
 |     return android_atomic_and(~flags, &mTransactionFlags) & flags; | 
 | } | 
 |  | 
 | uint32_t Layer::setTransactionFlags(uint32_t flags) { | 
 |     return android_atomic_or(flags, &mTransactionFlags); | 
 | } | 
 |  | 
 | bool Layer::setPosition(float x, float y, bool immediate) { | 
 |     if (mCurrentState.requested.transform.tx() == x && mCurrentState.requested.transform.ty() == y) | 
 |         return false; | 
 |     mCurrentState.sequence++; | 
 |  | 
 |     // We update the requested and active position simultaneously because | 
 |     // we want to apply the position portion of the transform matrix immediately, | 
 |     // but still delay scaling when resizing a SCALING_MODE_FREEZE layer. | 
 |     mCurrentState.requested.transform.set(x, y); | 
 |     if (immediate && !mFreezePositionUpdates) { | 
 |         mCurrentState.active.transform.set(x, y); | 
 |     } | 
 |     mFreezePositionUpdates = mFreezePositionUpdates || !immediate; | 
 |  | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 |  | 
 | bool Layer::setLayer(uint32_t z) { | 
 |     if (mCurrentState.z == z) | 
 |         return false; | 
 |     mCurrentState.sequence++; | 
 |     mCurrentState.z = z; | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 | bool Layer::setSize(uint32_t w, uint32_t h) { | 
 |     if (mCurrentState.requested.w == w && mCurrentState.requested.h == h) | 
 |         return false; | 
 |     mCurrentState.requested.w = w; | 
 |     mCurrentState.requested.h = h; | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 | #ifdef USE_HWC2 | 
 | bool Layer::setAlpha(float alpha) { | 
 | #else | 
 | bool Layer::setAlpha(uint8_t alpha) { | 
 | #endif | 
 |     if (mCurrentState.alpha == alpha) | 
 |         return false; | 
 |     mCurrentState.sequence++; | 
 |     mCurrentState.alpha = alpha; | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 | bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) { | 
 |     mCurrentState.sequence++; | 
 |     mCurrentState.requested.transform.set( | 
 |             matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy); | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 | bool Layer::setTransparentRegionHint(const Region& transparent) { | 
 |     mCurrentState.requestedTransparentRegion = transparent; | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 | bool Layer::setFlags(uint8_t flags, uint8_t mask) { | 
 |     const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); | 
 |     if (mCurrentState.flags == newFlags) | 
 |         return false; | 
 |     mCurrentState.sequence++; | 
 |     mCurrentState.flags = newFlags; | 
 |     mCurrentState.mask = mask; | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 |  | 
 | bool Layer::setCrop(const Rect& crop, bool immediate) { | 
 |     if (mCurrentState.crop == crop) | 
 |         return false; | 
 |     mCurrentState.sequence++; | 
 |     mCurrentState.requestedCrop = crop; | 
 |     if (immediate) { | 
 |         mCurrentState.crop = crop; | 
 |     } | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 | bool Layer::setFinalCrop(const Rect& crop) { | 
 |     if (mCurrentState.finalCrop == crop) | 
 |         return false; | 
 |     mCurrentState.sequence++; | 
 |     mCurrentState.finalCrop = crop; | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 |  | 
 | bool Layer::setOverrideScalingMode(int32_t scalingMode) { | 
 |     if (scalingMode == mOverrideScalingMode) | 
 |         return false; | 
 |     mOverrideScalingMode = scalingMode; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 |  | 
 | uint32_t Layer::getEffectiveScalingMode() const { | 
 |     if (mOverrideScalingMode >= 0) { | 
 |       return mOverrideScalingMode; | 
 |     } | 
 |     return mCurrentScalingMode; | 
 | } | 
 |  | 
 | bool Layer::setLayerStack(uint32_t layerStack) { | 
 |     if (mCurrentState.layerStack == layerStack) | 
 |         return false; | 
 |     mCurrentState.sequence++; | 
 |     mCurrentState.layerStack = layerStack; | 
 |     mCurrentState.modified = true; | 
 |     setTransactionFlags(eTransactionNeeded); | 
 |     return true; | 
 | } | 
 |  | 
 | void Layer::deferTransactionUntil(const sp<IBinder>& handle, | 
 |         uint64_t frameNumber) { | 
 |     mCurrentState.handle = handle; | 
 |     mCurrentState.frameNumber = frameNumber; | 
 |     // We don't set eTransactionNeeded, because just receiving a deferral | 
 |     // request without any other state updates shouldn't actually induce a delay | 
 |     mCurrentState.modified = true; | 
 |     pushPendingState(); | 
 |     mCurrentState.handle = nullptr; | 
 |     mCurrentState.frameNumber = 0; | 
 |     mCurrentState.modified = false; | 
 | } | 
 |  | 
 | void Layer::useSurfaceDamage() { | 
 |     if (mFlinger->mForceFullDamage) { | 
 |         surfaceDamageRegion = Region::INVALID_REGION; | 
 |     } else { | 
 |         surfaceDamageRegion = mSurfaceFlingerConsumer->getSurfaceDamage(); | 
 |     } | 
 | } | 
 |  | 
 | void Layer::useEmptyDamage() { | 
 |     surfaceDamageRegion.clear(); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // pageflip handling... | 
 | // ---------------------------------------------------------------------------- | 
 |  | 
 | bool Layer::shouldPresentNow(const DispSync& dispSync) const { | 
 |     if (mSidebandStreamChanged || mAutoRefresh) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     Mutex::Autolock lock(mQueueItemLock); | 
 |     if (mQueueItems.empty()) { | 
 |         return false; | 
 |     } | 
 |     auto timestamp = mQueueItems[0].mTimestamp; | 
 |     nsecs_t expectedPresent = | 
 |             mSurfaceFlingerConsumer->computeExpectedPresent(dispSync); | 
 |  | 
 |     // Ignore timestamps more than a second in the future | 
 |     bool isPlausible = timestamp < (expectedPresent + s2ns(1)); | 
 |     ALOGW_IF(!isPlausible, "[%s] Timestamp %" PRId64 " seems implausible " | 
 |             "relative to expectedPresent %" PRId64, mName.string(), timestamp, | 
 |             expectedPresent); | 
 |  | 
 |     bool isDue = timestamp < expectedPresent; | 
 |     return isDue || !isPlausible; | 
 | } | 
 |  | 
 | bool Layer::onPreComposition() { | 
 |     mRefreshPending = false; | 
 |     return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh; | 
 | } | 
 |  | 
 | bool Layer::onPostComposition() { | 
 |     bool frameLatencyNeeded = mFrameLatencyNeeded; | 
 |     if (mFrameLatencyNeeded) { | 
 |         nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp(); | 
 |         mFrameTracker.setDesiredPresentTime(desiredPresentTime); | 
 |  | 
 |         sp<Fence> frameReadyFence = mSurfaceFlingerConsumer->getCurrentFence(); | 
 |         if (frameReadyFence->isValid()) { | 
 |             mFrameTracker.setFrameReadyFence(frameReadyFence); | 
 |         } else { | 
 |             // There was no fence for this frame, so assume that it was ready | 
 |             // to be presented at the desired present time. | 
 |             mFrameTracker.setFrameReadyTime(desiredPresentTime); | 
 |         } | 
 |  | 
 |         const HWComposer& hwc = mFlinger->getHwComposer(); | 
 | #ifdef USE_HWC2 | 
 |         sp<Fence> presentFence = hwc.getRetireFence(HWC_DISPLAY_PRIMARY); | 
 | #else | 
 |         sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY); | 
 | #endif | 
 |         if (presentFence->isValid()) { | 
 |             mFrameTracker.setActualPresentFence(presentFence); | 
 |         } else { | 
 |             // The HWC doesn't support present fences, so use the refresh | 
 |             // timestamp instead. | 
 |             nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY); | 
 |             mFrameTracker.setActualPresentTime(presentTime); | 
 |         } | 
 |  | 
 |         mFrameTracker.advanceFrame(); | 
 |         mFrameLatencyNeeded = false; | 
 |     } | 
 |     return frameLatencyNeeded; | 
 | } | 
 |  | 
 | #ifdef USE_HWC2 | 
 | void Layer::releasePendingBuffer() { | 
 |     mSurfaceFlingerConsumer->releasePendingBuffer(); | 
 | } | 
 | #endif | 
 |  | 
 | bool Layer::isVisible() const { | 
 |     const Layer::State& s(mDrawingState); | 
 | #ifdef USE_HWC2 | 
 |     return !(s.flags & layer_state_t::eLayerHidden) && s.alpha > 0.0f | 
 |             && (mActiveBuffer != NULL || mSidebandStream != NULL); | 
 | #else | 
 |     return !(s.flags & layer_state_t::eLayerHidden) && s.alpha | 
 |             && (mActiveBuffer != NULL || mSidebandStream != NULL); | 
 | #endif | 
 | } | 
 |  | 
 | Region Layer::latchBuffer(bool& recomputeVisibleRegions) | 
 | { | 
 |     ATRACE_CALL(); | 
 |  | 
 |     if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) { | 
 |         // mSidebandStreamChanged was true | 
 |         mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream(); | 
 |         if (mSidebandStream != NULL) { | 
 |             setTransactionFlags(eTransactionNeeded); | 
 |             mFlinger->setTransactionFlags(eTraversalNeeded); | 
 |         } | 
 |         recomputeVisibleRegions = true; | 
 |  | 
 |         const State& s(getDrawingState()); | 
 |         return s.active.transform.transform(Region(Rect(s.active.w, s.active.h))); | 
 |     } | 
 |  | 
 |     Region outDirtyRegion; | 
 |     if (mQueuedFrames > 0 || mAutoRefresh) { | 
 |  | 
 |         // if we've already called updateTexImage() without going through | 
 |         // a composition step, we have to skip this layer at this point | 
 |         // because we cannot call updateTeximage() without a corresponding | 
 |         // compositionComplete() call. | 
 |         // we'll trigger an update in onPreComposition(). | 
 |         if (mRefreshPending) { | 
 |             return outDirtyRegion; | 
 |         } | 
 |  | 
 |         // If the head buffer's acquire fence hasn't signaled yet, return and | 
 |         // try again later | 
 |         if (!headFenceHasSignaled()) { | 
 |             mFlinger->signalLayerUpdate(); | 
 |             return outDirtyRegion; | 
 |         } | 
 |  | 
 |         // Capture the old state of the layer for comparisons later | 
 |         const State& s(getDrawingState()); | 
 |         const bool oldOpacity = isOpaque(s); | 
 |         sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer; | 
 |  | 
 |         struct Reject : public SurfaceFlingerConsumer::BufferRejecter { | 
 |             Layer::State& front; | 
 |             Layer::State& current; | 
 |             bool& recomputeVisibleRegions; | 
 |             bool stickyTransformSet; | 
 |             const char* name; | 
 |             int32_t overrideScalingMode; | 
 |             bool& freezePositionUpdates; | 
 |  | 
 |             Reject(Layer::State& front, Layer::State& current, | 
 |                     bool& recomputeVisibleRegions, bool stickySet, | 
 |                     const char* name, | 
 |                     int32_t overrideScalingMode, | 
 |                     bool& freezePositionUpdates) | 
 |                 : front(front), current(current), | 
 |                   recomputeVisibleRegions(recomputeVisibleRegions), | 
 |                   stickyTransformSet(stickySet), | 
 |                   name(name), | 
 |                   overrideScalingMode(overrideScalingMode), | 
 |                   freezePositionUpdates(freezePositionUpdates) { | 
 |             } | 
 |  | 
 |             virtual bool reject(const sp<GraphicBuffer>& buf, | 
 |                     const BufferItem& item) { | 
 |                 if (buf == NULL) { | 
 |                     return false; | 
 |                 } | 
 |  | 
 |                 uint32_t bufWidth  = buf->getWidth(); | 
 |                 uint32_t bufHeight = buf->getHeight(); | 
 |  | 
 |                 // check that we received a buffer of the right size | 
 |                 // (Take the buffer's orientation into account) | 
 |                 if (item.mTransform & Transform::ROT_90) { | 
 |                     swap(bufWidth, bufHeight); | 
 |                 } | 
 |  | 
 |                 int actualScalingMode = overrideScalingMode >= 0 ? | 
 |                         overrideScalingMode : item.mScalingMode; | 
 |                 bool isFixedSize = actualScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE; | 
 |                 if (front.active != front.requested) { | 
 |  | 
 |                     if (isFixedSize || | 
 |                             (bufWidth == front.requested.w && | 
 |                              bufHeight == front.requested.h)) | 
 |                     { | 
 |                         // Here we pretend the transaction happened by updating the | 
 |                         // current and drawing states. Drawing state is only accessed | 
 |                         // in this thread, no need to have it locked | 
 |                         front.active = front.requested; | 
 |  | 
 |                         // We also need to update the current state so that | 
 |                         // we don't end-up overwriting the drawing state with | 
 |                         // this stale current state during the next transaction | 
 |                         // | 
 |                         // NOTE: We don't need to hold the transaction lock here | 
 |                         // because State::active is only accessed from this thread. | 
 |                         current.active = front.active; | 
 |                         current.modified = true; | 
 |  | 
 |                         // recompute visible region | 
 |                         recomputeVisibleRegions = true; | 
 |                     } | 
 |  | 
 |                     ALOGD_IF(DEBUG_RESIZE, | 
 |                             "[%s] latchBuffer/reject: buffer (%ux%u, tr=%02x), scalingMode=%d\n" | 
 |                             "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" | 
 |                             "            requested={ wh={%4u,%4u} }}\n", | 
 |                             name, | 
 |                             bufWidth, bufHeight, item.mTransform, item.mScalingMode, | 
 |                             front.active.w, front.active.h, | 
 |                             front.crop.left, | 
 |                             front.crop.top, | 
 |                             front.crop.right, | 
 |                             front.crop.bottom, | 
 |                             front.crop.getWidth(), | 
 |                             front.crop.getHeight(), | 
 |                             front.requested.w, front.requested.h); | 
 |                 } | 
 |  | 
 |                 if (!isFixedSize && !stickyTransformSet) { | 
 |                     if (front.active.w != bufWidth || | 
 |                         front.active.h != bufHeight) { | 
 |                         // reject this buffer | 
 |                         ALOGE("[%s] rejecting buffer: " | 
 |                                 "bufWidth=%d, bufHeight=%d, front.active.{w=%d, h=%d}", | 
 |                                 name, bufWidth, bufHeight, front.active.w, front.active.h); | 
 |                         return true; | 
 |                     } | 
 |                 } | 
 |  | 
 |                 // if the transparent region has changed (this test is | 
 |                 // conservative, but that's fine, worst case we're doing | 
 |                 // a bit of extra work), we latch the new one and we | 
 |                 // trigger a visible-region recompute. | 
 |                 if (!front.activeTransparentRegion.isTriviallyEqual( | 
 |                         front.requestedTransparentRegion)) { | 
 |                     front.activeTransparentRegion = front.requestedTransparentRegion; | 
 |  | 
 |                     // We also need to update the current state so that | 
 |                     // we don't end-up overwriting the drawing state with | 
 |                     // this stale current state during the next transaction | 
 |                     // | 
 |                     // NOTE: We don't need to hold the transaction lock here | 
 |                     // because State::active is only accessed from this thread. | 
 |                     current.activeTransparentRegion = front.activeTransparentRegion; | 
 |  | 
 |                     // recompute visible region | 
 |                     recomputeVisibleRegions = true; | 
 |                 } | 
 |  | 
 |                 if (front.crop != front.requestedCrop) { | 
 |                     front.crop = front.requestedCrop; | 
 |                     current.crop = front.requestedCrop; | 
 |                     recomputeVisibleRegions = true; | 
 |                 } | 
 |                 freezePositionUpdates = false; | 
 |  | 
 |                 return false; | 
 |             } | 
 |         }; | 
 |  | 
 |         Reject r(mDrawingState, getCurrentState(), recomputeVisibleRegions, | 
 |                 getProducerStickyTransform() != 0, mName.string(), | 
 |                 mOverrideScalingMode, mFreezePositionUpdates); | 
 |  | 
 |  | 
 |         // Check all of our local sync points to ensure that all transactions | 
 |         // which need to have been applied prior to the frame which is about to | 
 |         // be latched have signaled | 
 |  | 
 |         auto headFrameNumber = getHeadFrameNumber(); | 
 |         bool matchingFramesFound = false; | 
 |         bool allTransactionsApplied = true; | 
 |         { | 
 |             Mutex::Autolock lock(mLocalSyncPointMutex); | 
 |             for (auto& point : mLocalSyncPoints) { | 
 |                 if (point->getFrameNumber() > headFrameNumber) { | 
 |                     break; | 
 |                 } | 
 |  | 
 |                 matchingFramesFound = true; | 
 |  | 
 |                 if (!point->frameIsAvailable()) { | 
 |                     // We haven't notified the remote layer that the frame for | 
 |                     // this point is available yet. Notify it now, and then | 
 |                     // abort this attempt to latch. | 
 |                     point->setFrameAvailable(); | 
 |                     allTransactionsApplied = false; | 
 |                     break; | 
 |                 } | 
 |  | 
 |                 allTransactionsApplied &= point->transactionIsApplied(); | 
 |             } | 
 |         } | 
 |  | 
 |         if (matchingFramesFound && !allTransactionsApplied) { | 
 |             mFlinger->signalLayerUpdate(); | 
 |             return outDirtyRegion; | 
 |         } | 
 |  | 
 |         // This boolean is used to make sure that SurfaceFlinger's shadow copy | 
 |         // of the buffer queue isn't modified when the buffer queue is returning | 
 |         // BufferItem's that weren't actually queued. This can happen in shared | 
 |         // buffer mode. | 
 |         bool queuedBuffer = false; | 
 |         status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r, | 
 |                 mFlinger->mPrimaryDispSync, &mAutoRefresh, &queuedBuffer, | 
 |                 mLastFrameNumberReceived); | 
 |         if (updateResult == BufferQueue::PRESENT_LATER) { | 
 |             // Producer doesn't want buffer to be displayed yet.  Signal a | 
 |             // layer update so we check again at the next opportunity. | 
 |             mFlinger->signalLayerUpdate(); | 
 |             return outDirtyRegion; | 
 |         } else if (updateResult == SurfaceFlingerConsumer::BUFFER_REJECTED) { | 
 |             // If the buffer has been rejected, remove it from the shadow queue | 
 |             // and return early | 
 |             if (queuedBuffer) { | 
 |                 Mutex::Autolock lock(mQueueItemLock); | 
 |                 mQueueItems.removeAt(0); | 
 |                 android_atomic_dec(&mQueuedFrames); | 
 |             } | 
 |             return outDirtyRegion; | 
 |         } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) { | 
 |             // This can occur if something goes wrong when trying to create the | 
 |             // EGLImage for this buffer. If this happens, the buffer has already | 
 |             // been released, so we need to clean up the queue and bug out | 
 |             // early. | 
 |             if (queuedBuffer) { | 
 |                 Mutex::Autolock lock(mQueueItemLock); | 
 |                 mQueueItems.clear(); | 
 |                 android_atomic_and(0, &mQueuedFrames); | 
 |             } | 
 |  | 
 |             // Once we have hit this state, the shadow queue may no longer | 
 |             // correctly reflect the incoming BufferQueue's contents, so even if | 
 |             // updateTexImage starts working, the only safe course of action is | 
 |             // to continue to ignore updates. | 
 |             mUpdateTexImageFailed = true; | 
 |  | 
 |             return outDirtyRegion; | 
 |         } | 
 |  | 
 |         if (queuedBuffer) { | 
 |             // Autolock scope | 
 |             auto currentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber(); | 
 |  | 
 |             Mutex::Autolock lock(mQueueItemLock); | 
 |  | 
 |             // Remove any stale buffers that have been dropped during | 
 |             // updateTexImage | 
 |             while (mQueueItems[0].mFrameNumber != currentFrameNumber) { | 
 |                 mQueueItems.removeAt(0); | 
 |                 android_atomic_dec(&mQueuedFrames); | 
 |             } | 
 |  | 
 |             mQueueItems.removeAt(0); | 
 |         } | 
 |  | 
 |  | 
 |         // Decrement the queued-frames count.  Signal another event if we | 
 |         // have more frames pending. | 
 |         if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) | 
 |                 || mAutoRefresh) { | 
 |             mFlinger->signalLayerUpdate(); | 
 |         } | 
 |  | 
 |         if (updateResult != NO_ERROR) { | 
 |             // something happened! | 
 |             recomputeVisibleRegions = true; | 
 |             return outDirtyRegion; | 
 |         } | 
 |  | 
 |         // update the active buffer | 
 |         mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer(); | 
 |         if (mActiveBuffer == NULL) { | 
 |             // this can only happen if the very first buffer was rejected. | 
 |             return outDirtyRegion; | 
 |         } | 
 |  | 
 |         mRefreshPending = true; | 
 |         mFrameLatencyNeeded = true; | 
 |         if (oldActiveBuffer == NULL) { | 
 |              // the first time we receive a buffer, we need to trigger a | 
 |              // geometry invalidation. | 
 |             recomputeVisibleRegions = true; | 
 |          } | 
 |  | 
 |         Rect crop(mSurfaceFlingerConsumer->getCurrentCrop()); | 
 |         const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform()); | 
 |         const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode()); | 
 |         if ((crop != mCurrentCrop) || | 
 |             (transform != mCurrentTransform) || | 
 |             (scalingMode != mCurrentScalingMode)) | 
 |         { | 
 |             mCurrentCrop = crop; | 
 |             mCurrentTransform = transform; | 
 |             mCurrentScalingMode = scalingMode; | 
 |             recomputeVisibleRegions = true; | 
 |         } | 
 |  | 
 |         if (oldActiveBuffer != NULL) { | 
 |             uint32_t bufWidth  = mActiveBuffer->getWidth(); | 
 |             uint32_t bufHeight = mActiveBuffer->getHeight(); | 
 |             if (bufWidth != uint32_t(oldActiveBuffer->width) || | 
 |                 bufHeight != uint32_t(oldActiveBuffer->height)) { | 
 |                 recomputeVisibleRegions = true; | 
 |             } | 
 |         } | 
 |  | 
 |         mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format); | 
 |         if (oldOpacity != isOpaque(s)) { | 
 |             recomputeVisibleRegions = true; | 
 |         } | 
 |  | 
 |         mCurrentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber(); | 
 |  | 
 |         // Remove any sync points corresponding to the buffer which was just | 
 |         // latched | 
 |         { | 
 |             Mutex::Autolock lock(mLocalSyncPointMutex); | 
 |             auto point = mLocalSyncPoints.begin(); | 
 |             while (point != mLocalSyncPoints.end()) { | 
 |                 if (!(*point)->frameIsAvailable() || | 
 |                         !(*point)->transactionIsApplied()) { | 
 |                     // This sync point must have been added since we started | 
 |                     // latching. Don't drop it yet. | 
 |                     ++point; | 
 |                     continue; | 
 |                 } | 
 |  | 
 |                 if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { | 
 |                     point = mLocalSyncPoints.erase(point); | 
 |                 } else { | 
 |                     ++point; | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         // FIXME: postedRegion should be dirty & bounds | 
 |         Region dirtyRegion(Rect(s.active.w, s.active.h)); | 
 |  | 
 |         // transform the dirty region to window-manager space | 
 |         outDirtyRegion = (s.active.transform.transform(dirtyRegion)); | 
 |     } | 
 |     return outDirtyRegion; | 
 | } | 
 |  | 
 | uint32_t Layer::getEffectiveUsage(uint32_t usage) const | 
 | { | 
 |     // TODO: should we do something special if mSecure is set? | 
 |     if (mProtectedByApp) { | 
 |         // need a hardware-protected path to external video sink | 
 |         usage |= GraphicBuffer::USAGE_PROTECTED; | 
 |     } | 
 |     if (mPotentialCursor) { | 
 |         usage |= GraphicBuffer::USAGE_CURSOR; | 
 |     } | 
 |     usage |= GraphicBuffer::USAGE_HW_COMPOSER; | 
 |     return usage; | 
 | } | 
 |  | 
 | void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const { | 
 |     uint32_t orientation = 0; | 
 |     if (!mFlinger->mDebugDisableTransformHint) { | 
 |         // The transform hint is used to improve performance, but we can | 
 |         // only have a single transform hint, it cannot | 
 |         // apply to all displays. | 
 |         const Transform& planeTransform(hw->getTransform()); | 
 |         orientation = planeTransform.getOrientation(); | 
 |         if (orientation & Transform::ROT_INVALID) { | 
 |             orientation = 0; | 
 |         } | 
 |     } | 
 |     mSurfaceFlingerConsumer->setTransformHint(orientation); | 
 | } | 
 |  | 
 | // ---------------------------------------------------------------------------- | 
 | // debugging | 
 | // ---------------------------------------------------------------------------- | 
 |  | 
 | void Layer::dump(String8& result, Colorizer& colorizer) const | 
 | { | 
 |     const Layer::State& s(getDrawingState()); | 
 |  | 
 |     colorizer.colorize(result, Colorizer::GREEN); | 
 |     result.appendFormat( | 
 |             "+ %s %p (%s)\n", | 
 |             getTypeId(), this, getName().string()); | 
 |     colorizer.reset(result); | 
 |  | 
 |     s.activeTransparentRegion.dump(result, "transparentRegion"); | 
 |     visibleRegion.dump(result, "visibleRegion"); | 
 |     surfaceDamageRegion.dump(result, "surfaceDamageRegion"); | 
 |     sp<Client> client(mClientRef.promote()); | 
 |  | 
 |     result.appendFormat(            "      " | 
 |             "layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), " | 
 |             "crop=(%4d,%4d,%4d,%4d), finalCrop=(%4d,%4d,%4d,%4d), " | 
 |             "isOpaque=%1d, invalidate=%1d, " | 
 | #ifdef USE_HWC2 | 
 |             "alpha=%.3f, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n" | 
 | #else | 
 |             "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n" | 
 | #endif | 
 |             "      client=%p\n", | 
 |             s.layerStack, s.z, s.active.transform.tx(), s.active.transform.ty(), s.active.w, s.active.h, | 
 |             s.crop.left, s.crop.top, | 
 |             s.crop.right, s.crop.bottom, | 
 |             s.finalCrop.left, s.finalCrop.top, | 
 |             s.finalCrop.right, s.finalCrop.bottom, | 
 |             isOpaque(s), contentDirty, | 
 |             s.alpha, s.flags, | 
 |             s.active.transform[0][0], s.active.transform[0][1], | 
 |             s.active.transform[1][0], s.active.transform[1][1], | 
 |             client.get()); | 
 |  | 
 |     sp<const GraphicBuffer> buf0(mActiveBuffer); | 
 |     uint32_t w0=0, h0=0, s0=0, f0=0; | 
 |     if (buf0 != 0) { | 
 |         w0 = buf0->getWidth(); | 
 |         h0 = buf0->getHeight(); | 
 |         s0 = buf0->getStride(); | 
 |         f0 = buf0->format; | 
 |     } | 
 |     result.appendFormat( | 
 |             "      " | 
 |             "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X]," | 
 |             " queued-frames=%d, mRefreshPending=%d\n", | 
 |             mFormat, w0, h0, s0,f0, | 
 |             mQueuedFrames, mRefreshPending); | 
 |  | 
 |     if (mSurfaceFlingerConsumer != 0) { | 
 |         mSurfaceFlingerConsumer->dump(result, "            "); | 
 |     } | 
 | } | 
 |  | 
 | void Layer::dumpFrameStats(String8& result) const { | 
 |     mFrameTracker.dumpStats(result); | 
 | } | 
 |  | 
 | void Layer::clearFrameStats() { | 
 |     mFrameTracker.clearStats(); | 
 | } | 
 |  | 
 | void Layer::logFrameStats() { | 
 |     mFrameTracker.logAndResetStats(mName); | 
 | } | 
 |  | 
 | void Layer::getFrameStats(FrameStats* outStats) const { | 
 |     mFrameTracker.getStats(outStats); | 
 | } | 
 |  | 
 | void Layer::getFenceData(String8* outName, uint64_t* outFrameNumber, | 
 |         bool* outIsGlesComposition, nsecs_t* outPostedTime, | 
 |         sp<Fence>* outAcquireFence, sp<Fence>* outPrevReleaseFence) const { | 
 |     *outName = mName; | 
 |     *outFrameNumber = mSurfaceFlingerConsumer->getFrameNumber(); | 
 |  | 
 | #ifdef USE_HWC2 | 
 |     *outIsGlesComposition = mHwcLayers.count(HWC_DISPLAY_PRIMARY) ? | 
 |             mHwcLayers.at(HWC_DISPLAY_PRIMARY).compositionType == | 
 |             HWC2::Composition::Client : true; | 
 | #else | 
 |     *outIsGlesComposition = mIsGlesComposition; | 
 | #endif | 
 |     *outPostedTime = mSurfaceFlingerConsumer->getTimestamp(); | 
 |     *outAcquireFence = mSurfaceFlingerConsumer->getCurrentFence(); | 
 |     *outPrevReleaseFence = mSurfaceFlingerConsumer->getPrevReleaseFence(); | 
 | } | 
 |  | 
 | std::vector<OccupancyTracker::Segment> Layer::getOccupancyHistory( | 
 |         bool forceFlush) { | 
 |     std::vector<OccupancyTracker::Segment> history; | 
 |     status_t result = mSurfaceFlingerConsumer->getOccupancyHistory(forceFlush, | 
 |             &history); | 
 |     if (result != NO_ERROR) { | 
 |         ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), | 
 |                 result); | 
 |         return {}; | 
 |     } | 
 |     return history; | 
 | } | 
 |  | 
 | bool Layer::getTransformToDisplayInverse() const { | 
 |     return mSurfaceFlingerConsumer->getTransformToDisplayInverse(); | 
 | } | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 |  | 
 | Layer::LayerCleaner::LayerCleaner(const sp<SurfaceFlinger>& flinger, | 
 |         const sp<Layer>& layer) | 
 |     : mFlinger(flinger), mLayer(layer) { | 
 | } | 
 |  | 
 | Layer::LayerCleaner::~LayerCleaner() { | 
 |     // destroy client resources | 
 |     mFlinger->onLayerDestroyed(mLayer); | 
 | } | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 | }; // namespace android | 
 |  | 
 | #if defined(__gl_h_) | 
 | #error "don't include gl/gl.h in this file" | 
 | #endif | 
 |  | 
 | #if defined(__gl2_h_) | 
 | #error "don't include gl2/gl2.h in this file" | 
 | #endif |