|  | /* | 
|  | * Copyright (C) 2016 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  | #define LOG_TAG "installd" | 
|  |  | 
|  | #include <array> | 
|  | #include <fcntl.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <sys/capability.h> | 
|  | #include <sys/file.h> | 
|  | #include <sys/stat.h> | 
|  | #include <sys/time.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/resource.h> | 
|  | #include <sys/wait.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <iomanip> | 
|  |  | 
|  | #include <android-base/file.h> | 
|  | #include <android-base/logging.h> | 
|  | #include <android-base/properties.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android-base/strings.h> | 
|  | #include <android-base/unique_fd.h> | 
|  | #include <cutils/fs.h> | 
|  | #include <cutils/properties.h> | 
|  | #include <cutils/sched_policy.h> | 
|  | #include <dex2oat_return_codes.h> | 
|  | #include <log/log.h>               // TODO: Move everything to base/logging. | 
|  | #include <openssl/sha.h> | 
|  | #include <private/android_filesystem_config.h> | 
|  | #include <processgroup/sched_policy.h> | 
|  | #include <selinux/android.h> | 
|  | #include <system/thread_defs.h> | 
|  |  | 
|  | #include "dexopt.h" | 
|  | #include "dexopt_return_codes.h" | 
|  | #include "globals.h" | 
|  | #include "installd_deps.h" | 
|  | #include "otapreopt_utils.h" | 
|  | #include "utils.h" | 
|  |  | 
|  | using android::base::EndsWith; | 
|  | using android::base::GetBoolProperty; | 
|  | using android::base::GetProperty; | 
|  | using android::base::ReadFully; | 
|  | using android::base::StringPrintf; | 
|  | using android::base::WriteFully; | 
|  | using android::base::unique_fd; | 
|  |  | 
|  | namespace android { | 
|  | namespace installd { | 
|  |  | 
|  | // Should minidebug info be included in compiled artifacts? Even if this value is | 
|  | // "true," usage might still be conditional to other constraints, e.g., system | 
|  | // property overrides. | 
|  | static constexpr bool kEnableMinidebugInfo = true; | 
|  |  | 
|  | static constexpr const char* kMinidebugInfoSystemProperty = "dalvik.vm.dex2oat-minidebuginfo"; | 
|  | static constexpr bool kMinidebugInfoSystemPropertyDefault = false; | 
|  | static constexpr const char* kMinidebugDex2oatFlag = "--generate-mini-debug-info"; | 
|  | static constexpr const char* kDisableCompactDexFlag = "--compact-dex-level=none"; | 
|  |  | 
|  |  | 
|  | // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. | 
|  | struct FreeDelete { | 
|  | // NOTE: Deleting a const object is valid but free() takes a non-const pointer. | 
|  | void operator()(const void* ptr) const { | 
|  | free(const_cast<void*>(ptr)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Alias for std::unique_ptr<> that uses the C function free() to delete objects. | 
|  | template <typename T> | 
|  | using UniqueCPtr = std::unique_ptr<T, FreeDelete>; | 
|  |  | 
|  | static unique_fd invalid_unique_fd() { | 
|  | return unique_fd(-1); | 
|  | } | 
|  |  | 
|  | static bool is_debug_runtime() { | 
|  | return android::base::GetProperty("persist.sys.dalvik.vm.lib.2", "") == "libartd.so"; | 
|  | } | 
|  |  | 
|  | static bool is_debuggable_build() { | 
|  | return android::base::GetBoolProperty("ro.debuggable", false); | 
|  | } | 
|  |  | 
|  | static bool clear_profile(const std::string& profile) { | 
|  | unique_fd ufd(open(profile.c_str(), O_WRONLY | O_NOFOLLOW | O_CLOEXEC)); | 
|  | if (ufd.get() < 0) { | 
|  | if (errno != ENOENT) { | 
|  | PLOG(WARNING) << "Could not open profile " << profile; | 
|  | return false; | 
|  | } else { | 
|  | // Nothing to clear. That's ok. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flock(ufd.get(), LOCK_EX | LOCK_NB) != 0) { | 
|  | if (errno != EWOULDBLOCK) { | 
|  | PLOG(WARNING) << "Error locking profile " << profile; | 
|  | } | 
|  | // This implies that the app owning this profile is running | 
|  | // (and has acquired the lock). | 
|  | // | 
|  | // If we can't acquire the lock bail out since clearing is useless anyway | 
|  | // (the app will write again to the profile). | 
|  | // | 
|  | // Note: | 
|  | // This does not impact the this is not an issue for the profiling correctness. | 
|  | // In case this is needed because of an app upgrade, profiles will still be | 
|  | // eventually cleared by the app itself due to checksum mismatch. | 
|  | // If this is needed because profman advised, then keeping the data around | 
|  | // until the next run is again not an issue. | 
|  | // | 
|  | // If the app attempts to acquire a lock while we've held one here, | 
|  | // it will simply skip the current write cycle. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool truncated = ftruncate(ufd.get(), 0) == 0; | 
|  | if (!truncated) { | 
|  | PLOG(WARNING) << "Could not truncate " << profile; | 
|  | } | 
|  | if (flock(ufd.get(), LOCK_UN) != 0) { | 
|  | PLOG(WARNING) << "Error unlocking profile " << profile; | 
|  | } | 
|  | return truncated; | 
|  | } | 
|  |  | 
|  | // Clear the reference profile for the given location. | 
|  | // The location is the profile name for primary apks or the dex path for secondary dex files. | 
|  | static bool clear_reference_profile(const std::string& package_name, const std::string& location, | 
|  | bool is_secondary_dex) { | 
|  | return clear_profile(create_reference_profile_path(package_name, location, is_secondary_dex)); | 
|  | } | 
|  |  | 
|  | // Clear the reference profile for the given location. | 
|  | // The location is the profile name for primary apks or the dex path for secondary dex files. | 
|  | static bool clear_current_profile(const std::string& package_name, const std::string& location, | 
|  | userid_t user, bool is_secondary_dex) { | 
|  | return clear_profile(create_current_profile_path(user, package_name, location, | 
|  | is_secondary_dex)); | 
|  | } | 
|  |  | 
|  | // Clear the reference profile for the primary apk of the given package. | 
|  | // The location is the profile name for primary apks or the dex path for secondary dex files. | 
|  | bool clear_primary_reference_profile(const std::string& package_name, | 
|  | const std::string& location) { | 
|  | return clear_reference_profile(package_name, location, /*is_secondary_dex*/false); | 
|  | } | 
|  |  | 
|  | // Clear all current profile for the primary apk of the given package. | 
|  | // The location is the profile name for primary apks or the dex path for secondary dex files. | 
|  | bool clear_primary_current_profiles(const std::string& package_name, const std::string& location) { | 
|  | bool success = true; | 
|  | // For secondary dex files, we don't really need the user but we use it for sanity checks. | 
|  | std::vector<userid_t> users = get_known_users(/*volume_uuid*/ nullptr); | 
|  | for (auto user : users) { | 
|  | success &= clear_current_profile(package_name, location, user, /*is_secondary_dex*/false); | 
|  | } | 
|  | return success; | 
|  | } | 
|  |  | 
|  | // Clear the current profile for the primary apk of the given package and user. | 
|  | bool clear_primary_current_profile(const std::string& package_name, const std::string& location, | 
|  | userid_t user) { | 
|  | return clear_current_profile(package_name, location, user, /*is_secondary_dex*/false); | 
|  | } | 
|  |  | 
|  | static std::vector<std::string> SplitBySpaces(const std::string& str) { | 
|  | if (str.empty()) { | 
|  | return {}; | 
|  | } | 
|  | return android::base::Split(str, " "); | 
|  | } | 
|  |  | 
|  | static const char* get_location_from_path(const char* path) { | 
|  | static constexpr char kLocationSeparator = '/'; | 
|  | const char *location = strrchr(path, kLocationSeparator); | 
|  | if (location == nullptr) { | 
|  | return path; | 
|  | } else { | 
|  | // Skip the separator character. | 
|  | return location + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ExecVHelper prepares and holds pointers to parsed command line arguments so that no allocations | 
|  | // need to be performed between the fork and exec. | 
|  | class ExecVHelper { | 
|  | public: | 
|  | // Store a placeholder for the binary name. | 
|  | ExecVHelper() : args_(1u, std::string()) {} | 
|  |  | 
|  | void PrepareArgs(const std::string& bin) { | 
|  | CHECK(!args_.empty()); | 
|  | CHECK(args_[0].empty()); | 
|  | args_[0] = bin; | 
|  | // Write char* into array. | 
|  | for (const std::string& arg : args_) { | 
|  | argv_.push_back(arg.c_str()); | 
|  | } | 
|  | argv_.push_back(nullptr);  // Add null terminator. | 
|  | } | 
|  |  | 
|  | [[ noreturn ]] | 
|  | void Exec(int exit_code) { | 
|  | execv(argv_[0], (char * const *)&argv_[0]); | 
|  | PLOG(ERROR) << "execv(" << argv_[0] << ") failed"; | 
|  | exit(exit_code); | 
|  | } | 
|  |  | 
|  | // Add an arg if it's not empty. | 
|  | void AddArg(const std::string& arg) { | 
|  | if (!arg.empty()) { | 
|  | args_.push_back(arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add a runtime arg if it's not empty. | 
|  | void AddRuntimeArg(const std::string& arg) { | 
|  | if (!arg.empty()) { | 
|  | args_.push_back("--runtime-arg"); | 
|  | args_.push_back(arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | protected: | 
|  | // Holder arrays for backing arg storage. | 
|  | std::vector<std::string> args_; | 
|  |  | 
|  | // Argument poiners. | 
|  | std::vector<const char*> argv_; | 
|  | }; | 
|  |  | 
|  | static std::string MapPropertyToArg(const std::string& property, | 
|  | const std::string& format, | 
|  | const std::string& default_value = "") { | 
|  | std::string prop = GetProperty(property, default_value); | 
|  | if (!prop.empty()) { | 
|  | return StringPrintf(format.c_str(), prop.c_str()); | 
|  | } | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | class RunDex2Oat : public ExecVHelper { | 
|  | public: | 
|  | RunDex2Oat(int zip_fd, | 
|  | int oat_fd, | 
|  | int input_vdex_fd, | 
|  | int output_vdex_fd, | 
|  | int image_fd, | 
|  | const char* input_file_name, | 
|  | const char* output_file_name, | 
|  | int swap_fd, | 
|  | const char* instruction_set, | 
|  | const char* compiler_filter, | 
|  | bool debuggable, | 
|  | bool post_bootcomplete, | 
|  | bool background_job_compile, | 
|  | int profile_fd, | 
|  | const char* class_loader_context, | 
|  | int target_sdk_version, | 
|  | bool enable_hidden_api_checks, | 
|  | bool generate_compact_dex, | 
|  | int dex_metadata_fd, | 
|  | const char* compilation_reason) { | 
|  | // Get the relative path to the input file. | 
|  | const char* relative_input_file_name = get_location_from_path(input_file_name); | 
|  |  | 
|  | std::string dex2oat_Xms_arg = MapPropertyToArg("dalvik.vm.dex2oat-Xms", "-Xms%s"); | 
|  | std::string dex2oat_Xmx_arg = MapPropertyToArg("dalvik.vm.dex2oat-Xmx", "-Xmx%s"); | 
|  |  | 
|  | const char* threads_property = post_bootcomplete | 
|  | ? "dalvik.vm.dex2oat-threads" | 
|  | : "dalvik.vm.boot-dex2oat-threads"; | 
|  | std::string dex2oat_threads_arg = MapPropertyToArg(threads_property, "-j%s"); | 
|  |  | 
|  | const std::string dex2oat_isa_features_key = | 
|  | StringPrintf("dalvik.vm.isa.%s.features", instruction_set); | 
|  | std::string instruction_set_features_arg = | 
|  | MapPropertyToArg(dex2oat_isa_features_key, "--instruction-set-features=%s"); | 
|  |  | 
|  | const std::string dex2oat_isa_variant_key = | 
|  | StringPrintf("dalvik.vm.isa.%s.variant", instruction_set); | 
|  | std::string instruction_set_variant_arg = | 
|  | MapPropertyToArg(dex2oat_isa_variant_key, "--instruction-set-variant=%s"); | 
|  |  | 
|  | const char* dex2oat_norelocation = "-Xnorelocate"; | 
|  |  | 
|  | const std::string dex2oat_flags = GetProperty("dalvik.vm.dex2oat-flags", ""); | 
|  | std::vector<std::string> dex2oat_flags_args = SplitBySpaces(dex2oat_flags); | 
|  | ALOGV("dalvik.vm.dex2oat-flags=%s\n", dex2oat_flags.c_str()); | 
|  |  | 
|  | // If we are booting without the real /data, don't spend time compiling. | 
|  | std::string vold_decrypt = GetProperty("vold.decrypt", ""); | 
|  | bool skip_compilation = vold_decrypt == "trigger_restart_min_framework" || | 
|  | vold_decrypt == "1"; | 
|  |  | 
|  | std::string resolve_startup_string_arg = | 
|  | MapPropertyToArg("persist.device_config.runtime.dex2oat_resolve_startup_strings", | 
|  | "--resolve-startup-const-strings=%s"); | 
|  | if (resolve_startup_string_arg.empty()) { | 
|  | // If empty, fall back to system property. | 
|  | resolve_startup_string_arg = | 
|  | MapPropertyToArg("dalvik.vm.dex2oat-resolve-startup-strings", | 
|  | "--resolve-startup-const-strings=%s"); | 
|  | } | 
|  |  | 
|  | const std::string image_block_size_arg = | 
|  | MapPropertyToArg("dalvik.vm.dex2oat-max-image-block-size", | 
|  | "--max-image-block-size=%s"); | 
|  |  | 
|  | const bool generate_debug_info = GetBoolProperty("debug.generate-debug-info", false); | 
|  |  | 
|  | std::string image_format_arg; | 
|  | if (image_fd >= 0) { | 
|  | image_format_arg = MapPropertyToArg("dalvik.vm.appimageformat", "--image-format=%s"); | 
|  | } | 
|  |  | 
|  | std::string dex2oat_large_app_threshold_arg = | 
|  | MapPropertyToArg("dalvik.vm.dex2oat-very-large", "--very-large-app-threshold=%s"); | 
|  |  | 
|  | // If the runtime was requested to use libartd.so, we'll run dex2oatd, otherwise dex2oat. | 
|  | const char* dex2oat_bin = kDex2oatPath; | 
|  | // Do not use dex2oatd for release candidates (give dex2oat more soak time). | 
|  | bool is_release = android::base::GetProperty("ro.build.version.codename", "") == "REL"; | 
|  | if (is_debug_runtime() || | 
|  | (background_job_compile && is_debuggable_build() && !is_release)) { | 
|  | if (access(kDex2oatDebugPath, X_OK) == 0) { | 
|  | dex2oat_bin = kDex2oatDebugPath; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool generate_minidebug_info = kEnableMinidebugInfo && | 
|  | GetBoolProperty(kMinidebugInfoSystemProperty, kMinidebugInfoSystemPropertyDefault); | 
|  |  | 
|  | // clang FORTIFY doesn't let us use strlen in constant array bounds, so we | 
|  | // use arraysize instead. | 
|  | std::string zip_fd_arg = StringPrintf("--zip-fd=%d", zip_fd); | 
|  | std::string zip_location_arg = StringPrintf("--zip-location=%s", relative_input_file_name); | 
|  | std::string input_vdex_fd_arg = StringPrintf("--input-vdex-fd=%d", input_vdex_fd); | 
|  | std::string output_vdex_fd_arg = StringPrintf("--output-vdex-fd=%d", output_vdex_fd); | 
|  | std::string oat_fd_arg = StringPrintf("--oat-fd=%d", oat_fd); | 
|  | std::string oat_location_arg = StringPrintf("--oat-location=%s", output_file_name); | 
|  | std::string instruction_set_arg = StringPrintf("--instruction-set=%s", instruction_set); | 
|  | std::string dex2oat_compiler_filter_arg; | 
|  | std::string dex2oat_swap_fd; | 
|  | std::string dex2oat_image_fd; | 
|  | std::string target_sdk_version_arg; | 
|  | if (target_sdk_version != 0) { | 
|  | StringPrintf("-Xtarget-sdk-version:%d", target_sdk_version); | 
|  | } | 
|  | std::string class_loader_context_arg; | 
|  | if (class_loader_context != nullptr) { | 
|  | class_loader_context_arg = StringPrintf("--class-loader-context=%s", | 
|  | class_loader_context); | 
|  | } | 
|  |  | 
|  | if (swap_fd >= 0) { | 
|  | dex2oat_swap_fd = StringPrintf("--swap-fd=%d", swap_fd); | 
|  | } | 
|  | if (image_fd >= 0) { | 
|  | dex2oat_image_fd = StringPrintf("--app-image-fd=%d", image_fd); | 
|  | } | 
|  |  | 
|  | // Compute compiler filter. | 
|  | bool have_dex2oat_relocation_skip_flag = false; | 
|  | if (skip_compilation) { | 
|  | dex2oat_compiler_filter_arg = "--compiler-filter=extract"; | 
|  | have_dex2oat_relocation_skip_flag = true; | 
|  | } else if (compiler_filter != nullptr) { | 
|  | dex2oat_compiler_filter_arg = StringPrintf("--compiler-filter=%s", compiler_filter); | 
|  | } | 
|  |  | 
|  | if (dex2oat_compiler_filter_arg.empty()) { | 
|  | dex2oat_compiler_filter_arg = MapPropertyToArg("dalvik.vm.dex2oat-filter", | 
|  | "--compiler-filter=%s"); | 
|  | } | 
|  |  | 
|  | // Check whether all apps should be compiled debuggable. | 
|  | if (!debuggable) { | 
|  | debuggable = GetProperty("dalvik.vm.always_debuggable", "") == "1"; | 
|  | } | 
|  | std::string profile_arg; | 
|  | if (profile_fd != -1) { | 
|  | profile_arg = StringPrintf("--profile-file-fd=%d", profile_fd); | 
|  | } | 
|  |  | 
|  | // Get the directory of the apk to pass as a base classpath directory. | 
|  | std::string base_dir; | 
|  | std::string apk_dir(input_file_name); | 
|  | unsigned long dir_index = apk_dir.rfind('/'); | 
|  | bool has_base_dir = dir_index != std::string::npos; | 
|  | if (has_base_dir) { | 
|  | apk_dir = apk_dir.substr(0, dir_index); | 
|  | base_dir = StringPrintf("--classpath-dir=%s", apk_dir.c_str()); | 
|  | } | 
|  |  | 
|  | std::string dex_metadata_fd_arg = "--dm-fd=" + std::to_string(dex_metadata_fd); | 
|  |  | 
|  | std::string compilation_reason_arg = compilation_reason == nullptr | 
|  | ? "" | 
|  | : std::string("--compilation-reason=") + compilation_reason; | 
|  |  | 
|  | ALOGV("Running %s in=%s out=%s\n", dex2oat_bin, relative_input_file_name, output_file_name); | 
|  |  | 
|  | // Disable cdex if update input vdex is true since this combination of options is not | 
|  | // supported. | 
|  | const bool disable_cdex = !generate_compact_dex || (input_vdex_fd == output_vdex_fd); | 
|  |  | 
|  | AddArg(zip_fd_arg); | 
|  | AddArg(zip_location_arg); | 
|  | AddArg(input_vdex_fd_arg); | 
|  | AddArg(output_vdex_fd_arg); | 
|  | AddArg(oat_fd_arg); | 
|  | AddArg(oat_location_arg); | 
|  | AddArg(instruction_set_arg); | 
|  |  | 
|  | AddArg(instruction_set_variant_arg); | 
|  | AddArg(instruction_set_features_arg); | 
|  |  | 
|  | AddRuntimeArg(dex2oat_Xms_arg); | 
|  | AddRuntimeArg(dex2oat_Xmx_arg); | 
|  |  | 
|  | AddArg(resolve_startup_string_arg); | 
|  | AddArg(image_block_size_arg); | 
|  | AddArg(dex2oat_compiler_filter_arg); | 
|  | AddArg(dex2oat_threads_arg); | 
|  | AddArg(dex2oat_swap_fd); | 
|  | AddArg(dex2oat_image_fd); | 
|  |  | 
|  | if (generate_debug_info) { | 
|  | AddArg("--generate-debug-info"); | 
|  | } | 
|  | if (debuggable) { | 
|  | AddArg("--debuggable"); | 
|  | } | 
|  | AddArg(image_format_arg); | 
|  | AddArg(dex2oat_large_app_threshold_arg); | 
|  |  | 
|  | if (have_dex2oat_relocation_skip_flag) { | 
|  | AddRuntimeArg(dex2oat_norelocation); | 
|  | } | 
|  | AddArg(profile_arg); | 
|  | AddArg(base_dir); | 
|  | AddArg(class_loader_context_arg); | 
|  | if (generate_minidebug_info) { | 
|  | AddArg(kMinidebugDex2oatFlag); | 
|  | } | 
|  | if (disable_cdex) { | 
|  | AddArg(kDisableCompactDexFlag); | 
|  | } | 
|  | AddArg(target_sdk_version_arg); | 
|  | if (enable_hidden_api_checks) { | 
|  | AddRuntimeArg("-Xhidden-api-checks"); | 
|  | } | 
|  |  | 
|  | if (dex_metadata_fd > -1) { | 
|  | AddArg(dex_metadata_fd_arg); | 
|  | } | 
|  |  | 
|  | AddArg(compilation_reason_arg); | 
|  |  | 
|  | // Do not add args after dex2oat_flags, they should override others for debugging. | 
|  | args_.insert(args_.end(), dex2oat_flags_args.begin(), dex2oat_flags_args.end()); | 
|  |  | 
|  | PrepareArgs(dex2oat_bin); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Whether dexopt should use a swap file when compiling an APK. | 
|  | * | 
|  | * If kAlwaysProvideSwapFile, do this on all devices (dex2oat will make a more informed decision | 
|  | * itself, anyways). | 
|  | * | 
|  | * Otherwise, read "dalvik.vm.dex2oat-swap". If the property exists, return whether it is "true". | 
|  | * | 
|  | * Otherwise, return true if this is a low-mem device. | 
|  | * | 
|  | * Otherwise, return default value. | 
|  | */ | 
|  | static bool kAlwaysProvideSwapFile = false; | 
|  | static bool kDefaultProvideSwapFile = true; | 
|  |  | 
|  | static bool ShouldUseSwapFileForDexopt() { | 
|  | if (kAlwaysProvideSwapFile) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check the "override" property. If it exists, return value == "true". | 
|  | std::string dex2oat_prop_buf = GetProperty("dalvik.vm.dex2oat-swap", ""); | 
|  | if (!dex2oat_prop_buf.empty()) { | 
|  | return dex2oat_prop_buf == "true"; | 
|  | } | 
|  |  | 
|  | // Shortcut for default value. This is an implementation optimization for the process sketched | 
|  | // above. If the default value is true, we can avoid to check whether this is a low-mem device, | 
|  | // as low-mem is never returning false. The compiler will optimize this away if it can. | 
|  | if (kDefaultProvideSwapFile) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (GetBoolProperty("ro.config.low_ram", false)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Default value must be false here. | 
|  | return kDefaultProvideSwapFile; | 
|  | } | 
|  |  | 
|  | static void SetDex2OatScheduling(bool set_to_bg) { | 
|  | if (set_to_bg) { | 
|  | if (set_sched_policy(0, SP_BACKGROUND) < 0) { | 
|  | PLOG(ERROR) << "set_sched_policy failed"; | 
|  | exit(DexoptReturnCodes::kSetSchedPolicy); | 
|  | } | 
|  | if (setpriority(PRIO_PROCESS, 0, ANDROID_PRIORITY_BACKGROUND) < 0) { | 
|  | PLOG(ERROR) << "setpriority failed"; | 
|  | exit(DexoptReturnCodes::kSetPriority); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static unique_fd create_profile(uid_t uid, const std::string& profile, int32_t flags) { | 
|  | unique_fd fd(TEMP_FAILURE_RETRY(open(profile.c_str(), flags, 0600))); | 
|  | if (fd.get() < 0) { | 
|  | if (errno != EEXIST) { | 
|  | PLOG(ERROR) << "Failed to create profile " << profile; | 
|  | return invalid_unique_fd(); | 
|  | } | 
|  | } | 
|  | // Profiles should belong to the app; make sure of that by giving ownership to | 
|  | // the app uid. If we cannot do that, there's no point in returning the fd | 
|  | // since dex2oat/profman will fail with SElinux denials. | 
|  | if (fchown(fd.get(), uid, uid) < 0) { | 
|  | PLOG(ERROR) << "Could not chwon profile " << profile; | 
|  | return invalid_unique_fd(); | 
|  | } | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static unique_fd open_profile(uid_t uid, const std::string& profile, int32_t flags) { | 
|  | // Do not follow symlinks when opening a profile: | 
|  | //   - primary profiles should not contain symlinks in their paths | 
|  | //   - secondary dex paths should have been already resolved and validated | 
|  | flags |= O_NOFOLLOW; | 
|  |  | 
|  | // Check if we need to create the profile | 
|  | // Reference profiles and snapshots are created on the fly; so they might not exist beforehand. | 
|  | unique_fd fd; | 
|  | if ((flags & O_CREAT) != 0) { | 
|  | fd = create_profile(uid, profile, flags); | 
|  | } else { | 
|  | fd.reset(TEMP_FAILURE_RETRY(open(profile.c_str(), flags))); | 
|  | } | 
|  |  | 
|  | if (fd.get() < 0) { | 
|  | if (errno != ENOENT) { | 
|  | // Profiles might be missing for various reasons. For example, in a | 
|  | // multi-user environment, the profile directory for one user can be created | 
|  | // after we start a merge. In this case the current profile for that user | 
|  | // will not be found. | 
|  | // Also, the secondary dex profiles might be deleted by the app at any time, | 
|  | // so we can't we need to prepare if they are missing. | 
|  | PLOG(ERROR) << "Failed to open profile " << profile; | 
|  | } | 
|  | return invalid_unique_fd(); | 
|  | } | 
|  |  | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static unique_fd open_current_profile(uid_t uid, userid_t user, const std::string& package_name, | 
|  | const std::string& location, bool is_secondary_dex) { | 
|  | std::string profile = create_current_profile_path(user, package_name, location, | 
|  | is_secondary_dex); | 
|  | return open_profile(uid, profile, O_RDONLY); | 
|  | } | 
|  |  | 
|  | static unique_fd open_reference_profile(uid_t uid, const std::string& package_name, | 
|  | const std::string& location, bool read_write, bool is_secondary_dex) { | 
|  | std::string profile = create_reference_profile_path(package_name, location, is_secondary_dex); | 
|  | return open_profile(uid, profile, read_write ? (O_CREAT | O_RDWR) : O_RDONLY); | 
|  | } | 
|  |  | 
|  | static unique_fd open_spnashot_profile(uid_t uid, const std::string& package_name, | 
|  | const std::string& location) { | 
|  | std::string profile = create_snapshot_profile_path(package_name, location); | 
|  | return open_profile(uid, profile, O_CREAT | O_RDWR | O_TRUNC); | 
|  | } | 
|  |  | 
|  | static void open_profile_files(uid_t uid, const std::string& package_name, | 
|  | const std::string& location, bool is_secondary_dex, | 
|  | /*out*/ std::vector<unique_fd>* profiles_fd, /*out*/ unique_fd* reference_profile_fd) { | 
|  | // Open the reference profile in read-write mode as profman might need to save the merge. | 
|  | *reference_profile_fd = open_reference_profile(uid, package_name, location, | 
|  | /*read_write*/ true, is_secondary_dex); | 
|  |  | 
|  | // For secondary dex files, we don't really need the user but we use it for sanity checks. | 
|  | // Note: the user owning the dex file should be the current user. | 
|  | std::vector<userid_t> users; | 
|  | if (is_secondary_dex){ | 
|  | users.push_back(multiuser_get_user_id(uid)); | 
|  | } else { | 
|  | users = get_known_users(/*volume_uuid*/ nullptr); | 
|  | } | 
|  | for (auto user : users) { | 
|  | unique_fd profile_fd = open_current_profile(uid, user, package_name, location, | 
|  | is_secondary_dex); | 
|  | // Add to the lists only if both fds are valid. | 
|  | if (profile_fd.get() >= 0) { | 
|  | profiles_fd->push_back(std::move(profile_fd)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static constexpr int PROFMAN_BIN_RETURN_CODE_COMPILE = 0; | 
|  | static constexpr int PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION = 1; | 
|  | static constexpr int PROFMAN_BIN_RETURN_CODE_BAD_PROFILES = 2; | 
|  | static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_IO = 3; | 
|  | static constexpr int PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING = 4; | 
|  |  | 
|  | class RunProfman : public ExecVHelper { | 
|  | public: | 
|  | void SetupArgs(const std::vector<unique_fd>& profile_fds, | 
|  | const unique_fd& reference_profile_fd, | 
|  | const std::vector<unique_fd>& apk_fds, | 
|  | const std::vector<std::string>& dex_locations, | 
|  | bool copy_and_update, | 
|  | bool store_aggregation_counters) { | 
|  | const char* profman_bin = is_debug_runtime() ? kProfmanDebugPath: kProfmanPath; | 
|  |  | 
|  | if (copy_and_update) { | 
|  | CHECK_EQ(1u, profile_fds.size()); | 
|  | CHECK_EQ(1u, apk_fds.size()); | 
|  | } | 
|  | if (reference_profile_fd != -1) { | 
|  | AddArg("--reference-profile-file-fd=" + std::to_string(reference_profile_fd.get())); | 
|  | } | 
|  |  | 
|  | for (const unique_fd& fd : profile_fds) { | 
|  | AddArg("--profile-file-fd=" + std::to_string(fd.get())); | 
|  | } | 
|  |  | 
|  | for (const unique_fd& fd : apk_fds) { | 
|  | AddArg("--apk-fd=" + std::to_string(fd.get())); | 
|  | } | 
|  |  | 
|  | for (const std::string& dex_location : dex_locations) { | 
|  | AddArg("--dex-location=" + dex_location); | 
|  | } | 
|  |  | 
|  | if (copy_and_update) { | 
|  | AddArg("--copy-and-update-profile-key"); | 
|  | } | 
|  |  | 
|  | if (store_aggregation_counters) { | 
|  | AddArg("--store-aggregation-counters"); | 
|  | } | 
|  |  | 
|  | // Do not add after dex2oat_flags, they should override others for debugging. | 
|  | PrepareArgs(profman_bin); | 
|  | } | 
|  |  | 
|  | void SetupMerge(const std::vector<unique_fd>& profiles_fd, | 
|  | const unique_fd& reference_profile_fd, | 
|  | const std::vector<unique_fd>& apk_fds = std::vector<unique_fd>(), | 
|  | const std::vector<std::string>& dex_locations = std::vector<std::string>(), | 
|  | bool store_aggregation_counters = false) { | 
|  | SetupArgs(profiles_fd, | 
|  | reference_profile_fd, | 
|  | apk_fds, | 
|  | dex_locations, | 
|  | /*copy_and_update=*/false, | 
|  | store_aggregation_counters); | 
|  | } | 
|  |  | 
|  | void SetupCopyAndUpdate(unique_fd&& profile_fd, | 
|  | unique_fd&& reference_profile_fd, | 
|  | unique_fd&& apk_fd, | 
|  | const std::string& dex_location) { | 
|  | // The fds need to stay open longer than the scope of the function, so put them into a local | 
|  | // variable vector. | 
|  | profiles_fd_.push_back(std::move(profile_fd)); | 
|  | apk_fds_.push_back(std::move(apk_fd)); | 
|  | reference_profile_fd_ = std::move(reference_profile_fd); | 
|  | std::vector<std::string> dex_locations = {dex_location}; | 
|  | SetupArgs(profiles_fd_, | 
|  | reference_profile_fd_, | 
|  | apk_fds_, | 
|  | dex_locations, | 
|  | /*copy_and_update=*/true, | 
|  | /*store_aggregation_counters=*/false); | 
|  | } | 
|  |  | 
|  | void SetupDump(const std::vector<unique_fd>& profiles_fd, | 
|  | const unique_fd& reference_profile_fd, | 
|  | const std::vector<std::string>& dex_locations, | 
|  | const std::vector<unique_fd>& apk_fds, | 
|  | const unique_fd& output_fd) { | 
|  | AddArg("--dump-only"); | 
|  | AddArg(StringPrintf("--dump-output-to-fd=%d", output_fd.get())); | 
|  | SetupArgs(profiles_fd, | 
|  | reference_profile_fd, | 
|  | apk_fds, | 
|  | dex_locations, | 
|  | /*copy_and_update=*/false, | 
|  | /*store_aggregation_counters=*/false); | 
|  | } | 
|  |  | 
|  | void Exec() { | 
|  | ExecVHelper::Exec(DexoptReturnCodes::kProfmanExec); | 
|  | } | 
|  |  | 
|  | private: | 
|  | unique_fd reference_profile_fd_; | 
|  | std::vector<unique_fd> profiles_fd_; | 
|  | std::vector<unique_fd> apk_fds_; | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | // Decides if profile guided compilation is needed or not based on existing profiles. | 
|  | // The location is the package name for primary apks or the dex path for secondary dex files. | 
|  | // Returns true if there is enough information in the current profiles that makes it | 
|  | // worth to recompile the given location. | 
|  | // If the return value is true all the current profiles would have been merged into | 
|  | // the reference profiles accessible with open_reference_profile(). | 
|  | static bool analyze_profiles(uid_t uid, const std::string& package_name, | 
|  | const std::string& location, bool is_secondary_dex) { | 
|  | std::vector<unique_fd> profiles_fd; | 
|  | unique_fd reference_profile_fd; | 
|  | open_profile_files(uid, package_name, location, is_secondary_dex, | 
|  | &profiles_fd, &reference_profile_fd); | 
|  | if (profiles_fd.empty() || (reference_profile_fd.get() < 0)) { | 
|  | // Skip profile guided compilation because no profiles were found. | 
|  | // Or if the reference profile info couldn't be opened. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RunProfman profman_merge; | 
|  | profman_merge.SetupMerge(profiles_fd, reference_profile_fd); | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | /* child -- drop privileges before continuing */ | 
|  | drop_capabilities(uid); | 
|  | profman_merge.Exec(); | 
|  | } | 
|  | /* parent */ | 
|  | int return_code = wait_child(pid); | 
|  | bool need_to_compile = false; | 
|  | bool should_clear_current_profiles = false; | 
|  | bool should_clear_reference_profile = false; | 
|  | if (!WIFEXITED(return_code)) { | 
|  | LOG(WARNING) << "profman failed for location " << location << ": " << return_code; | 
|  | } else { | 
|  | return_code = WEXITSTATUS(return_code); | 
|  | switch (return_code) { | 
|  | case PROFMAN_BIN_RETURN_CODE_COMPILE: | 
|  | need_to_compile = true; | 
|  | should_clear_current_profiles = true; | 
|  | should_clear_reference_profile = false; | 
|  | break; | 
|  | case PROFMAN_BIN_RETURN_CODE_SKIP_COMPILATION: | 
|  | need_to_compile = false; | 
|  | should_clear_current_profiles = false; | 
|  | should_clear_reference_profile = false; | 
|  | break; | 
|  | case PROFMAN_BIN_RETURN_CODE_BAD_PROFILES: | 
|  | LOG(WARNING) << "Bad profiles for location " << location; | 
|  | need_to_compile = false; | 
|  | should_clear_current_profiles = true; | 
|  | should_clear_reference_profile = true; | 
|  | break; | 
|  | case PROFMAN_BIN_RETURN_CODE_ERROR_IO:  // fall-through | 
|  | case PROFMAN_BIN_RETURN_CODE_ERROR_LOCKING: | 
|  | // Temporary IO problem (e.g. locking). Ignore but log a warning. | 
|  | LOG(WARNING) << "IO error while reading profiles for location " << location; | 
|  | need_to_compile = false; | 
|  | should_clear_current_profiles = false; | 
|  | should_clear_reference_profile = false; | 
|  | break; | 
|  | default: | 
|  | // Unknown return code or error. Unlink profiles. | 
|  | LOG(WARNING) << "Unknown error code while processing profiles for location " | 
|  | << location << ": " << return_code; | 
|  | need_to_compile = false; | 
|  | should_clear_current_profiles = true; | 
|  | should_clear_reference_profile = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (should_clear_current_profiles) { | 
|  | if (is_secondary_dex) { | 
|  | // For secondary dex files, the owning user is the current user. | 
|  | clear_current_profile(package_name, location, multiuser_get_user_id(uid), | 
|  | is_secondary_dex); | 
|  | } else  { | 
|  | clear_primary_current_profiles(package_name, location); | 
|  | } | 
|  | } | 
|  | if (should_clear_reference_profile) { | 
|  | clear_reference_profile(package_name, location, is_secondary_dex); | 
|  | } | 
|  | return need_to_compile; | 
|  | } | 
|  |  | 
|  | // Decides if profile guided compilation is needed or not based on existing profiles. | 
|  | // The analysis is done for the primary apks of the given package. | 
|  | // Returns true if there is enough information in the current profiles that makes it | 
|  | // worth to recompile the package. | 
|  | // If the return value is true all the current profiles would have been merged into | 
|  | // the reference profiles accessible with open_reference_profile(). | 
|  | bool analyze_primary_profiles(uid_t uid, const std::string& package_name, | 
|  | const std::string& profile_name) { | 
|  | return analyze_profiles(uid, package_name, profile_name, /*is_secondary_dex*/false); | 
|  | } | 
|  |  | 
|  | bool dump_profiles(int32_t uid, const std::string& pkgname, const std::string& profile_name, | 
|  | const std::string& code_path) { | 
|  | std::vector<unique_fd> profile_fds; | 
|  | unique_fd reference_profile_fd; | 
|  | std::string out_file_name = StringPrintf("/data/misc/profman/%s-%s.txt", | 
|  | pkgname.c_str(), profile_name.c_str()); | 
|  |  | 
|  | open_profile_files(uid, pkgname, profile_name, /*is_secondary_dex*/false, | 
|  | &profile_fds, &reference_profile_fd); | 
|  |  | 
|  | const bool has_reference_profile = (reference_profile_fd.get() != -1); | 
|  | const bool has_profiles = !profile_fds.empty(); | 
|  |  | 
|  | if (!has_reference_profile && !has_profiles) { | 
|  | LOG(ERROR)  << "profman dump: no profiles to dump for " << pkgname; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unique_fd output_fd(open(out_file_name.c_str(), | 
|  | O_WRONLY | O_CREAT | O_TRUNC | O_NOFOLLOW, 0644)); | 
|  | if (fchmod(output_fd, S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) < 0) { | 
|  | LOG(ERROR) << "installd cannot chmod file for dump_profile" << out_file_name; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::vector<std::string> dex_locations; | 
|  | std::vector<unique_fd> apk_fds; | 
|  | unique_fd apk_fd(open(code_path.c_str(), O_RDONLY | O_NOFOLLOW)); | 
|  | if (apk_fd == -1) { | 
|  | PLOG(ERROR) << "installd cannot open " << code_path.c_str(); | 
|  | return false; | 
|  | } | 
|  | dex_locations.push_back(get_location_from_path(code_path.c_str())); | 
|  | apk_fds.push_back(std::move(apk_fd)); | 
|  |  | 
|  |  | 
|  | RunProfman profman_dump; | 
|  | profman_dump.SetupDump(profile_fds, reference_profile_fd, dex_locations, apk_fds, output_fd); | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | /* child -- drop privileges before continuing */ | 
|  | drop_capabilities(uid); | 
|  | profman_dump.Exec(); | 
|  | } | 
|  | /* parent */ | 
|  | int return_code = wait_child(pid); | 
|  | if (!WIFEXITED(return_code)) { | 
|  | LOG(WARNING) << "profman failed for package " << pkgname << ": " | 
|  | << return_code; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool copy_system_profile(const std::string& system_profile, | 
|  | uid_t packageUid, const std::string& package_name, const std::string& profile_name) { | 
|  | unique_fd in_fd(open(system_profile.c_str(), O_RDONLY | O_NOFOLLOW | O_CLOEXEC)); | 
|  | unique_fd out_fd(open_reference_profile(packageUid, | 
|  | package_name, | 
|  | profile_name, | 
|  | /*read_write*/ true, | 
|  | /*secondary*/ false)); | 
|  | if (in_fd.get() < 0) { | 
|  | PLOG(WARNING) << "Could not open profile " << system_profile; | 
|  | return false; | 
|  | } | 
|  | if (out_fd.get() < 0) { | 
|  | PLOG(WARNING) << "Could not open profile " << package_name; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // As a security measure we want to write the profile information with the reduced capabilities | 
|  | // of the package user id. So we fork and drop capabilities in the child. | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | /* child -- drop privileges before continuing */ | 
|  | drop_capabilities(packageUid); | 
|  |  | 
|  | if (flock(out_fd.get(), LOCK_EX | LOCK_NB) != 0) { | 
|  | if (errno != EWOULDBLOCK) { | 
|  | PLOG(WARNING) << "Error locking profile " << package_name; | 
|  | } | 
|  | // This implies that the app owning this profile is running | 
|  | // (and has acquired the lock). | 
|  | // | 
|  | // The app never acquires the lock for the reference profiles of primary apks. | 
|  | // Only dex2oat from installd will do that. Since installd is single threaded | 
|  | // we should not see this case. Nevertheless be prepared for it. | 
|  | PLOG(WARNING) << "Failed to flock " << package_name; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool truncated = ftruncate(out_fd.get(), 0) == 0; | 
|  | if (!truncated) { | 
|  | PLOG(WARNING) << "Could not truncate " << package_name; | 
|  | } | 
|  |  | 
|  | // Copy over data. | 
|  | static constexpr size_t kBufferSize = 4 * 1024; | 
|  | char buffer[kBufferSize]; | 
|  | while (true) { | 
|  | ssize_t bytes = read(in_fd.get(), buffer, kBufferSize); | 
|  | if (bytes == 0) { | 
|  | break; | 
|  | } | 
|  | write(out_fd.get(), buffer, bytes); | 
|  | } | 
|  | if (flock(out_fd.get(), LOCK_UN) != 0) { | 
|  | PLOG(WARNING) << "Error unlocking profile " << package_name; | 
|  | } | 
|  | // Use _exit since we don't want to run the global destructors in the child. | 
|  | // b/62597429 | 
|  | _exit(0); | 
|  | } | 
|  | /* parent */ | 
|  | int return_code = wait_child(pid); | 
|  | return return_code == 0; | 
|  | } | 
|  |  | 
|  | static std::string replace_file_extension(const std::string& oat_path, const std::string& new_ext) { | 
|  | // A standard dalvik-cache entry. Replace ".dex" with `new_ext`. | 
|  | if (EndsWith(oat_path, ".dex")) { | 
|  | std::string new_path = oat_path; | 
|  | new_path.replace(new_path.length() - strlen(".dex"), strlen(".dex"), new_ext); | 
|  | CHECK(EndsWith(new_path, new_ext)); | 
|  | return new_path; | 
|  | } | 
|  |  | 
|  | // An odex entry. Not that this may not be an extension, e.g., in the OTA | 
|  | // case (where the base name will have an extension for the B artifact). | 
|  | size_t odex_pos = oat_path.rfind(".odex"); | 
|  | if (odex_pos != std::string::npos) { | 
|  | std::string new_path = oat_path; | 
|  | new_path.replace(odex_pos, strlen(".odex"), new_ext); | 
|  | CHECK_NE(new_path.find(new_ext), std::string::npos); | 
|  | return new_path; | 
|  | } | 
|  |  | 
|  | // Don't know how to handle this. | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | // Translate the given oat path to an art (app image) path. An empty string | 
|  | // denotes an error. | 
|  | static std::string create_image_filename(const std::string& oat_path) { | 
|  | return replace_file_extension(oat_path, ".art"); | 
|  | } | 
|  |  | 
|  | // Translate the given oat path to a vdex path. An empty string denotes an error. | 
|  | static std::string create_vdex_filename(const std::string& oat_path) { | 
|  | return replace_file_extension(oat_path, ".vdex"); | 
|  | } | 
|  |  | 
|  | static int open_output_file(const char* file_name, bool recreate, int permissions) { | 
|  | int flags = O_RDWR | O_CREAT; | 
|  | if (recreate) { | 
|  | if (unlink(file_name) < 0) { | 
|  | if (errno != ENOENT) { | 
|  | PLOG(ERROR) << "open_output_file: Couldn't unlink " << file_name; | 
|  | } | 
|  | } | 
|  | flags |= O_EXCL; | 
|  | } | 
|  | return open(file_name, flags, permissions); | 
|  | } | 
|  |  | 
|  | static bool set_permissions_and_ownership( | 
|  | int fd, bool is_public, int uid, const char* path, bool is_secondary_dex) { | 
|  | // Primary apks are owned by the system. Secondary dex files are owned by the app. | 
|  | int owning_uid = is_secondary_dex ? uid : AID_SYSTEM; | 
|  | if (fchmod(fd, | 
|  | S_IRUSR|S_IWUSR|S_IRGRP | | 
|  | (is_public ? S_IROTH : 0)) < 0) { | 
|  | ALOGE("installd cannot chmod '%s' during dexopt\n", path); | 
|  | return false; | 
|  | } else if (fchown(fd, owning_uid, uid) < 0) { | 
|  | ALOGE("installd cannot chown '%s' during dexopt\n", path); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool IsOutputDalvikCache(const char* oat_dir) { | 
|  | // InstallerConnection.java (which invokes installd) transforms Java null arguments | 
|  | // into '!'. Play it safe by handling it both. | 
|  | // TODO: ensure we never get null. | 
|  | // TODO: pass a flag instead of inferring if the output is dalvik cache. | 
|  | return oat_dir == nullptr || oat_dir[0] == '!'; | 
|  | } | 
|  |  | 
|  | // Best-effort check whether we can fit the the path into our buffers. | 
|  | // Note: the cache path will require an additional 5 bytes for ".swap", but we'll try to run | 
|  | // without a swap file, if necessary. Reference profiles file also add an extra ".prof" | 
|  | // extension to the cache path (5 bytes). | 
|  | // TODO(calin): move away from char* buffers and PKG_PATH_MAX. | 
|  | static bool validate_dex_path_size(const std::string& dex_path) { | 
|  | if (dex_path.size() >= (PKG_PATH_MAX - 8)) { | 
|  | LOG(ERROR) << "dex_path too long: " << dex_path; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool create_oat_out_path(const char* apk_path, const char* instruction_set, | 
|  | const char* oat_dir, bool is_secondary_dex, /*out*/ char* out_oat_path) { | 
|  | if (!validate_dex_path_size(apk_path)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IsOutputDalvikCache(oat_dir)) { | 
|  | // Oat dirs for secondary dex files are already validated. | 
|  | if (!is_secondary_dex && validate_apk_path(oat_dir)) { | 
|  | ALOGE("cannot validate apk path with oat_dir '%s'\n", oat_dir); | 
|  | return false; | 
|  | } | 
|  | if (!calculate_oat_file_path(out_oat_path, oat_dir, apk_path, instruction_set)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!create_cache_path(out_oat_path, apk_path, instruction_set)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Helper for fd management. This is similar to a unique_fd in that it closes the file descriptor | 
|  | // on destruction. It will also run the given cleanup (unless told not to) after closing. | 
|  | // | 
|  | // Usage example: | 
|  | // | 
|  | //   Dex2oatFileWrapper file(open(...), | 
|  | //                                                   [name]() { | 
|  | //                                                       unlink(name.c_str()); | 
|  | //                                                   }); | 
|  | //   // Note: care needs to be taken about name, as it needs to have a lifetime longer than the | 
|  | //            wrapper if captured as a reference. | 
|  | // | 
|  | //   if (file.get() == -1) { | 
|  | //       // Error opening... | 
|  | //   } | 
|  | // | 
|  | //   ... | 
|  | //   if (error) { | 
|  | //       // At this point, when the Dex2oatFileWrapper is destructed, the cleanup function will run | 
|  | //       // and delete the file (after the fd is closed). | 
|  | //       return -1; | 
|  | //   } | 
|  | // | 
|  | //   (Success case) | 
|  | //   file.SetCleanup(false); | 
|  | //   // At this point, when the Dex2oatFileWrapper is destructed, the cleanup function will not run | 
|  | //   // (leaving the file around; after the fd is closed). | 
|  | // | 
|  | class Dex2oatFileWrapper { | 
|  | public: | 
|  | Dex2oatFileWrapper() : value_(-1), cleanup_(), do_cleanup_(true), auto_close_(true) { | 
|  | } | 
|  |  | 
|  | Dex2oatFileWrapper(int value, std::function<void ()> cleanup) | 
|  | : value_(value), cleanup_(cleanup), do_cleanup_(true), auto_close_(true) {} | 
|  |  | 
|  | Dex2oatFileWrapper(Dex2oatFileWrapper&& other) { | 
|  | value_ = other.value_; | 
|  | cleanup_ = other.cleanup_; | 
|  | do_cleanup_ = other.do_cleanup_; | 
|  | auto_close_ = other.auto_close_; | 
|  | other.release(); | 
|  | } | 
|  |  | 
|  | Dex2oatFileWrapper& operator=(Dex2oatFileWrapper&& other) { | 
|  | value_ = other.value_; | 
|  | cleanup_ = other.cleanup_; | 
|  | do_cleanup_ = other.do_cleanup_; | 
|  | auto_close_ = other.auto_close_; | 
|  | other.release(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | ~Dex2oatFileWrapper() { | 
|  | reset(-1); | 
|  | } | 
|  |  | 
|  | int get() { | 
|  | return value_; | 
|  | } | 
|  |  | 
|  | void SetCleanup(bool cleanup) { | 
|  | do_cleanup_ = cleanup; | 
|  | } | 
|  |  | 
|  | void reset(int new_value) { | 
|  | if (auto_close_ && value_ >= 0) { | 
|  | close(value_); | 
|  | } | 
|  | if (do_cleanup_ && cleanup_ != nullptr) { | 
|  | cleanup_(); | 
|  | } | 
|  |  | 
|  | value_ = new_value; | 
|  | } | 
|  |  | 
|  | void reset(int new_value, std::function<void ()> new_cleanup) { | 
|  | if (auto_close_ && value_ >= 0) { | 
|  | close(value_); | 
|  | } | 
|  | if (do_cleanup_ && cleanup_ != nullptr) { | 
|  | cleanup_(); | 
|  | } | 
|  |  | 
|  | value_ = new_value; | 
|  | cleanup_ = new_cleanup; | 
|  | } | 
|  |  | 
|  | void DisableAutoClose() { | 
|  | auto_close_ = false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void release() { | 
|  | value_ = -1; | 
|  | do_cleanup_ = false; | 
|  | cleanup_ = nullptr; | 
|  | } | 
|  | int value_; | 
|  | std::function<void ()> cleanup_; | 
|  | bool do_cleanup_; | 
|  | bool auto_close_; | 
|  | }; | 
|  |  | 
|  | // (re)Creates the app image if needed. | 
|  | Dex2oatFileWrapper maybe_open_app_image(const char* out_oat_path, | 
|  | bool generate_app_image, bool is_public, int uid, bool is_secondary_dex) { | 
|  |  | 
|  | // We don't create an image for secondary dex files. | 
|  | if (is_secondary_dex) { | 
|  | return Dex2oatFileWrapper(); | 
|  | } | 
|  |  | 
|  | const std::string image_path = create_image_filename(out_oat_path); | 
|  | if (image_path.empty()) { | 
|  | // Happens when the out_oat_path has an unknown extension. | 
|  | return Dex2oatFileWrapper(); | 
|  | } | 
|  |  | 
|  | // In case there is a stale image, remove it now. Ignore any error. | 
|  | unlink(image_path.c_str()); | 
|  |  | 
|  | // Not enabled, exit. | 
|  | if (!generate_app_image) { | 
|  | return Dex2oatFileWrapper(); | 
|  | } | 
|  | std::string app_image_format = GetProperty("dalvik.vm.appimageformat", ""); | 
|  | if (app_image_format.empty()) { | 
|  | return Dex2oatFileWrapper(); | 
|  | } | 
|  | // Recreate is true since we do not want to modify a mapped image. If the app is | 
|  | // already running and we modify the image file, it can cause crashes (b/27493510). | 
|  | Dex2oatFileWrapper wrapper_fd( | 
|  | open_output_file(image_path.c_str(), true /*recreate*/, 0600 /*permissions*/), | 
|  | [image_path]() { unlink(image_path.c_str()); }); | 
|  | if (wrapper_fd.get() < 0) { | 
|  | // Could not create application image file. Go on since we can compile without it. | 
|  | LOG(ERROR) << "installd could not create '" << image_path | 
|  | << "' for image file during dexopt"; | 
|  | // If we have a valid image file path but no image fd, explicitly erase the image file. | 
|  | if (unlink(image_path.c_str()) < 0) { | 
|  | if (errno != ENOENT) { | 
|  | PLOG(ERROR) << "Couldn't unlink image file " << image_path; | 
|  | } | 
|  | } | 
|  | } else if (!set_permissions_and_ownership( | 
|  | wrapper_fd.get(), is_public, uid, image_path.c_str(), is_secondary_dex)) { | 
|  | ALOGE("installd cannot set owner '%s' for image during dexopt\n", image_path.c_str()); | 
|  | wrapper_fd.reset(-1); | 
|  | } | 
|  |  | 
|  | return wrapper_fd; | 
|  | } | 
|  |  | 
|  | // Creates the dexopt swap file if necessary and return its fd. | 
|  | // Returns -1 if there's no need for a swap or in case of errors. | 
|  | unique_fd maybe_open_dexopt_swap_file(const char* out_oat_path) { | 
|  | if (!ShouldUseSwapFileForDexopt()) { | 
|  | return invalid_unique_fd(); | 
|  | } | 
|  | auto swap_file_name = std::string(out_oat_path) + ".swap"; | 
|  | unique_fd swap_fd(open_output_file( | 
|  | swap_file_name.c_str(), /*recreate*/true, /*permissions*/0600)); | 
|  | if (swap_fd.get() < 0) { | 
|  | // Could not create swap file. Optimistically go on and hope that we can compile | 
|  | // without it. | 
|  | ALOGE("installd could not create '%s' for swap during dexopt\n", swap_file_name.c_str()); | 
|  | } else { | 
|  | // Immediately unlink. We don't really want to hit flash. | 
|  | if (unlink(swap_file_name.c_str()) < 0) { | 
|  | PLOG(ERROR) << "Couldn't unlink swap file " << swap_file_name; | 
|  | } | 
|  | } | 
|  | return swap_fd; | 
|  | } | 
|  |  | 
|  | // Opens the reference profiles if needed. | 
|  | // Note that the reference profile might not exist so it's OK if the fd will be -1. | 
|  | Dex2oatFileWrapper maybe_open_reference_profile(const std::string& pkgname, | 
|  | const std::string& dex_path, const char* profile_name, bool profile_guided, | 
|  | bool is_public, int uid, bool is_secondary_dex) { | 
|  | // If we are not profile guided compilation, or we are compiling system server | 
|  | // do not bother to open the profiles; we won't be using them. | 
|  | if (!profile_guided || (pkgname[0] == '*')) { | 
|  | return Dex2oatFileWrapper(); | 
|  | } | 
|  |  | 
|  | // If this is a secondary dex path which is public do not open the profile. | 
|  | // We cannot compile public secondary dex paths with profiles. That's because | 
|  | // it will expose how the dex files are used by their owner. | 
|  | // | 
|  | // Note that the PackageManager is responsible to set the is_public flag for | 
|  | // primary apks and we do not check it here. In some cases, e.g. when | 
|  | // compiling with a public profile from the .dm file the PackageManager will | 
|  | // set is_public toghether with the profile guided compilation. | 
|  | if (is_secondary_dex && is_public) { | 
|  | return Dex2oatFileWrapper(); | 
|  | } | 
|  |  | 
|  | // Open reference profile in read only mode as dex2oat does not get write permissions. | 
|  | std::string location; | 
|  | if (is_secondary_dex) { | 
|  | location = dex_path; | 
|  | } else { | 
|  | if (profile_name == nullptr) { | 
|  | // This path is taken for system server re-compilation lunched from ZygoteInit. | 
|  | return Dex2oatFileWrapper(); | 
|  | } else { | 
|  | location = profile_name; | 
|  | } | 
|  | } | 
|  | unique_fd ufd = open_reference_profile(uid, pkgname, location, /*read_write*/false, | 
|  | is_secondary_dex); | 
|  | const auto& cleanup = [pkgname, location, is_secondary_dex]() { | 
|  | clear_reference_profile(pkgname, location, is_secondary_dex); | 
|  | }; | 
|  | return Dex2oatFileWrapper(ufd.release(), cleanup); | 
|  | } | 
|  |  | 
|  | // Opens the vdex files and assigns the input fd to in_vdex_wrapper_fd and the output fd to | 
|  | // out_vdex_wrapper_fd. Returns true for success or false in case of errors. | 
|  | bool open_vdex_files_for_dex2oat(const char* apk_path, const char* out_oat_path, int dexopt_needed, | 
|  | const char* instruction_set, bool is_public, int uid, bool is_secondary_dex, | 
|  | bool profile_guided, Dex2oatFileWrapper* in_vdex_wrapper_fd, | 
|  | Dex2oatFileWrapper* out_vdex_wrapper_fd) { | 
|  | CHECK(in_vdex_wrapper_fd != nullptr); | 
|  | CHECK(out_vdex_wrapper_fd != nullptr); | 
|  | // Open the existing VDEX. We do this before creating the new output VDEX, which will | 
|  | // unlink the old one. | 
|  | char in_odex_path[PKG_PATH_MAX]; | 
|  | int dexopt_action = abs(dexopt_needed); | 
|  | bool is_odex_location = dexopt_needed < 0; | 
|  | std::string in_vdex_path_str; | 
|  |  | 
|  | // Infer the name of the output VDEX. | 
|  | const std::string out_vdex_path_str = create_vdex_filename(out_oat_path); | 
|  | if (out_vdex_path_str.empty()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool update_vdex_in_place = false; | 
|  | if (dexopt_action != DEX2OAT_FROM_SCRATCH) { | 
|  | // Open the possibly existing vdex. If none exist, we pass -1 to dex2oat for input-vdex-fd. | 
|  | const char* path = nullptr; | 
|  | if (is_odex_location) { | 
|  | if (calculate_odex_file_path(in_odex_path, apk_path, instruction_set)) { | 
|  | path = in_odex_path; | 
|  | } else { | 
|  | ALOGE("installd cannot compute input vdex location for '%s'\n", apk_path); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | path = out_oat_path; | 
|  | } | 
|  | in_vdex_path_str = create_vdex_filename(path); | 
|  | if (in_vdex_path_str.empty()) { | 
|  | ALOGE("installd cannot compute input vdex location for '%s'\n", path); | 
|  | return false; | 
|  | } | 
|  | // We can update in place when all these conditions are met: | 
|  | // 1) The vdex location to write to is the same as the vdex location to read (vdex files | 
|  | //    on /system typically cannot be updated in place). | 
|  | // 2) We dex2oat due to boot image change, because we then know the existing vdex file | 
|  | //    cannot be currently used by a running process. | 
|  | // 3) We are not doing a profile guided compilation, because dexlayout requires two | 
|  | //    different vdex files to operate. | 
|  | update_vdex_in_place = | 
|  | (in_vdex_path_str == out_vdex_path_str) && | 
|  | (dexopt_action == DEX2OAT_FOR_BOOT_IMAGE) && | 
|  | !profile_guided; | 
|  | if (update_vdex_in_place) { | 
|  | // Open the file read-write to be able to update it. | 
|  | in_vdex_wrapper_fd->reset(open(in_vdex_path_str.c_str(), O_RDWR, 0)); | 
|  | if (in_vdex_wrapper_fd->get() == -1) { | 
|  | // If we failed to open the file, we cannot update it in place. | 
|  | update_vdex_in_place = false; | 
|  | } | 
|  | } else { | 
|  | in_vdex_wrapper_fd->reset(open(in_vdex_path_str.c_str(), O_RDONLY, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are updating the vdex in place, we do not need to recreate a vdex, | 
|  | // and can use the same existing one. | 
|  | if (update_vdex_in_place) { | 
|  | // We unlink the file in case the invocation of dex2oat fails, to ensure we don't | 
|  | // have bogus stale vdex files. | 
|  | out_vdex_wrapper_fd->reset( | 
|  | in_vdex_wrapper_fd->get(), | 
|  | [out_vdex_path_str]() { unlink(out_vdex_path_str.c_str()); }); | 
|  | // Disable auto close for the in wrapper fd (it will be done when destructing the out | 
|  | // wrapper). | 
|  | in_vdex_wrapper_fd->DisableAutoClose(); | 
|  | } else { | 
|  | out_vdex_wrapper_fd->reset( | 
|  | open_output_file(out_vdex_path_str.c_str(), /*recreate*/true, /*permissions*/0644), | 
|  | [out_vdex_path_str]() { unlink(out_vdex_path_str.c_str()); }); | 
|  | if (out_vdex_wrapper_fd->get() < 0) { | 
|  | ALOGE("installd cannot open vdex'%s' during dexopt\n", out_vdex_path_str.c_str()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!set_permissions_and_ownership(out_vdex_wrapper_fd->get(), is_public, uid, | 
|  | out_vdex_path_str.c_str(), is_secondary_dex)) { | 
|  | ALOGE("installd cannot set owner '%s' for vdex during dexopt\n", out_vdex_path_str.c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we got here we successfully opened the vdex files. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Opens the output oat file for the given apk. | 
|  | // If successful it stores the output path into out_oat_path and returns true. | 
|  | Dex2oatFileWrapper open_oat_out_file(const char* apk_path, const char* oat_dir, | 
|  | bool is_public, int uid, const char* instruction_set, bool is_secondary_dex, | 
|  | char* out_oat_path) { | 
|  | if (!create_oat_out_path(apk_path, instruction_set, oat_dir, is_secondary_dex, out_oat_path)) { | 
|  | return Dex2oatFileWrapper(); | 
|  | } | 
|  | const std::string out_oat_path_str(out_oat_path); | 
|  | Dex2oatFileWrapper wrapper_fd( | 
|  | open_output_file(out_oat_path, /*recreate*/true, /*permissions*/0644), | 
|  | [out_oat_path_str]() { unlink(out_oat_path_str.c_str()); }); | 
|  | if (wrapper_fd.get() < 0) { | 
|  | PLOG(ERROR) << "installd cannot open output during dexopt" <<  out_oat_path; | 
|  | } else if (!set_permissions_and_ownership( | 
|  | wrapper_fd.get(), is_public, uid, out_oat_path, is_secondary_dex)) { | 
|  | ALOGE("installd cannot set owner '%s' for output during dexopt\n", out_oat_path); | 
|  | wrapper_fd.reset(-1); | 
|  | } | 
|  | return wrapper_fd; | 
|  | } | 
|  |  | 
|  | // Creates RDONLY fds for oat and vdex files, if exist. | 
|  | // Returns false if it fails to create oat out path for the given apk path. | 
|  | // Note that the method returns true even if the files could not be opened. | 
|  | bool maybe_open_oat_and_vdex_file(const std::string& apk_path, | 
|  | const std::string& oat_dir, | 
|  | const std::string& instruction_set, | 
|  | bool is_secondary_dex, | 
|  | unique_fd* oat_file_fd, | 
|  | unique_fd* vdex_file_fd) { | 
|  | char oat_path[PKG_PATH_MAX]; | 
|  | if (!create_oat_out_path(apk_path.c_str(), | 
|  | instruction_set.c_str(), | 
|  | oat_dir.c_str(), | 
|  | is_secondary_dex, | 
|  | oat_path)) { | 
|  | LOG(ERROR) << "Could not create oat out path for " | 
|  | << apk_path << " with oat dir " << oat_dir; | 
|  | return false; | 
|  | } | 
|  | oat_file_fd->reset(open(oat_path, O_RDONLY)); | 
|  | if (oat_file_fd->get() < 0) { | 
|  | PLOG(INFO) << "installd cannot open oat file during dexopt" <<  oat_path; | 
|  | } | 
|  |  | 
|  | std::string vdex_filename = create_vdex_filename(oat_path); | 
|  | vdex_file_fd->reset(open(vdex_filename.c_str(), O_RDONLY)); | 
|  | if (vdex_file_fd->get() < 0) { | 
|  | PLOG(INFO) << "installd cannot open vdex file during dexopt" <<  vdex_filename; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Updates the access times of out_oat_path based on those from apk_path. | 
|  | void update_out_oat_access_times(const char* apk_path, const char* out_oat_path) { | 
|  | struct stat input_stat; | 
|  | memset(&input_stat, 0, sizeof(input_stat)); | 
|  | if (stat(apk_path, &input_stat) != 0) { | 
|  | PLOG(ERROR) << "Could not stat " << apk_path << " during dexopt"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | struct utimbuf ut; | 
|  | ut.actime = input_stat.st_atime; | 
|  | ut.modtime = input_stat.st_mtime; | 
|  | if (utime(out_oat_path, &ut) != 0) { | 
|  | PLOG(WARNING) << "Could not update access times for " << apk_path << " during dexopt"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Runs (execv) dexoptanalyzer on the given arguments. | 
|  | // The analyzer will check if the dex_file needs to be (re)compiled to match the compiler_filter. | 
|  | // If this is for a profile guided compilation, profile_was_updated will tell whether or not | 
|  | // the profile has changed. | 
|  | class RunDexoptAnalyzer : public ExecVHelper { | 
|  | public: | 
|  | RunDexoptAnalyzer(const std::string& dex_file, | 
|  | int vdex_fd, | 
|  | int oat_fd, | 
|  | int zip_fd, | 
|  | const std::string& instruction_set, | 
|  | const std::string& compiler_filter, | 
|  | bool profile_was_updated, | 
|  | bool downgrade, | 
|  | const char* class_loader_context) { | 
|  | CHECK_GE(zip_fd, 0); | 
|  | const char* dexoptanalyzer_bin = | 
|  | is_debug_runtime() ? kDexoptanalyzerDebugPath : kDexoptanalyzerPath; | 
|  |  | 
|  | std::string dex_file_arg = "--dex-file=" + dex_file; | 
|  | std::string oat_fd_arg = "--oat-fd=" + std::to_string(oat_fd); | 
|  | std::string vdex_fd_arg = "--vdex-fd=" + std::to_string(vdex_fd); | 
|  | std::string zip_fd_arg = "--zip-fd=" + std::to_string(zip_fd); | 
|  | std::string isa_arg = "--isa=" + instruction_set; | 
|  | std::string compiler_filter_arg = "--compiler-filter=" + compiler_filter; | 
|  | const char* assume_profile_changed = "--assume-profile-changed"; | 
|  | const char* downgrade_flag = "--downgrade"; | 
|  | std::string class_loader_context_arg = "--class-loader-context="; | 
|  | if (class_loader_context != nullptr) { | 
|  | class_loader_context_arg += class_loader_context; | 
|  | } | 
|  |  | 
|  | // program name, dex file, isa, filter | 
|  | AddArg(dex_file_arg); | 
|  | AddArg(isa_arg); | 
|  | AddArg(compiler_filter_arg); | 
|  | if (oat_fd >= 0) { | 
|  | AddArg(oat_fd_arg); | 
|  | } | 
|  | if (vdex_fd >= 0) { | 
|  | AddArg(vdex_fd_arg); | 
|  | } | 
|  | AddArg(zip_fd_arg.c_str()); | 
|  | if (profile_was_updated) { | 
|  | AddArg(assume_profile_changed); | 
|  | } | 
|  | if (downgrade) { | 
|  | AddArg(downgrade_flag); | 
|  | } | 
|  | if (class_loader_context != nullptr) { | 
|  | AddArg(class_loader_context_arg.c_str()); | 
|  | } | 
|  |  | 
|  | PrepareArgs(dexoptanalyzer_bin); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Prepares the oat dir for the secondary dex files. | 
|  | static bool prepare_secondary_dex_oat_dir(const std::string& dex_path, int uid, | 
|  | const char* instruction_set) { | 
|  | unsigned long dirIndex = dex_path.rfind('/'); | 
|  | if (dirIndex == std::string::npos) { | 
|  | LOG(ERROR ) << "Unexpected dir structure for secondary dex " << dex_path; | 
|  | return false; | 
|  | } | 
|  | std::string dex_dir = dex_path.substr(0, dirIndex); | 
|  |  | 
|  | // Create oat file output directory. | 
|  | mode_t oat_dir_mode = S_IRWXU | S_IRWXG | S_IXOTH; | 
|  | if (prepare_app_cache_dir(dex_dir, "oat", oat_dir_mode, uid, uid) != 0) { | 
|  | LOG(ERROR) << "Could not prepare oat dir for secondary dex: " << dex_path; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | char oat_dir[PKG_PATH_MAX]; | 
|  | snprintf(oat_dir, PKG_PATH_MAX, "%s/oat", dex_dir.c_str()); | 
|  |  | 
|  | if (prepare_app_cache_dir(oat_dir, instruction_set, oat_dir_mode, uid, uid) != 0) { | 
|  | LOG(ERROR) << "Could not prepare oat/isa dir for secondary dex: " << dex_path; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return codes for identifying the reason why dexoptanalyzer was not invoked when processing | 
|  | // secondary dex files. This return codes are returned by the child process created for | 
|  | // analyzing secondary dex files in process_secondary_dex_dexopt. | 
|  |  | 
|  | enum DexoptAnalyzerSkipCodes { | 
|  | // The dexoptanalyzer was not invoked because of validation or IO errors. | 
|  | // Specific errors are encoded in the name. | 
|  | kSecondaryDexDexoptAnalyzerSkippedValidatePath = 200, | 
|  | kSecondaryDexDexoptAnalyzerSkippedOpenZip = 201, | 
|  | kSecondaryDexDexoptAnalyzerSkippedPrepareDir = 202, | 
|  | kSecondaryDexDexoptAnalyzerSkippedOpenOutput = 203, | 
|  | kSecondaryDexDexoptAnalyzerSkippedFailExec = 204, | 
|  | // The dexoptanalyzer was not invoked because the dex file does not exist anymore. | 
|  | kSecondaryDexDexoptAnalyzerSkippedNoFile = 205, | 
|  | }; | 
|  |  | 
|  | // Verifies the result of analyzing secondary dex files from process_secondary_dex_dexopt. | 
|  | // If the result is valid returns true and sets dexopt_needed_out to a valid value. | 
|  | // Returns false for errors or unexpected result values. | 
|  | // The result is expected to be either one of SECONDARY_DEX_* codes or a valid exit code | 
|  | // of dexoptanalyzer. | 
|  | static bool process_secondary_dexoptanalyzer_result(const std::string& dex_path, int result, | 
|  | int* dexopt_needed_out, std::string* error_msg) { | 
|  | // The result values are defined in dexoptanalyzer. | 
|  | switch (result) { | 
|  | case 0:  // dexoptanalyzer: no_dexopt_needed | 
|  | *dexopt_needed_out = NO_DEXOPT_NEEDED; return true; | 
|  | case 1:  // dexoptanalyzer: dex2oat_from_scratch | 
|  | *dexopt_needed_out = DEX2OAT_FROM_SCRATCH; return true; | 
|  | case 4:  // dexoptanalyzer: dex2oat_for_bootimage_odex | 
|  | *dexopt_needed_out = -DEX2OAT_FOR_BOOT_IMAGE; return true; | 
|  | case 5:  // dexoptanalyzer: dex2oat_for_filter_odex | 
|  | *dexopt_needed_out = -DEX2OAT_FOR_FILTER; return true; | 
|  | case 2:  // dexoptanalyzer: dex2oat_for_bootimage_oat | 
|  | case 3:  // dexoptanalyzer: dex2oat_for_filter_oat | 
|  | *error_msg = StringPrintf("Dexoptanalyzer return the status of an oat file." | 
|  | " Expected odex file status for secondary dex %s" | 
|  | " : dexoptanalyzer result=%d", | 
|  | dex_path.c_str(), | 
|  | result); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Use a second switch for enum switch-case analysis. | 
|  | switch (static_cast<DexoptAnalyzerSkipCodes>(result)) { | 
|  | case kSecondaryDexDexoptAnalyzerSkippedNoFile: | 
|  | // If the file does not exist there's no need for dexopt. | 
|  | *dexopt_needed_out = NO_DEXOPT_NEEDED; | 
|  | return true; | 
|  |  | 
|  | case kSecondaryDexDexoptAnalyzerSkippedValidatePath: | 
|  | *error_msg = "Dexoptanalyzer path validation failed"; | 
|  | return false; | 
|  | case kSecondaryDexDexoptAnalyzerSkippedOpenZip: | 
|  | *error_msg = "Dexoptanalyzer open zip failed"; | 
|  | return false; | 
|  | case kSecondaryDexDexoptAnalyzerSkippedPrepareDir: | 
|  | *error_msg = "Dexoptanalyzer dir preparation failed"; | 
|  | return false; | 
|  | case kSecondaryDexDexoptAnalyzerSkippedOpenOutput: | 
|  | *error_msg = "Dexoptanalyzer open output failed"; | 
|  | return false; | 
|  | case kSecondaryDexDexoptAnalyzerSkippedFailExec: | 
|  | *error_msg = "Dexoptanalyzer failed to execute"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *error_msg = StringPrintf("Unexpected result from analyzing secondary dex %s result=%d", | 
|  | dex_path.c_str(), | 
|  | result); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | enum SecondaryDexAccess { | 
|  | kSecondaryDexAccessReadOk = 0, | 
|  | kSecondaryDexAccessDoesNotExist = 1, | 
|  | kSecondaryDexAccessPermissionError = 2, | 
|  | kSecondaryDexAccessIOError = 3 | 
|  | }; | 
|  |  | 
|  | static SecondaryDexAccess check_secondary_dex_access(const std::string& dex_path) { | 
|  | // Check if the path exists and can be read. If not, there's nothing to do. | 
|  | if (access(dex_path.c_str(), R_OK) == 0) { | 
|  | return kSecondaryDexAccessReadOk; | 
|  | } else { | 
|  | if (errno == ENOENT) { | 
|  | LOG(INFO) << "Secondary dex does not exist: " <<  dex_path; | 
|  | return kSecondaryDexAccessDoesNotExist; | 
|  | } else { | 
|  | PLOG(ERROR) << "Could not access secondary dex " << dex_path; | 
|  | return errno == EACCES | 
|  | ? kSecondaryDexAccessPermissionError | 
|  | : kSecondaryDexAccessIOError; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_file_public(const std::string& filename) { | 
|  | struct stat file_stat; | 
|  | if (stat(filename.c_str(), &file_stat) == 0) { | 
|  | return (file_stat.st_mode & S_IROTH) != 0; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Create the oat file structure for the secondary dex 'dex_path' and assign | 
|  | // the individual path component to the 'out_' parameters. | 
|  | static bool create_secondary_dex_oat_layout(const std::string& dex_path, const std::string& isa, | 
|  | char* out_oat_dir, char* out_oat_isa_dir, char* out_oat_path, std::string* error_msg) { | 
|  | size_t dirIndex = dex_path.rfind('/'); | 
|  | if (dirIndex == std::string::npos) { | 
|  | *error_msg = std::string("Unexpected dir structure for dex file ").append(dex_path); | 
|  | return false; | 
|  | } | 
|  | // TODO(calin): we have similar computations in at lest 3 other places | 
|  | // (InstalldNativeService, otapropt and dexopt). Unify them and get rid of snprintf by | 
|  | // using string append. | 
|  | std::string apk_dir = dex_path.substr(0, dirIndex); | 
|  | snprintf(out_oat_dir, PKG_PATH_MAX, "%s/oat", apk_dir.c_str()); | 
|  | snprintf(out_oat_isa_dir, PKG_PATH_MAX, "%s/%s", out_oat_dir, isa.c_str()); | 
|  |  | 
|  | if (!create_oat_out_path(dex_path.c_str(), isa.c_str(), out_oat_dir, | 
|  | /*is_secondary_dex*/true, out_oat_path)) { | 
|  | *error_msg = std::string("Could not create oat path for secondary dex ").append(dex_path); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Validate that the dexopt_flags contain a valid storage flag and convert that to an installd | 
|  | // recognized storage flags (FLAG_STORAGE_CE or FLAG_STORAGE_DE). | 
|  | static bool validate_dexopt_storage_flags(int dexopt_flags, | 
|  | int* out_storage_flag, | 
|  | std::string* error_msg) { | 
|  | if ((dexopt_flags & DEXOPT_STORAGE_CE) != 0) { | 
|  | *out_storage_flag = FLAG_STORAGE_CE; | 
|  | if ((dexopt_flags & DEXOPT_STORAGE_DE) != 0) { | 
|  | *error_msg = "Ambiguous secondary dex storage flag. Both, CE and DE, flags are set"; | 
|  | return false; | 
|  | } | 
|  | } else if ((dexopt_flags & DEXOPT_STORAGE_DE) != 0) { | 
|  | *out_storage_flag = FLAG_STORAGE_DE; | 
|  | } else { | 
|  | *error_msg = "Secondary dex storage flag must be set"; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Processes the dex_path as a secondary dex files and return true if the path dex file should | 
|  | // be compiled. Returns false for errors (logged) or true if the secondary dex path was process | 
|  | // successfully. | 
|  | // When returning true, the output parameters will be: | 
|  | //   - is_public_out: whether or not the oat file should not be made public | 
|  | //   - dexopt_needed_out: valid OatFileAsssitant::DexOptNeeded | 
|  | //   - oat_dir_out: the oat dir path where the oat file should be stored | 
|  | static bool process_secondary_dex_dexopt(const std::string& dex_path, const char* pkgname, | 
|  | int dexopt_flags, const char* volume_uuid, int uid, const char* instruction_set, | 
|  | const char* compiler_filter, bool* is_public_out, int* dexopt_needed_out, | 
|  | std::string* oat_dir_out, bool downgrade, const char* class_loader_context, | 
|  | /* out */ std::string* error_msg) { | 
|  | LOG(DEBUG) << "Processing secondary dex path " << dex_path; | 
|  | int storage_flag; | 
|  | if (!validate_dexopt_storage_flags(dexopt_flags, &storage_flag, error_msg)) { | 
|  | LOG(ERROR) << *error_msg; | 
|  | return false; | 
|  | } | 
|  | // Compute the oat dir as it's not easy to extract it from the child computation. | 
|  | char oat_path[PKG_PATH_MAX]; | 
|  | char oat_dir[PKG_PATH_MAX]; | 
|  | char oat_isa_dir[PKG_PATH_MAX]; | 
|  | if (!create_secondary_dex_oat_layout( | 
|  | dex_path, instruction_set, oat_dir, oat_isa_dir, oat_path, error_msg)) { | 
|  | LOG(ERROR) << "Could not create secondary odex layout: " << *error_msg; | 
|  | return false; | 
|  | } | 
|  | oat_dir_out->assign(oat_dir); | 
|  |  | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | // child -- drop privileges before continuing. | 
|  | drop_capabilities(uid); | 
|  |  | 
|  | // Validate the path structure. | 
|  | if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid, uid, storage_flag)) { | 
|  | LOG(ERROR) << "Could not validate secondary dex path " << dex_path; | 
|  | _exit(kSecondaryDexDexoptAnalyzerSkippedValidatePath); | 
|  | } | 
|  |  | 
|  | // Open the dex file. | 
|  | unique_fd zip_fd; | 
|  | zip_fd.reset(open(dex_path.c_str(), O_RDONLY)); | 
|  | if (zip_fd.get() < 0) { | 
|  | if (errno == ENOENT) { | 
|  | _exit(kSecondaryDexDexoptAnalyzerSkippedNoFile); | 
|  | } else { | 
|  | _exit(kSecondaryDexDexoptAnalyzerSkippedOpenZip); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prepare the oat directories. | 
|  | if (!prepare_secondary_dex_oat_dir(dex_path, uid, instruction_set)) { | 
|  | _exit(kSecondaryDexDexoptAnalyzerSkippedPrepareDir); | 
|  | } | 
|  |  | 
|  | // Open the vdex/oat files if any. | 
|  | unique_fd oat_file_fd; | 
|  | unique_fd vdex_file_fd; | 
|  | if (!maybe_open_oat_and_vdex_file(dex_path, | 
|  | *oat_dir_out, | 
|  | instruction_set, | 
|  | true /* is_secondary_dex */, | 
|  | &oat_file_fd, | 
|  | &vdex_file_fd)) { | 
|  | _exit(kSecondaryDexDexoptAnalyzerSkippedOpenOutput); | 
|  | } | 
|  |  | 
|  | // Analyze profiles. | 
|  | bool profile_was_updated = analyze_profiles(uid, pkgname, dex_path, | 
|  | /*is_secondary_dex*/true); | 
|  |  | 
|  | // Run dexoptanalyzer to get dexopt_needed code. This is not expected to return. | 
|  | // Note that we do not do it before the fork since opening the files is required to happen | 
|  | // after forking. | 
|  | RunDexoptAnalyzer run_dexopt_analyzer(dex_path, | 
|  | vdex_file_fd.get(), | 
|  | oat_file_fd.get(), | 
|  | zip_fd.get(), | 
|  | instruction_set, | 
|  | compiler_filter, profile_was_updated, | 
|  | downgrade, | 
|  | class_loader_context); | 
|  | run_dexopt_analyzer.Exec(kSecondaryDexDexoptAnalyzerSkippedFailExec); | 
|  | } | 
|  |  | 
|  | /* parent */ | 
|  | int result = wait_child(pid); | 
|  | if (!WIFEXITED(result)) { | 
|  | *error_msg = StringPrintf("dexoptanalyzer failed for path %s: 0x%04x", | 
|  | dex_path.c_str(), | 
|  | result); | 
|  | LOG(ERROR) << *error_msg; | 
|  | return false; | 
|  | } | 
|  | result = WEXITSTATUS(result); | 
|  | // Check that we successfully executed dexoptanalyzer. | 
|  | bool success = process_secondary_dexoptanalyzer_result(dex_path, | 
|  | result, | 
|  | dexopt_needed_out, | 
|  | error_msg); | 
|  | if (!success) { | 
|  | LOG(ERROR) << *error_msg; | 
|  | } | 
|  |  | 
|  | LOG(DEBUG) << "Processed secondary dex file " << dex_path << " result=" << result; | 
|  |  | 
|  | // Run dexopt only if needed or forced. | 
|  | // Note that dexoptanalyzer is executed even if force compilation is enabled (because it | 
|  | // makes the code simpler; force compilation is only needed during tests). | 
|  | if (success && | 
|  | (result != kSecondaryDexDexoptAnalyzerSkippedNoFile) && | 
|  | ((dexopt_flags & DEXOPT_FORCE) != 0)) { | 
|  | *dexopt_needed_out = DEX2OAT_FROM_SCRATCH; | 
|  | } | 
|  |  | 
|  | // Check if we should make the oat file public. | 
|  | // Note that if the dex file is not public the compiled code cannot be made public. | 
|  | // It is ok to check this flag outside in the parent process. | 
|  | *is_public_out = ((dexopt_flags & DEXOPT_PUBLIC) != 0) && is_file_public(dex_path); | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | static std::string format_dexopt_error(int status, const char* dex_path) { | 
|  | if (WIFEXITED(status)) { | 
|  | int int_code = WEXITSTATUS(status); | 
|  | const char* code_name = get_return_code_name(static_cast<DexoptReturnCodes>(int_code)); | 
|  | if (code_name != nullptr) { | 
|  | return StringPrintf("Dex2oat invocation for %s failed: %s", dex_path, code_name); | 
|  | } | 
|  | } | 
|  | return StringPrintf("Dex2oat invocation for %s failed with 0x%04x", dex_path, status); | 
|  | } | 
|  |  | 
|  | int dexopt(const char* dex_path, uid_t uid, const char* pkgname, const char* instruction_set, | 
|  | int dexopt_needed, const char* oat_dir, int dexopt_flags, const char* compiler_filter, | 
|  | const char* volume_uuid, const char* class_loader_context, const char* se_info, | 
|  | bool downgrade, int target_sdk_version, const char* profile_name, | 
|  | const char* dex_metadata_path, const char* compilation_reason, std::string* error_msg) { | 
|  | CHECK(pkgname != nullptr); | 
|  | CHECK(pkgname[0] != 0); | 
|  | CHECK(error_msg != nullptr); | 
|  | CHECK_EQ(dexopt_flags & ~DEXOPT_MASK, 0) | 
|  | << "dexopt flags contains unknown fields: " << dexopt_flags; | 
|  |  | 
|  | if (!validate_dex_path_size(dex_path)) { | 
|  | *error_msg = StringPrintf("Failed to validate %s", dex_path); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (class_loader_context != nullptr && strlen(class_loader_context) > PKG_PATH_MAX) { | 
|  | *error_msg = StringPrintf("Class loader context exceeds the allowed size: %s", | 
|  | class_loader_context); | 
|  | LOG(ERROR) << *error_msg; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool is_public = (dexopt_flags & DEXOPT_PUBLIC) != 0; | 
|  | bool debuggable = (dexopt_flags & DEXOPT_DEBUGGABLE) != 0; | 
|  | bool boot_complete = (dexopt_flags & DEXOPT_BOOTCOMPLETE) != 0; | 
|  | bool profile_guided = (dexopt_flags & DEXOPT_PROFILE_GUIDED) != 0; | 
|  | bool is_secondary_dex = (dexopt_flags & DEXOPT_SECONDARY_DEX) != 0; | 
|  | bool background_job_compile = (dexopt_flags & DEXOPT_IDLE_BACKGROUND_JOB) != 0; | 
|  | bool enable_hidden_api_checks = (dexopt_flags & DEXOPT_ENABLE_HIDDEN_API_CHECKS) != 0; | 
|  | bool generate_compact_dex = (dexopt_flags & DEXOPT_GENERATE_COMPACT_DEX) != 0; | 
|  | bool generate_app_image = (dexopt_flags & DEXOPT_GENERATE_APP_IMAGE) != 0; | 
|  |  | 
|  | // Check if we're dealing with a secondary dex file and if we need to compile it. | 
|  | std::string oat_dir_str; | 
|  | if (is_secondary_dex) { | 
|  | if (process_secondary_dex_dexopt(dex_path, pkgname, dexopt_flags, volume_uuid, uid, | 
|  | instruction_set, compiler_filter, &is_public, &dexopt_needed, &oat_dir_str, | 
|  | downgrade, class_loader_context, error_msg)) { | 
|  | oat_dir = oat_dir_str.c_str(); | 
|  | if (dexopt_needed == NO_DEXOPT_NEEDED) { | 
|  | return 0;  // Nothing to do, report success. | 
|  | } | 
|  | } else { | 
|  | if (error_msg->empty()) {  // TODO: Make this a CHECK. | 
|  | *error_msg = "Failed processing secondary."; | 
|  | } | 
|  | return -1;  // We had an error, logged in the process method. | 
|  | } | 
|  | } else { | 
|  | // Currently these flags are only use for secondary dex files. | 
|  | // Verify that they are not set for primary apks. | 
|  | CHECK((dexopt_flags & DEXOPT_STORAGE_CE) == 0); | 
|  | CHECK((dexopt_flags & DEXOPT_STORAGE_DE) == 0); | 
|  | } | 
|  |  | 
|  | // Open the input file. | 
|  | unique_fd input_fd(open(dex_path, O_RDONLY, 0)); | 
|  | if (input_fd.get() < 0) { | 
|  | *error_msg = StringPrintf("installd cannot open '%s' for input during dexopt", dex_path); | 
|  | LOG(ERROR) << *error_msg; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Create the output OAT file. | 
|  | char out_oat_path[PKG_PATH_MAX]; | 
|  | Dex2oatFileWrapper out_oat_fd = open_oat_out_file(dex_path, oat_dir, is_public, uid, | 
|  | instruction_set, is_secondary_dex, out_oat_path); | 
|  | if (out_oat_fd.get() < 0) { | 
|  | *error_msg = "Could not open out oat file."; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Open vdex files. | 
|  | Dex2oatFileWrapper in_vdex_fd; | 
|  | Dex2oatFileWrapper out_vdex_fd; | 
|  | if (!open_vdex_files_for_dex2oat(dex_path, out_oat_path, dexopt_needed, instruction_set, | 
|  | is_public, uid, is_secondary_dex, profile_guided, &in_vdex_fd, &out_vdex_fd)) { | 
|  | *error_msg = "Could not open vdex files."; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Ensure that the oat dir and the compiler artifacts of secondary dex files have the correct | 
|  | // selinux context (we generate them on the fly during the dexopt invocation and they don't | 
|  | // fully inherit their parent context). | 
|  | // Note that for primary apk the oat files are created before, in a separate installd | 
|  | // call which also does the restorecon. TODO(calin): unify the paths. | 
|  | if (is_secondary_dex) { | 
|  | if (selinux_android_restorecon_pkgdir(oat_dir, se_info, uid, | 
|  | SELINUX_ANDROID_RESTORECON_RECURSE)) { | 
|  | *error_msg = std::string("Failed to restorecon ").append(oat_dir); | 
|  | LOG(ERROR) << *error_msg; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a swap file if necessary. | 
|  | unique_fd swap_fd = maybe_open_dexopt_swap_file(out_oat_path); | 
|  |  | 
|  | // Create the app image file if needed. | 
|  | Dex2oatFileWrapper image_fd = maybe_open_app_image( | 
|  | out_oat_path, generate_app_image, is_public, uid, is_secondary_dex); | 
|  |  | 
|  | // Open the reference profile if needed. | 
|  | Dex2oatFileWrapper reference_profile_fd = maybe_open_reference_profile( | 
|  | pkgname, dex_path, profile_name, profile_guided, is_public, uid, is_secondary_dex); | 
|  |  | 
|  | unique_fd dex_metadata_fd; | 
|  | if (dex_metadata_path != nullptr) { | 
|  | dex_metadata_fd.reset(TEMP_FAILURE_RETRY(open(dex_metadata_path, O_RDONLY | O_NOFOLLOW))); | 
|  | if (dex_metadata_fd.get() < 0) { | 
|  | PLOG(ERROR) << "Failed to open dex metadata file " << dex_metadata_path; | 
|  | } | 
|  | } | 
|  |  | 
|  | LOG(VERBOSE) << "DexInv: --- BEGIN '" << dex_path << "' ---"; | 
|  |  | 
|  | RunDex2Oat runner(input_fd.get(), | 
|  | out_oat_fd.get(), | 
|  | in_vdex_fd.get(), | 
|  | out_vdex_fd.get(), | 
|  | image_fd.get(), | 
|  | dex_path, | 
|  | out_oat_path, | 
|  | swap_fd.get(), | 
|  | instruction_set, | 
|  | compiler_filter, | 
|  | debuggable, | 
|  | boot_complete, | 
|  | background_job_compile, | 
|  | reference_profile_fd.get(), | 
|  | class_loader_context, | 
|  | target_sdk_version, | 
|  | enable_hidden_api_checks, | 
|  | generate_compact_dex, | 
|  | dex_metadata_fd.get(), | 
|  | compilation_reason); | 
|  |  | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | /* child -- drop privileges before continuing */ | 
|  | drop_capabilities(uid); | 
|  |  | 
|  | SetDex2OatScheduling(boot_complete); | 
|  | if (flock(out_oat_fd.get(), LOCK_EX | LOCK_NB) != 0) { | 
|  | PLOG(ERROR) << "flock(" << out_oat_path << ") failed"; | 
|  | _exit(DexoptReturnCodes::kFlock); | 
|  | } | 
|  |  | 
|  | runner.Exec(DexoptReturnCodes::kDex2oatExec); | 
|  | } else { | 
|  | int res = wait_child(pid); | 
|  | if (res == 0) { | 
|  | LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' (success) ---"; | 
|  | } else { | 
|  | LOG(VERBOSE) << "DexInv: --- END '" << dex_path << "' --- status=0x" | 
|  | << std::hex << std::setw(4) << res << ", process failed"; | 
|  | *error_msg = format_dexopt_error(res, dex_path); | 
|  | return res; | 
|  | } | 
|  | } | 
|  |  | 
|  | update_out_oat_access_times(dex_path, out_oat_path); | 
|  |  | 
|  | // We've been successful, don't delete output. | 
|  | out_oat_fd.SetCleanup(false); | 
|  | out_vdex_fd.SetCleanup(false); | 
|  | image_fd.SetCleanup(false); | 
|  | reference_profile_fd.SetCleanup(false); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Try to remove the given directory. Log an error if the directory exists | 
|  | // and is empty but could not be removed. | 
|  | static bool rmdir_if_empty(const char* dir) { | 
|  | if (rmdir(dir) == 0) { | 
|  | return true; | 
|  | } | 
|  | if (errno == ENOENT || errno == ENOTEMPTY) { | 
|  | return true; | 
|  | } | 
|  | PLOG(ERROR) << "Failed to remove dir: " << dir; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Try to unlink the given file. Log an error if the file exists and could not | 
|  | // be unlinked. | 
|  | static bool unlink_if_exists(const std::string& file) { | 
|  | if (unlink(file.c_str()) == 0) { | 
|  | return true; | 
|  | } | 
|  | if (errno == ENOENT) { | 
|  | return true; | 
|  |  | 
|  | } | 
|  | PLOG(ERROR) << "Could not unlink: " << file; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | enum ReconcileSecondaryDexResult { | 
|  | kReconcileSecondaryDexExists = 0, | 
|  | kReconcileSecondaryDexCleanedUp = 1, | 
|  | kReconcileSecondaryDexValidationError = 2, | 
|  | kReconcileSecondaryDexCleanUpError = 3, | 
|  | kReconcileSecondaryDexAccessIOError = 4, | 
|  | }; | 
|  |  | 
|  | // Reconcile the secondary dex 'dex_path' and its generated oat files. | 
|  | // Return true if all the parameters are valid and the secondary dex file was | 
|  | //   processed successfully (i.e. the dex_path either exists, or if not, its corresponding | 
|  | //   oat/vdex/art files where deleted successfully). In this case, out_secondary_dex_exists | 
|  | //   will be true if the secondary dex file still exists. If the secondary dex file does not exist, | 
|  | //   the method cleans up any previously generated compiler artifacts (oat, vdex, art). | 
|  | // Return false if there were errors during processing. In this case | 
|  | //   out_secondary_dex_exists will be set to false. | 
|  | bool reconcile_secondary_dex_file(const std::string& dex_path, | 
|  | const std::string& pkgname, int uid, const std::vector<std::string>& isas, | 
|  | const std::unique_ptr<std::string>& volume_uuid, int storage_flag, | 
|  | /*out*/bool* out_secondary_dex_exists) { | 
|  | *out_secondary_dex_exists = false;  // start by assuming the file does not exist. | 
|  | if (isas.size() == 0) { | 
|  | LOG(ERROR) << "reconcile_secondary_dex_file called with empty isas vector"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (storage_flag != FLAG_STORAGE_CE && storage_flag != FLAG_STORAGE_DE) { | 
|  | LOG(ERROR) << "reconcile_secondary_dex_file called with invalid storage_flag: " | 
|  | << storage_flag; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // As a security measure we want to unlink art artifacts with the reduced capabilities | 
|  | // of the package user id. So we fork and drop capabilities in the child. | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | /* child -- drop privileges before continuing */ | 
|  | drop_capabilities(uid); | 
|  |  | 
|  | const char* volume_uuid_cstr = volume_uuid == nullptr ? nullptr : volume_uuid->c_str(); | 
|  | if (!validate_secondary_dex_path(pkgname.c_str(), dex_path.c_str(), volume_uuid_cstr, | 
|  | uid, storage_flag)) { | 
|  | LOG(ERROR) << "Could not validate secondary dex path " << dex_path; | 
|  | _exit(kReconcileSecondaryDexValidationError); | 
|  | } | 
|  |  | 
|  | SecondaryDexAccess access_check = check_secondary_dex_access(dex_path); | 
|  | switch (access_check) { | 
|  | case kSecondaryDexAccessDoesNotExist: | 
|  | // File does not exist. Proceed with cleaning. | 
|  | break; | 
|  | case kSecondaryDexAccessReadOk: _exit(kReconcileSecondaryDexExists); | 
|  | case kSecondaryDexAccessIOError: _exit(kReconcileSecondaryDexAccessIOError); | 
|  | case kSecondaryDexAccessPermissionError: _exit(kReconcileSecondaryDexValidationError); | 
|  | default: | 
|  | LOG(ERROR) << "Unexpected result from check_secondary_dex_access: " << access_check; | 
|  | _exit(kReconcileSecondaryDexValidationError); | 
|  | } | 
|  |  | 
|  | // The secondary dex does not exist anymore or it's. Clear any generated files. | 
|  | char oat_path[PKG_PATH_MAX]; | 
|  | char oat_dir[PKG_PATH_MAX]; | 
|  | char oat_isa_dir[PKG_PATH_MAX]; | 
|  | bool result = true; | 
|  | for (size_t i = 0; i < isas.size(); i++) { | 
|  | std::string error_msg; | 
|  | if (!create_secondary_dex_oat_layout( | 
|  | dex_path,isas[i], oat_dir, oat_isa_dir, oat_path, &error_msg)) { | 
|  | LOG(ERROR) << error_msg; | 
|  | _exit(kReconcileSecondaryDexValidationError); | 
|  | } | 
|  |  | 
|  | // Delete oat/vdex/art files. | 
|  | result = unlink_if_exists(oat_path) && result; | 
|  | result = unlink_if_exists(create_vdex_filename(oat_path)) && result; | 
|  | result = unlink_if_exists(create_image_filename(oat_path)) && result; | 
|  |  | 
|  | // Delete profiles. | 
|  | std::string current_profile = create_current_profile_path( | 
|  | multiuser_get_user_id(uid), pkgname, dex_path, /*is_secondary*/true); | 
|  | std::string reference_profile = create_reference_profile_path( | 
|  | pkgname, dex_path, /*is_secondary*/true); | 
|  | result = unlink_if_exists(current_profile) && result; | 
|  | result = unlink_if_exists(reference_profile) && result; | 
|  |  | 
|  | // We upgraded once the location of current profile for secondary dex files. | 
|  | // Check for any previous left-overs and remove them as well. | 
|  | std::string old_current_profile = dex_path + ".prof"; | 
|  | result = unlink_if_exists(old_current_profile); | 
|  |  | 
|  | // Try removing the directories as well, they might be empty. | 
|  | result = rmdir_if_empty(oat_isa_dir) && result; | 
|  | result = rmdir_if_empty(oat_dir) && result; | 
|  | } | 
|  | if (!result) { | 
|  | PLOG(ERROR) << "Failed to clean secondary dex artifacts for location " << dex_path; | 
|  | } | 
|  | _exit(result ? kReconcileSecondaryDexCleanedUp : kReconcileSecondaryDexAccessIOError); | 
|  | } | 
|  |  | 
|  | int return_code = wait_child(pid); | 
|  | if (!WIFEXITED(return_code)) { | 
|  | LOG(WARNING) << "reconcile dex failed for location " << dex_path << ": " << return_code; | 
|  | } else { | 
|  | return_code = WEXITSTATUS(return_code); | 
|  | } | 
|  |  | 
|  | LOG(DEBUG) << "Reconcile secondary dex path " << dex_path << " result=" << return_code; | 
|  |  | 
|  | switch (return_code) { | 
|  | case kReconcileSecondaryDexCleanedUp: | 
|  | case kReconcileSecondaryDexValidationError: | 
|  | // If we couldn't validate assume the dex file does not exist. | 
|  | // This will purge the entry from the PM records. | 
|  | *out_secondary_dex_exists = false; | 
|  | return true; | 
|  | case kReconcileSecondaryDexExists: | 
|  | *out_secondary_dex_exists = true; | 
|  | return true; | 
|  | case kReconcileSecondaryDexAccessIOError: | 
|  | // We had an access IO error. | 
|  | // Return false so that we can try again. | 
|  | // The value of out_secondary_dex_exists does not matter in this case and by convention | 
|  | // is set to false. | 
|  | *out_secondary_dex_exists = false; | 
|  | return false; | 
|  | default: | 
|  | LOG(ERROR) << "Unexpected code from reconcile_secondary_dex_file: " << return_code; | 
|  | *out_secondary_dex_exists = false; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute and return the hash (SHA-256) of the secondary dex file at dex_path. | 
|  | // Returns true if all parameters are valid and the hash successfully computed and stored in | 
|  | // out_secondary_dex_hash. | 
|  | // Also returns true with an empty hash if the file does not currently exist or is not accessible to | 
|  | // the app. | 
|  | // For any other errors (e.g. if any of the parameters are invalid) returns false. | 
|  | bool hash_secondary_dex_file(const std::string& dex_path, const std::string& pkgname, int uid, | 
|  | const std::unique_ptr<std::string>& volume_uuid, int storage_flag, | 
|  | std::vector<uint8_t>* out_secondary_dex_hash) { | 
|  | out_secondary_dex_hash->clear(); | 
|  |  | 
|  | const char* volume_uuid_cstr = volume_uuid == nullptr ? nullptr : volume_uuid->c_str(); | 
|  |  | 
|  | if (storage_flag != FLAG_STORAGE_CE && storage_flag != FLAG_STORAGE_DE) { | 
|  | LOG(ERROR) << "hash_secondary_dex_file called with invalid storage_flag: " | 
|  | << storage_flag; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Pipe to get the hash result back from our child process. | 
|  | unique_fd pipe_read, pipe_write; | 
|  | if (!Pipe(&pipe_read, &pipe_write)) { | 
|  | PLOG(ERROR) << "Failed to create pipe"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Fork so that actual access to the files is done in the app's own UID, to ensure we only | 
|  | // access data the app itself can access. | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | // child -- drop privileges before continuing | 
|  | drop_capabilities(uid); | 
|  | pipe_read.reset(); | 
|  |  | 
|  | if (!validate_secondary_dex_path(pkgname, dex_path, volume_uuid_cstr, uid, storage_flag)) { | 
|  | LOG(ERROR) << "Could not validate secondary dex path " << dex_path; | 
|  | _exit(DexoptReturnCodes::kHashValidatePath); | 
|  | } | 
|  |  | 
|  | unique_fd fd(TEMP_FAILURE_RETRY(open(dex_path.c_str(), O_RDONLY | O_CLOEXEC | O_NOFOLLOW))); | 
|  | if (fd == -1) { | 
|  | if (errno == EACCES || errno == ENOENT) { | 
|  | // Not treated as an error. | 
|  | _exit(0); | 
|  | } | 
|  | PLOG(ERROR) << "Failed to open secondary dex " << dex_path; | 
|  | _exit(DexoptReturnCodes::kHashOpenPath); | 
|  | } | 
|  |  | 
|  | SHA256_CTX ctx; | 
|  | SHA256_Init(&ctx); | 
|  |  | 
|  | std::vector<uint8_t> buffer(65536); | 
|  | while (true) { | 
|  | ssize_t bytes_read = TEMP_FAILURE_RETRY(read(fd, buffer.data(), buffer.size())); | 
|  | if (bytes_read == 0) { | 
|  | break; | 
|  | } else if (bytes_read == -1) { | 
|  | PLOG(ERROR) << "Failed to read secondary dex " << dex_path; | 
|  | _exit(DexoptReturnCodes::kHashReadDex); | 
|  | } | 
|  |  | 
|  | SHA256_Update(&ctx, buffer.data(), bytes_read); | 
|  | } | 
|  |  | 
|  | std::array<uint8_t, SHA256_DIGEST_LENGTH> hash; | 
|  | SHA256_Final(hash.data(), &ctx); | 
|  | if (!WriteFully(pipe_write, hash.data(), hash.size())) { | 
|  | _exit(DexoptReturnCodes::kHashWrite); | 
|  | } | 
|  |  | 
|  | _exit(0); | 
|  | } | 
|  |  | 
|  | // parent | 
|  | pipe_write.reset(); | 
|  |  | 
|  | out_secondary_dex_hash->resize(SHA256_DIGEST_LENGTH); | 
|  | if (!ReadFully(pipe_read, out_secondary_dex_hash->data(), out_secondary_dex_hash->size())) { | 
|  | out_secondary_dex_hash->clear(); | 
|  | } | 
|  | return wait_child(pid) == 0; | 
|  | } | 
|  |  | 
|  | // Helper for move_ab, so that we can have common failure-case cleanup. | 
|  | static bool unlink_and_rename(const char* from, const char* to) { | 
|  | // Check whether "from" exists, and if so whether it's regular. If it is, unlink. Otherwise, | 
|  | // return a failure. | 
|  | struct stat s; | 
|  | if (stat(to, &s) == 0) { | 
|  | if (!S_ISREG(s.st_mode)) { | 
|  | LOG(ERROR) << from << " is not a regular file to replace for A/B."; | 
|  | return false; | 
|  | } | 
|  | if (unlink(to) != 0) { | 
|  | LOG(ERROR) << "Could not unlink " << to << " to move A/B."; | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // This may be a permission problem. We could investigate the error code, but we'll just | 
|  | // let the rename failure do the work for us. | 
|  | } | 
|  |  | 
|  | // Try to rename "to" to "from." | 
|  | if (rename(from, to) != 0) { | 
|  | PLOG(ERROR) << "Could not rename " << from << " to " << to; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Move/rename a B artifact (from) to an A artifact (to). | 
|  | static bool move_ab_path(const std::string& b_path, const std::string& a_path) { | 
|  | // Check whether B exists. | 
|  | { | 
|  | struct stat s; | 
|  | if (stat(b_path.c_str(), &s) != 0) { | 
|  | // Silently ignore for now. The service calling this isn't smart enough to understand | 
|  | // lack of artifacts at the moment. | 
|  | return false; | 
|  | } | 
|  | if (!S_ISREG(s.st_mode)) { | 
|  | LOG(ERROR) << "A/B artifact " << b_path << " is not a regular file."; | 
|  | // Try to unlink, but swallow errors. | 
|  | unlink(b_path.c_str()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rename B to A. | 
|  | if (!unlink_and_rename(b_path.c_str(), a_path.c_str())) { | 
|  | // Delete the b_path so we don't try again (or fail earlier). | 
|  | if (unlink(b_path.c_str()) != 0) { | 
|  | PLOG(ERROR) << "Could not unlink " << b_path; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool move_ab(const char* apk_path, const char* instruction_set, const char* oat_dir) { | 
|  | // Get the current slot suffix. No suffix, no A/B. | 
|  | const std::string slot_suffix = GetProperty("ro.boot.slot_suffix", ""); | 
|  | if (slot_suffix.empty()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ValidateTargetSlotSuffix(slot_suffix)) { | 
|  | LOG(ERROR) << "Target slot suffix not legal: " << slot_suffix; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Validate other inputs. | 
|  | if (validate_apk_path(apk_path) != 0) { | 
|  | LOG(ERROR) << "Invalid apk_path: " << apk_path; | 
|  | return false; | 
|  | } | 
|  | if (validate_apk_path(oat_dir) != 0) { | 
|  | LOG(ERROR) << "Invalid oat_dir: " << oat_dir; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | char a_path[PKG_PATH_MAX]; | 
|  | if (!calculate_oat_file_path(a_path, oat_dir, apk_path, instruction_set)) { | 
|  | return false; | 
|  | } | 
|  | const std::string a_vdex_path = create_vdex_filename(a_path); | 
|  | const std::string a_image_path = create_image_filename(a_path); | 
|  |  | 
|  | // B path = A path + slot suffix. | 
|  | const std::string b_path = StringPrintf("%s.%s", a_path, slot_suffix.c_str()); | 
|  | const std::string b_vdex_path = StringPrintf("%s.%s", a_vdex_path.c_str(), slot_suffix.c_str()); | 
|  | const std::string b_image_path = StringPrintf("%s.%s", | 
|  | a_image_path.c_str(), | 
|  | slot_suffix.c_str()); | 
|  |  | 
|  | bool success = true; | 
|  | if (move_ab_path(b_path, a_path)) { | 
|  | if (move_ab_path(b_vdex_path, a_vdex_path)) { | 
|  | // Note: we can live without an app image. As such, ignore failure to move the image file. | 
|  | //       If we decide to require the app image, or the app image being moved correctly, | 
|  | //       then change accordingly. | 
|  | constexpr bool kIgnoreAppImageFailure = true; | 
|  |  | 
|  | if (!a_image_path.empty()) { | 
|  | if (!move_ab_path(b_image_path, a_image_path)) { | 
|  | unlink(a_image_path.c_str()); | 
|  | if (!kIgnoreAppImageFailure) { | 
|  | success = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // Cleanup: delete B image, ignore errors. | 
|  | unlink(b_image_path.c_str()); | 
|  | success = false; | 
|  | } | 
|  | } else { | 
|  | // Cleanup: delete B image, ignore errors. | 
|  | unlink(b_vdex_path.c_str()); | 
|  | unlink(b_image_path.c_str()); | 
|  | success = false; | 
|  | } | 
|  | return success; | 
|  | } | 
|  |  | 
|  | bool delete_odex(const char* apk_path, const char* instruction_set, const char* oat_dir) { | 
|  | // Delete the oat/odex file. | 
|  | char out_path[PKG_PATH_MAX]; | 
|  | if (!create_oat_out_path(apk_path, instruction_set, oat_dir, | 
|  | /*is_secondary_dex*/false, out_path)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // In case of a permission failure report the issue. Otherwise just print a warning. | 
|  | auto unlink_and_check = [](const char* path) -> bool { | 
|  | int result = unlink(path); | 
|  | if (result != 0) { | 
|  | if (errno == EACCES || errno == EPERM) { | 
|  | PLOG(ERROR) << "Could not unlink " << path; | 
|  | return false; | 
|  | } | 
|  | PLOG(WARNING) << "Could not unlink " << path; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Delete the oat/odex file. | 
|  | bool return_value_oat = unlink_and_check(out_path); | 
|  |  | 
|  | // Derive and delete the app image. | 
|  | bool return_value_art = unlink_and_check(create_image_filename(out_path).c_str()); | 
|  |  | 
|  | // Derive and delete the vdex file. | 
|  | bool return_value_vdex = unlink_and_check(create_vdex_filename(out_path).c_str()); | 
|  |  | 
|  | // Report success. | 
|  | return return_value_oat && return_value_art && return_value_vdex; | 
|  | } | 
|  |  | 
|  | static bool is_absolute_path(const std::string& path) { | 
|  | if (path.find('/') != 0 || path.find("..") != std::string::npos) { | 
|  | LOG(ERROR) << "Invalid absolute path " << path; | 
|  | return false; | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_valid_instruction_set(const std::string& instruction_set) { | 
|  | // TODO: add explicit whitelisting of instruction sets | 
|  | if (instruction_set.find('/') != std::string::npos) { | 
|  | LOG(ERROR) << "Invalid instruction set " << instruction_set; | 
|  | return false; | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool calculate_oat_file_path_default(char path[PKG_PATH_MAX], const char *oat_dir, | 
|  | const char *apk_path, const char *instruction_set) { | 
|  | std::string oat_dir_ = oat_dir; | 
|  | std::string apk_path_ = apk_path; | 
|  | std::string instruction_set_ = instruction_set; | 
|  |  | 
|  | if (!is_absolute_path(oat_dir_)) return false; | 
|  | if (!is_absolute_path(apk_path_)) return false; | 
|  | if (!is_valid_instruction_set(instruction_set_)) return false; | 
|  |  | 
|  | std::string::size_type end = apk_path_.rfind('.'); | 
|  | std::string::size_type start = apk_path_.rfind('/', end); | 
|  | if (end == std::string::npos || start == std::string::npos) { | 
|  | LOG(ERROR) << "Invalid apk_path " << apk_path_; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::string res_ = oat_dir_ + '/' + instruction_set + '/' | 
|  | + apk_path_.substr(start + 1, end - start - 1) + ".odex"; | 
|  | const char* res = res_.c_str(); | 
|  | if (strlen(res) >= PKG_PATH_MAX) { | 
|  | LOG(ERROR) << "Result too large"; | 
|  | return false; | 
|  | } else { | 
|  | strlcpy(path, res, PKG_PATH_MAX); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool calculate_odex_file_path_default(char path[PKG_PATH_MAX], const char *apk_path, | 
|  | const char *instruction_set) { | 
|  | std::string apk_path_ = apk_path; | 
|  | std::string instruction_set_ = instruction_set; | 
|  |  | 
|  | if (!is_absolute_path(apk_path_)) return false; | 
|  | if (!is_valid_instruction_set(instruction_set_)) return false; | 
|  |  | 
|  | std::string::size_type end = apk_path_.rfind('.'); | 
|  | std::string::size_type start = apk_path_.rfind('/', end); | 
|  | if (end == std::string::npos || start == std::string::npos) { | 
|  | LOG(ERROR) << "Invalid apk_path " << apk_path_; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::string oat_dir = apk_path_.substr(0, start + 1) + "oat"; | 
|  | return calculate_oat_file_path_default(path, oat_dir.c_str(), apk_path, instruction_set); | 
|  | } | 
|  |  | 
|  | bool create_cache_path_default(char path[PKG_PATH_MAX], const char *src, | 
|  | const char *instruction_set) { | 
|  | std::string src_ = src; | 
|  | std::string instruction_set_ = instruction_set; | 
|  |  | 
|  | if (!is_absolute_path(src_)) return false; | 
|  | if (!is_valid_instruction_set(instruction_set_)) return false; | 
|  |  | 
|  | for (auto it = src_.begin() + 1; it < src_.end(); ++it) { | 
|  | if (*it == '/') { | 
|  | *it = '@'; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string res_ = android_data_dir + DALVIK_CACHE + '/' + instruction_set_ + src_ | 
|  | + DALVIK_CACHE_POSTFIX; | 
|  | const char* res = res_.c_str(); | 
|  | if (strlen(res) >= PKG_PATH_MAX) { | 
|  | LOG(ERROR) << "Result too large"; | 
|  | return false; | 
|  | } else { | 
|  | strlcpy(path, res, PKG_PATH_MAX); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool open_classpath_files(const std::string& classpath, std::vector<unique_fd>* apk_fds, | 
|  | std::vector<std::string>* dex_locations) { | 
|  | std::vector<std::string> classpaths_elems = base::Split(classpath, ":"); | 
|  | for (const std::string& elem : classpaths_elems) { | 
|  | unique_fd fd(TEMP_FAILURE_RETRY(open(elem.c_str(), O_RDONLY))); | 
|  | if (fd < 0) { | 
|  | PLOG(ERROR) << "Could not open classpath elem " << elem; | 
|  | return false; | 
|  | } else { | 
|  | apk_fds->push_back(std::move(fd)); | 
|  | dex_locations->push_back(elem); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool create_app_profile_snapshot(int32_t app_id, | 
|  | const std::string& package_name, | 
|  | const std::string& profile_name, | 
|  | const std::string& classpath) { | 
|  | int app_shared_gid = multiuser_get_shared_gid(/*user_id*/ 0, app_id); | 
|  |  | 
|  | unique_fd snapshot_fd = open_spnashot_profile(AID_SYSTEM, package_name, profile_name); | 
|  | if (snapshot_fd < 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::vector<unique_fd> profiles_fd; | 
|  | unique_fd reference_profile_fd; | 
|  | open_profile_files(app_shared_gid, package_name, profile_name, /*is_secondary_dex*/ false, | 
|  | &profiles_fd, &reference_profile_fd); | 
|  | if (profiles_fd.empty() || (reference_profile_fd.get() < 0)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | profiles_fd.push_back(std::move(reference_profile_fd)); | 
|  |  | 
|  | // Open the class paths elements. These will be used to filter out profile data that does | 
|  | // not belong to the classpath during merge. | 
|  | std::vector<unique_fd> apk_fds; | 
|  | std::vector<std::string> dex_locations; | 
|  | if (!open_classpath_files(classpath, &apk_fds, &dex_locations)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RunProfman args; | 
|  | args.SetupMerge(profiles_fd, snapshot_fd, apk_fds, dex_locations); | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | /* child -- drop privileges before continuing */ | 
|  | drop_capabilities(app_shared_gid); | 
|  | args.Exec(); | 
|  | } | 
|  |  | 
|  | /* parent */ | 
|  | int return_code = wait_child(pid); | 
|  | if (!WIFEXITED(return_code)) { | 
|  | LOG(WARNING) << "profman failed for " << package_name << ":" << profile_name; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool create_boot_image_profile_snapshot(const std::string& package_name, | 
|  | const std::string& profile_name, | 
|  | const std::string& classpath) { | 
|  | // The reference profile directory for the android package might not be prepared. Do it now. | 
|  | const std::string ref_profile_dir = | 
|  | create_primary_reference_profile_package_dir_path(package_name); | 
|  | if (fs_prepare_dir(ref_profile_dir.c_str(), 0770, AID_SYSTEM, AID_SYSTEM) != 0) { | 
|  | PLOG(ERROR) << "Failed to prepare " << ref_profile_dir; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Return false for empty class path since it may otherwise return true below if profiles is | 
|  | // empty. | 
|  | if (classpath.empty()) { | 
|  | PLOG(ERROR) << "Class path is empty"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Open and create the snapshot profile. | 
|  | unique_fd snapshot_fd = open_spnashot_profile(AID_SYSTEM, package_name, profile_name); | 
|  |  | 
|  | // Collect all non empty profiles. | 
|  | // The collection will traverse all applications profiles and find the non empty files. | 
|  | // This has the potential of inspecting a large number of files and directories (depending | 
|  | // on the number of applications and users). So there is a slight increase in the chance | 
|  | // to get get occasionally I/O errors (e.g. for opening the file). When that happens do not | 
|  | // fail the snapshot and aggregate whatever profile we could open. | 
|  | // | 
|  | // The profile snapshot is a best effort based on available data it's ok if some data | 
|  | // from some apps is missing. It will be counter productive for the snapshot to fail | 
|  | // because we could not open or read some of the files. | 
|  | std::vector<std::string> profiles; | 
|  | if (!collect_profiles(&profiles)) { | 
|  | LOG(WARNING) << "There were errors while collecting the profiles for the boot image."; | 
|  | } | 
|  |  | 
|  | // If we have no profiles return early. | 
|  | if (profiles.empty()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Open the classpath elements. These will be used to filter out profile data that does | 
|  | // not belong to the classpath during merge. | 
|  | std::vector<unique_fd> apk_fds; | 
|  | std::vector<std::string> dex_locations; | 
|  | if (!open_classpath_files(classpath, &apk_fds, &dex_locations)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we could not open any files from the classpath return an error. | 
|  | if (apk_fds.empty()) { | 
|  | LOG(ERROR) << "Could not open any of the classpath elements."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Aggregate the profiles in batches of kAggregationBatchSize. | 
|  | // We do this to avoid opening a huge a amount of files. | 
|  | static constexpr size_t kAggregationBatchSize = 10; | 
|  |  | 
|  | std::vector<unique_fd> profiles_fd; | 
|  | for (size_t i = 0; i < profiles.size(); )  { | 
|  | for (size_t k = 0; k < kAggregationBatchSize && i < profiles.size(); k++, i++) { | 
|  | unique_fd fd = open_profile(AID_SYSTEM, profiles[i], O_RDONLY); | 
|  | if (fd.get() >= 0) { | 
|  | profiles_fd.push_back(std::move(fd)); | 
|  | } | 
|  | } | 
|  | RunProfman args; | 
|  | args.SetupMerge(profiles_fd, | 
|  | snapshot_fd, | 
|  | apk_fds, | 
|  | dex_locations, | 
|  | /*store_aggregation_counters=*/true); | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | /* child -- drop privileges before continuing */ | 
|  | drop_capabilities(AID_SYSTEM); | 
|  |  | 
|  | // The introduction of new access flags into boot jars causes them to | 
|  | // fail dex file verification. | 
|  | args.Exec(); | 
|  | } | 
|  |  | 
|  | /* parent */ | 
|  | int return_code = wait_child(pid); | 
|  | if (!WIFEXITED(return_code)) { | 
|  | PLOG(WARNING) << "profman failed for " << package_name << ":" << profile_name; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool create_profile_snapshot(int32_t app_id, const std::string& package_name, | 
|  | const std::string& profile_name, const std::string& classpath) { | 
|  | if (app_id == -1) { | 
|  | return create_boot_image_profile_snapshot(package_name, profile_name, classpath); | 
|  | } else { | 
|  | return create_app_profile_snapshot(app_id, package_name, profile_name, classpath); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool prepare_app_profile(const std::string& package_name, | 
|  | userid_t user_id, | 
|  | appid_t app_id, | 
|  | const std::string& profile_name, | 
|  | const std::string& code_path, | 
|  | const std::unique_ptr<std::string>& dex_metadata) { | 
|  | // Prepare the current profile. | 
|  | std::string cur_profile  = create_current_profile_path(user_id, package_name, profile_name, | 
|  | /*is_secondary_dex*/ false); | 
|  | uid_t uid = multiuser_get_uid(user_id, app_id); | 
|  | if (fs_prepare_file_strict(cur_profile.c_str(), 0600, uid, uid) != 0) { | 
|  | PLOG(ERROR) << "Failed to prepare " << cur_profile; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check if we need to install the profile from the dex metadata. | 
|  | if (dex_metadata == nullptr) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We have a dex metdata. Merge the profile into the reference profile. | 
|  | unique_fd ref_profile_fd = open_reference_profile(uid, package_name, profile_name, | 
|  | /*read_write*/ true, /*is_secondary_dex*/ false); | 
|  | unique_fd dex_metadata_fd(TEMP_FAILURE_RETRY( | 
|  | open(dex_metadata->c_str(), O_RDONLY | O_NOFOLLOW))); | 
|  | unique_fd apk_fd(TEMP_FAILURE_RETRY(open(code_path.c_str(), O_RDONLY | O_NOFOLLOW))); | 
|  | if (apk_fd < 0) { | 
|  | PLOG(ERROR) << "Could not open code path " << code_path; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | RunProfman args; | 
|  | args.SetupCopyAndUpdate(std::move(dex_metadata_fd), | 
|  | std::move(ref_profile_fd), | 
|  | std::move(apk_fd), | 
|  | code_path); | 
|  | pid_t pid = fork(); | 
|  | if (pid == 0) { | 
|  | /* child -- drop privileges before continuing */ | 
|  | gid_t app_shared_gid = multiuser_get_shared_gid(user_id, app_id); | 
|  | drop_capabilities(app_shared_gid); | 
|  |  | 
|  | // The copy and update takes ownership over the fds. | 
|  | args.Exec(); | 
|  | } | 
|  |  | 
|  | /* parent */ | 
|  | int return_code = wait_child(pid); | 
|  | if (!WIFEXITED(return_code)) { | 
|  | PLOG(WARNING) << "profman failed for " << package_name << ":" << profile_name; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace installd | 
|  | }  // namespace android |