|  | /* | 
|  | * Copyright (C) 2005 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <dirent.h> | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <inttypes.h> | 
|  | #include <linux/ioctl.h> | 
|  | #include <memory.h> | 
|  | #include <stdint.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <sys/capability.h> | 
|  | #include <sys/epoll.h> | 
|  | #include <sys/inotify.h> | 
|  | #include <sys/ioctl.h> | 
|  | #include <sys/stat.h> | 
|  | #include <sys/sysmacros.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #define LOG_TAG "EventHub" | 
|  |  | 
|  | // #define LOG_NDEBUG 0 | 
|  | #include <android-base/file.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android-base/strings.h> | 
|  | #include <cutils/properties.h> | 
|  | #include <ftl/enum.h> | 
|  | #include <input/KeyCharacterMap.h> | 
|  | #include <input/KeyLayoutMap.h> | 
|  | #include <input/PrintTools.h> | 
|  | #include <input/VirtualKeyMap.h> | 
|  | #include <openssl/sha.h> | 
|  | #include <statslog.h> | 
|  | #include <utils/Errors.h> | 
|  | #include <utils/Log.h> | 
|  | #include <utils/Timers.h> | 
|  |  | 
|  | #include <filesystem> | 
|  | #include <optional> | 
|  | #include <regex> | 
|  | #include <utility> | 
|  |  | 
|  | #include "EventHub.h" | 
|  |  | 
|  | #include "KeyCodeClassifications.h" | 
|  |  | 
|  | #define INDENT "  " | 
|  | #define INDENT2 "    " | 
|  | #define INDENT3 "      " | 
|  |  | 
|  | using android::base::StringPrintf; | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | using namespace ftl::flag_operators; | 
|  |  | 
|  | static const char* DEVICE_INPUT_PATH = "/dev/input"; | 
|  | // v4l2 devices go directly into /dev | 
|  | static const char* DEVICE_PATH = "/dev"; | 
|  |  | 
|  | static constexpr size_t OBFUSCATED_LENGTH = 8; | 
|  |  | 
|  | static constexpr int32_t FF_STRONG_MAGNITUDE_CHANNEL_IDX = 0; | 
|  | static constexpr int32_t FF_WEAK_MAGNITUDE_CHANNEL_IDX = 1; | 
|  |  | 
|  | static constexpr size_t EVENT_BUFFER_SIZE = 256; | 
|  |  | 
|  | // Mapping for input battery class node IDs lookup. | 
|  | // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt | 
|  | static const std::unordered_map<std::string, InputBatteryClass> BATTERY_CLASSES = | 
|  | {{"capacity", InputBatteryClass::CAPACITY}, | 
|  | {"capacity_level", InputBatteryClass::CAPACITY_LEVEL}, | 
|  | {"status", InputBatteryClass::STATUS}}; | 
|  |  | 
|  | // Mapping for input battery class node names lookup. | 
|  | // https://www.kernel.org/doc/Documentation/power/power_supply_class.txt | 
|  | static const std::unordered_map<InputBatteryClass, std::string> BATTERY_NODES = | 
|  | {{InputBatteryClass::CAPACITY, "capacity"}, | 
|  | {InputBatteryClass::CAPACITY_LEVEL, "capacity_level"}, | 
|  | {InputBatteryClass::STATUS, "status"}}; | 
|  |  | 
|  | // must be kept in sync with definitions in kernel /drivers/power/supply/power_supply_sysfs.c | 
|  | static const std::unordered_map<std::string, int32_t> BATTERY_STATUS = | 
|  | {{"Unknown", BATTERY_STATUS_UNKNOWN}, | 
|  | {"Charging", BATTERY_STATUS_CHARGING}, | 
|  | {"Discharging", BATTERY_STATUS_DISCHARGING}, | 
|  | {"Not charging", BATTERY_STATUS_NOT_CHARGING}, | 
|  | {"Full", BATTERY_STATUS_FULL}}; | 
|  |  | 
|  | // Mapping taken from | 
|  | // https://gitlab.freedesktop.org/upower/upower/-/blob/master/src/linux/up-device-supply.c#L484 | 
|  | static const std::unordered_map<std::string, int32_t> BATTERY_LEVEL = {{"Critical", 5}, | 
|  | {"Low", 10}, | 
|  | {"Normal", 55}, | 
|  | {"High", 70}, | 
|  | {"Full", 100}, | 
|  | {"Unknown", 50}}; | 
|  |  | 
|  | // Mapping for input led class node names lookup. | 
|  | // https://www.kernel.org/doc/html/latest/leds/leds-class.html | 
|  | static const std::unordered_map<std::string, InputLightClass> LIGHT_CLASSES = | 
|  | {{"red", InputLightClass::RED}, | 
|  | {"green", InputLightClass::GREEN}, | 
|  | {"blue", InputLightClass::BLUE}, | 
|  | {"global", InputLightClass::GLOBAL}, | 
|  | {"brightness", InputLightClass::BRIGHTNESS}, | 
|  | {"multi_index", InputLightClass::MULTI_INDEX}, | 
|  | {"multi_intensity", InputLightClass::MULTI_INTENSITY}, | 
|  | {"max_brightness", InputLightClass::MAX_BRIGHTNESS}, | 
|  | {"kbd_backlight", InputLightClass::KEYBOARD_BACKLIGHT}}; | 
|  |  | 
|  | // Mapping for input multicolor led class node names. | 
|  | // https://www.kernel.org/doc/html/latest/leds/leds-class-multicolor.html | 
|  | static const std::unordered_map<InputLightClass, std::string> LIGHT_NODES = | 
|  | {{InputLightClass::BRIGHTNESS, "brightness"}, | 
|  | {InputLightClass::MULTI_INDEX, "multi_index"}, | 
|  | {InputLightClass::MULTI_INTENSITY, "multi_intensity"}}; | 
|  |  | 
|  | // Mapping for light color name and the light color | 
|  | const std::unordered_map<std::string, LightColor> LIGHT_COLORS = {{"red", LightColor::RED}, | 
|  | {"green", LightColor::GREEN}, | 
|  | {"blue", LightColor::BLUE}}; | 
|  |  | 
|  | // Mapping for country code to Layout info. | 
|  | // See bCountryCode in 6.2.1 of https://usb.org/sites/default/files/hid1_11.pdf. | 
|  | const std::unordered_map<std::int32_t, RawLayoutInfo> LAYOUT_INFOS = | 
|  | {{0, RawLayoutInfo{.languageTag = "", .layoutType = ""}},             // NOT_SUPPORTED | 
|  | {1, RawLayoutInfo{.languageTag = "ar-Arab", .layoutType = ""}},      // ARABIC | 
|  | {2, RawLayoutInfo{.languageTag = "fr-BE", .layoutType = ""}},        // BELGIAN | 
|  | {3, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}},        // CANADIAN_BILINGUAL | 
|  | {4, RawLayoutInfo{.languageTag = "fr-CA", .layoutType = ""}},        // CANADIAN_FRENCH | 
|  | {5, RawLayoutInfo{.languageTag = "cs", .layoutType = ""}},           // CZECH_REPUBLIC | 
|  | {6, RawLayoutInfo{.languageTag = "da", .layoutType = ""}},           // DANISH | 
|  | {7, RawLayoutInfo{.languageTag = "fi", .layoutType = ""}},           // FINNISH | 
|  | {8, RawLayoutInfo{.languageTag = "fr-FR", .layoutType = ""}},        // FRENCH | 
|  | {9, RawLayoutInfo{.languageTag = "de", .layoutType = ""}},           // GERMAN | 
|  | {10, RawLayoutInfo{.languageTag = "el", .layoutType = ""}},          // GREEK | 
|  | {11, RawLayoutInfo{.languageTag = "iw", .layoutType = ""}},          // HEBREW | 
|  | {12, RawLayoutInfo{.languageTag = "hu", .layoutType = ""}},          // HUNGARY | 
|  | {13, RawLayoutInfo{.languageTag = "en", .layoutType = "extended"}},  // INTERNATIONAL (ISO) | 
|  | {14, RawLayoutInfo{.languageTag = "it", .layoutType = ""}},          // ITALIAN | 
|  | {15, RawLayoutInfo{.languageTag = "ja", .layoutType = ""}},          // JAPAN | 
|  | {16, RawLayoutInfo{.languageTag = "ko", .layoutType = ""}},          // KOREAN | 
|  | {17, RawLayoutInfo{.languageTag = "es-419", .layoutType = ""}},      // LATIN_AMERICA | 
|  | {18, RawLayoutInfo{.languageTag = "nl", .layoutType = ""}},          // DUTCH | 
|  | {19, RawLayoutInfo{.languageTag = "nb", .layoutType = ""}},          // NORWEGIAN | 
|  | {20, RawLayoutInfo{.languageTag = "fa", .layoutType = ""}},          // PERSIAN | 
|  | {21, RawLayoutInfo{.languageTag = "pl", .layoutType = ""}},          // POLAND | 
|  | {22, RawLayoutInfo{.languageTag = "pt", .layoutType = ""}},          // PORTUGUESE | 
|  | {23, RawLayoutInfo{.languageTag = "ru", .layoutType = ""}},          // RUSSIA | 
|  | {24, RawLayoutInfo{.languageTag = "sk", .layoutType = ""}},          // SLOVAKIA | 
|  | {25, RawLayoutInfo{.languageTag = "es-ES", .layoutType = ""}},       // SPANISH | 
|  | {26, RawLayoutInfo{.languageTag = "sv", .layoutType = ""}},          // SWEDISH | 
|  | {27, RawLayoutInfo{.languageTag = "fr-CH", .layoutType = ""}},       // SWISS_FRENCH | 
|  | {28, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}},       // SWISS_GERMAN | 
|  | {29, RawLayoutInfo{.languageTag = "de-CH", .layoutType = ""}},       // SWITZERLAND | 
|  | {30, RawLayoutInfo{.languageTag = "zh-TW", .layoutType = ""}},       // TAIWAN | 
|  | {31, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_q"}}, // TURKISH_Q | 
|  | {32, RawLayoutInfo{.languageTag = "en-GB", .layoutType = ""}},       // UK | 
|  | {33, RawLayoutInfo{.languageTag = "en-US", .layoutType = ""}},       // US | 
|  | {34, RawLayoutInfo{.languageTag = "", .layoutType = ""}},            // YUGOSLAVIA | 
|  | {35, RawLayoutInfo{.languageTag = "tr", .layoutType = "turkish_f"}}}; // TURKISH_F | 
|  |  | 
|  | static std::string sha1(const std::string& in) { | 
|  | SHA_CTX ctx; | 
|  | SHA1_Init(&ctx); | 
|  | SHA1_Update(&ctx, reinterpret_cast<const u_char*>(in.c_str()), in.size()); | 
|  | u_char digest[SHA_DIGEST_LENGTH]; | 
|  | SHA1_Final(digest, &ctx); | 
|  |  | 
|  | std::string out; | 
|  | for (size_t i = 0; i < SHA_DIGEST_LENGTH; i++) { | 
|  | out += StringPrintf("%02x", digest[i]); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return true if name matches "v4l-touch*" | 
|  | */ | 
|  | static bool isV4lTouchNode(std::string name) { | 
|  | return name.find("v4l-touch") != std::string::npos; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns true if V4L devices should be scanned. | 
|  | * | 
|  | * The system property ro.input.video_enabled can be used to control whether | 
|  | * EventHub scans and opens V4L devices. As V4L does not support multiple | 
|  | * clients, EventHub effectively blocks access to these devices when it opens | 
|  | * them. | 
|  | * | 
|  | * Setting this to "false" would prevent any video devices from being discovered and | 
|  | * associated with input devices. | 
|  | * | 
|  | * This property can be used as follows: | 
|  | * 1. To turn off features that are dependent on video device presence. | 
|  | * 2. During testing and development, to allow other clients to read video devices | 
|  | * directly from /dev. | 
|  | */ | 
|  | static bool isV4lScanningEnabled() { | 
|  | return property_get_bool("ro.input.video_enabled", /*default_value=*/true); | 
|  | } | 
|  |  | 
|  | static nsecs_t processEventTimestamp(const struct input_event& event) { | 
|  | // Use the time specified in the event instead of the current time | 
|  | // so that downstream code can get more accurate estimates of | 
|  | // event dispatch latency from the time the event is enqueued onto | 
|  | // the evdev client buffer. | 
|  | // | 
|  | // The event's timestamp fortuitously uses the same monotonic clock | 
|  | // time base as the rest of Android. The kernel event device driver | 
|  | // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts(). | 
|  | // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere | 
|  | // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a | 
|  | // system call that also queries ktime_get_ts(). | 
|  |  | 
|  | const nsecs_t inputEventTime = seconds_to_nanoseconds(event.input_event_sec) + | 
|  | microseconds_to_nanoseconds(event.input_event_usec); | 
|  | return inputEventTime; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the sysfs root path of the input device. | 
|  | */ | 
|  | static std::optional<std::filesystem::path> getSysfsRootPath(const char* devicePath) { | 
|  | std::error_code errorCode; | 
|  |  | 
|  | // Stat the device path to get the major and minor number of the character file | 
|  | struct stat statbuf; | 
|  | if (stat(devicePath, &statbuf) == -1) { | 
|  | ALOGE("Could not stat device %s due to error: %s.", devicePath, std::strerror(errno)); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | unsigned int major_num = major(statbuf.st_rdev); | 
|  | unsigned int minor_num = minor(statbuf.st_rdev); | 
|  |  | 
|  | // Realpath "/sys/dev/char/{major}:{minor}" to get the sysfs path to the input event | 
|  | auto sysfsPath = std::filesystem::path("/sys/dev/char/"); | 
|  | sysfsPath /= std::to_string(major_num) + ":" + std::to_string(minor_num); | 
|  | sysfsPath = std::filesystem::canonical(sysfsPath, errorCode); | 
|  |  | 
|  | // Make sure nothing went wrong in call to canonical() | 
|  | if (errorCode) { | 
|  | ALOGW("Could not run filesystem::canonical() due to error %d : %s.", errorCode.value(), | 
|  | errorCode.message().c_str()); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | // Continue to go up a directory until we reach a directory named "input" | 
|  | while (sysfsPath != "/" && sysfsPath.filename() != "input") { | 
|  | sysfsPath = sysfsPath.parent_path(); | 
|  | } | 
|  |  | 
|  | // Then go up one more and you will be at the sysfs root of the device | 
|  | sysfsPath = sysfsPath.parent_path(); | 
|  |  | 
|  | // Make sure we didn't reach root path and that directory actually exists | 
|  | if (sysfsPath == "/" || !std::filesystem::exists(sysfsPath, errorCode)) { | 
|  | if (errorCode) { | 
|  | ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(), | 
|  | errorCode.message().c_str()); | 
|  | } | 
|  |  | 
|  | // Not found | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | return sysfsPath; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the list of files under a specified path. | 
|  | */ | 
|  | static std::vector<std::filesystem::path> allFilesInPath(const std::filesystem::path& path) { | 
|  | std::vector<std::filesystem::path> nodes; | 
|  | std::error_code errorCode; | 
|  | auto iter = std::filesystem::directory_iterator(path, errorCode); | 
|  | while (!errorCode && iter != std::filesystem::directory_iterator()) { | 
|  | nodes.push_back(iter->path()); | 
|  | iter++; | 
|  | } | 
|  | return nodes; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the list of files under a specified directory in a sysfs path. | 
|  | * Example: | 
|  | * findSysfsNodes(sysfsRootPath, SysfsClass::LEDS) will return all led nodes under "leds" directory | 
|  | * in the sysfs path. | 
|  | */ | 
|  | static std::vector<std::filesystem::path> findSysfsNodes(const std::filesystem::path& sysfsRoot, | 
|  | SysfsClass clazz) { | 
|  | std::string nodeStr = ftl::enum_string(clazz); | 
|  | std::for_each(nodeStr.begin(), nodeStr.end(), | 
|  | [](char& c) { c = std::tolower(static_cast<unsigned char>(c)); }); | 
|  | std::vector<std::filesystem::path> nodes; | 
|  | for (auto path = sysfsRoot; path != "/" && nodes.empty(); path = path.parent_path()) { | 
|  | nodes = allFilesInPath(path / nodeStr); | 
|  | } | 
|  | return nodes; | 
|  | } | 
|  |  | 
|  | static std::optional<std::array<LightColor, COLOR_NUM>> getColorIndexArray( | 
|  | std::filesystem::path path) { | 
|  | std::string indexStr; | 
|  | if (!base::ReadFileToString(path, &indexStr)) { | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | // Parse the multi color LED index file, refer to kernel docs | 
|  | // leds/leds-class-multicolor.html | 
|  | std::regex indexPattern("(red|green|blue)\\s(red|green|blue)\\s(red|green|blue)[\\n]"); | 
|  | std::smatch results; | 
|  | std::array<LightColor, COLOR_NUM> colors; | 
|  | if (!std::regex_match(indexStr, results, indexPattern)) { | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | for (size_t i = 1; i < results.size(); i++) { | 
|  | const auto it = LIGHT_COLORS.find(results[i].str()); | 
|  | if (it != LIGHT_COLORS.end()) { | 
|  | // intensities.emplace(it->second, 0); | 
|  | colors[i - 1] = it->second; | 
|  | } | 
|  | } | 
|  | return colors; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Read country code information exposed through the sysfs path and convert it to Layout info. | 
|  | */ | 
|  | static std::optional<RawLayoutInfo> readLayoutConfiguration( | 
|  | const std::filesystem::path& sysfsRootPath) { | 
|  | // Check the sysfs root path | 
|  | int32_t hidCountryCode = -1; | 
|  | std::string str; | 
|  | if (base::ReadFileToString(sysfsRootPath / "country", &str)) { | 
|  | hidCountryCode = std::stoi(str, nullptr, 16); | 
|  | // Update this condition if new supported country codes are added to HID spec. | 
|  | if (hidCountryCode > 35 || hidCountryCode < 0) { | 
|  | ALOGE("HID country code should be in range [0, 35], but for sysfs path %s it was %d", | 
|  | sysfsRootPath.c_str(), hidCountryCode); | 
|  | } | 
|  | } | 
|  | const auto it = LAYOUT_INFOS.find(hidCountryCode); | 
|  | if (it != LAYOUT_INFOS.end()) { | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Read information about batteries exposed through the sysfs path. | 
|  | */ | 
|  | static std::unordered_map<int32_t /*batteryId*/, RawBatteryInfo> readBatteryConfiguration( | 
|  | const std::filesystem::path& sysfsRootPath) { | 
|  | std::unordered_map<int32_t, RawBatteryInfo> batteryInfos; | 
|  | int32_t nextBatteryId = 0; | 
|  | // Check if device has any battery. | 
|  | const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::POWER_SUPPLY); | 
|  | for (const auto& nodePath : paths) { | 
|  | RawBatteryInfo info; | 
|  | info.id = ++nextBatteryId; | 
|  | info.path = nodePath; | 
|  | info.name = nodePath.filename(); | 
|  |  | 
|  | // Scan the path for all the files | 
|  | // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt | 
|  | const auto& files = allFilesInPath(nodePath); | 
|  | for (const auto& file : files) { | 
|  | const auto it = BATTERY_CLASSES.find(file.filename().string()); | 
|  | if (it != BATTERY_CLASSES.end()) { | 
|  | info.flags |= it->second; | 
|  | } | 
|  | } | 
|  | batteryInfos.insert_or_assign(info.id, info); | 
|  | ALOGD("configureBatteryLocked rawBatteryId %d name %s", info.id, info.name.c_str()); | 
|  | } | 
|  | return batteryInfos; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  Read information about lights exposed through the sysfs path. | 
|  | */ | 
|  | static std::unordered_map<int32_t /*lightId*/, RawLightInfo> readLightsConfiguration( | 
|  | const std::filesystem::path& sysfsRootPath) { | 
|  | std::unordered_map<int32_t, RawLightInfo> lightInfos; | 
|  | int32_t nextLightId = 0; | 
|  | // Check if device has any lights. | 
|  | const auto& paths = findSysfsNodes(sysfsRootPath, SysfsClass::LEDS); | 
|  | for (const auto& nodePath : paths) { | 
|  | RawLightInfo info; | 
|  | info.id = ++nextLightId; | 
|  | info.path = nodePath; | 
|  | info.name = nodePath.filename(); | 
|  | info.maxBrightness = std::nullopt; | 
|  |  | 
|  | // Light name should follow the naming pattern <name>:<color>:<function> | 
|  | // Refer kernel docs /leds/leds-class.html for valid supported LED names. | 
|  | std::regex indexPattern("([a-zA-Z0-9_.:]*:)?([a-zA-Z0-9_.]*):([a-zA-Z0-9_.]*)"); | 
|  | std::smatch results; | 
|  |  | 
|  | if (std::regex_match(info.name, results, indexPattern)) { | 
|  | // regex_match will return full match at index 0 and <name> at index 1. For RawLightInfo | 
|  | // we only care about sections <color> and <function> which will be at index 2 and 3. | 
|  | for (int i = 2; i <= 3; i++) { | 
|  | const auto it = LIGHT_CLASSES.find(results.str(i)); | 
|  | if (it != LIGHT_CLASSES.end()) { | 
|  | info.flags |= it->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set name of the raw light to <function> which represents playerIDs for LEDs that | 
|  | // turn on/off based on the current player ID (Refer to PeripheralController.cpp for | 
|  | // player ID logic) | 
|  | info.name = results.str(3); | 
|  | } | 
|  | // Scan the path for all the files | 
|  | // Refer to https://www.kernel.org/doc/Documentation/leds/leds-class.txt | 
|  | const auto& files = allFilesInPath(nodePath); | 
|  | for (const auto& file : files) { | 
|  | const auto it = LIGHT_CLASSES.find(file.filename().string()); | 
|  | if (it != LIGHT_CLASSES.end()) { | 
|  | info.flags |= it->second; | 
|  | // If the node has maximum brightness, read it | 
|  | if (it->second == InputLightClass::MAX_BRIGHTNESS) { | 
|  | std::string str; | 
|  | if (base::ReadFileToString(file, &str)) { | 
|  | info.maxBrightness = std::stoi(str); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | lightInfos.insert_or_assign(info.id, info); | 
|  | ALOGD("configureLightsLocked rawLightId %d name %s", info.id, info.name.c_str()); | 
|  | } | 
|  | return lightInfos; | 
|  | } | 
|  |  | 
|  | // --- Global Functions --- | 
|  |  | 
|  | ftl::Flags<InputDeviceClass> getAbsAxisUsage(int32_t axis, | 
|  | ftl::Flags<InputDeviceClass> deviceClasses) { | 
|  | // Touch devices get dibs on touch-related axes. | 
|  | if (deviceClasses.test(InputDeviceClass::TOUCH)) { | 
|  | switch (axis) { | 
|  | case ABS_X: | 
|  | case ABS_Y: | 
|  | case ABS_PRESSURE: | 
|  | case ABS_TOOL_WIDTH: | 
|  | case ABS_DISTANCE: | 
|  | case ABS_TILT_X: | 
|  | case ABS_TILT_Y: | 
|  | case ABS_MT_SLOT: | 
|  | case ABS_MT_TOUCH_MAJOR: | 
|  | case ABS_MT_TOUCH_MINOR: | 
|  | case ABS_MT_WIDTH_MAJOR: | 
|  | case ABS_MT_WIDTH_MINOR: | 
|  | case ABS_MT_ORIENTATION: | 
|  | case ABS_MT_POSITION_X: | 
|  | case ABS_MT_POSITION_Y: | 
|  | case ABS_MT_TOOL_TYPE: | 
|  | case ABS_MT_BLOB_ID: | 
|  | case ABS_MT_TRACKING_ID: | 
|  | case ABS_MT_PRESSURE: | 
|  | case ABS_MT_DISTANCE: | 
|  | return InputDeviceClass::TOUCH; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (deviceClasses.test(InputDeviceClass::SENSOR)) { | 
|  | switch (axis) { | 
|  | case ABS_X: | 
|  | case ABS_Y: | 
|  | case ABS_Z: | 
|  | case ABS_RX: | 
|  | case ABS_RY: | 
|  | case ABS_RZ: | 
|  | return InputDeviceClass::SENSOR; | 
|  | } | 
|  | } | 
|  |  | 
|  | // External stylus gets the pressure axis | 
|  | if (deviceClasses.test(InputDeviceClass::EXTERNAL_STYLUS)) { | 
|  | if (axis == ABS_PRESSURE) { | 
|  | return InputDeviceClass::EXTERNAL_STYLUS; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Joystick devices get the rest. | 
|  | return deviceClasses & InputDeviceClass::JOYSTICK; | 
|  | } | 
|  |  | 
|  | // --- RawAbsoluteAxisInfo --- | 
|  |  | 
|  | std::ostream& operator<<(std::ostream& out, const RawAbsoluteAxisInfo& info) { | 
|  | if (info.valid) { | 
|  | out << "min=" << info.minValue << ", max=" << info.maxValue << ", flat=" << info.flat | 
|  | << ", fuzz=" << info.fuzz << ", resolution=" << info.resolution; | 
|  | } else { | 
|  | out << "unknown range"; | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | // --- EventHub::Device --- | 
|  |  | 
|  | EventHub::Device::Device(int fd, int32_t id, std::string path, InputDeviceIdentifier identifier, | 
|  | std::shared_ptr<const AssociatedDevice> assocDev) | 
|  | : fd(fd), | 
|  | id(id), | 
|  | path(std::move(path)), | 
|  | identifier(std::move(identifier)), | 
|  | classes(0), | 
|  | configuration(nullptr), | 
|  | virtualKeyMap(nullptr), | 
|  | ffEffectPlaying(false), | 
|  | ffEffectId(-1), | 
|  | associatedDevice(std::move(assocDev)), | 
|  | controllerNumber(0), | 
|  | enabled(true), | 
|  | isVirtual(fd < 0) {} | 
|  |  | 
|  | EventHub::Device::~Device() { | 
|  | close(); | 
|  | } | 
|  |  | 
|  | void EventHub::Device::close() { | 
|  | if (fd >= 0) { | 
|  | ::close(fd); | 
|  | fd = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t EventHub::Device::enable() { | 
|  | fd = open(path.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK); | 
|  | if (fd < 0) { | 
|  | ALOGE("could not open %s, %s\n", path.c_str(), strerror(errno)); | 
|  | return -errno; | 
|  | } | 
|  | enabled = true; | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | status_t EventHub::Device::disable() { | 
|  | close(); | 
|  | enabled = false; | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | bool EventHub::Device::hasValidFd() const { | 
|  | return !isVirtual && enabled; | 
|  | } | 
|  |  | 
|  | const std::shared_ptr<KeyCharacterMap> EventHub::Device::getKeyCharacterMap() const { | 
|  | return keyMap.keyCharacterMap; | 
|  | } | 
|  |  | 
|  | template <std::size_t N> | 
|  | status_t EventHub::Device::readDeviceBitMask(unsigned long ioctlCode, BitArray<N>& bitArray) { | 
|  | if (!hasValidFd()) { | 
|  | return BAD_VALUE; | 
|  | } | 
|  | if ((_IOC_SIZE(ioctlCode) == 0)) { | 
|  | ioctlCode |= _IOC(0, 0, 0, bitArray.bytes()); | 
|  | } | 
|  |  | 
|  | typename BitArray<N>::Buffer buffer; | 
|  | status_t ret = ioctl(fd, ioctlCode, buffer.data()); | 
|  | bitArray.loadFromBuffer(buffer); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void EventHub::Device::configureFd() { | 
|  | // Set fd parameters with ioctl, such as key repeat, suspend block, and clock type | 
|  | if (classes.test(InputDeviceClass::KEYBOARD)) { | 
|  | // Disable kernel key repeat since we handle it ourselves | 
|  | unsigned int repeatRate[] = {0, 0}; | 
|  | if (ioctl(fd, EVIOCSREP, repeatRate)) { | 
|  | ALOGW("Unable to disable kernel key repeat for %s: %s", path.c_str(), strerror(errno)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tell the kernel that we want to use the monotonic clock for reporting timestamps | 
|  | // associated with input events.  This is important because the input system | 
|  | // uses the timestamps extensively and assumes they were recorded using the monotonic | 
|  | // clock. | 
|  | int clockId = CLOCK_MONOTONIC; | 
|  | if (classes.test(InputDeviceClass::SENSOR)) { | 
|  | // Each new sensor event should use the same time base as | 
|  | // SystemClock.elapsedRealtimeNanos(). | 
|  | clockId = CLOCK_BOOTTIME; | 
|  | } | 
|  | bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId); | 
|  | ALOGI("usingClockIoctl=%s", toString(usingClockIoctl)); | 
|  | } | 
|  |  | 
|  | bool EventHub::Device::hasKeycodeLocked(int keycode) const { | 
|  | if (!keyMap.haveKeyLayout()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::vector<int32_t> scanCodes = keyMap.keyLayoutMap->findScanCodesForKey(keycode); | 
|  | const size_t N = scanCodes.size(); | 
|  | for (size_t i = 0; i < N && i <= KEY_MAX; i++) { | 
|  | int32_t sc = scanCodes[i]; | 
|  | if (sc >= 0 && sc <= KEY_MAX && keyBitmask.test(sc)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<int32_t> usageCodes = keyMap.keyLayoutMap->findUsageCodesForKey(keycode); | 
|  | if (usageCodes.size() > 0 && mscBitmask.test(MSC_SCAN)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void EventHub::Device::loadConfigurationLocked() { | 
|  | configurationFile = | 
|  | getInputDeviceConfigurationFilePathByDeviceIdentifier(identifier, | 
|  | InputDeviceConfigurationFileType:: | 
|  | CONFIGURATION); | 
|  | if (configurationFile.empty()) { | 
|  | ALOGD("No input device configuration file found for device '%s'.", identifier.name.c_str()); | 
|  | } else { | 
|  | android::base::Result<std::unique_ptr<PropertyMap>> propertyMap = | 
|  | PropertyMap::load(configurationFile.c_str()); | 
|  | if (!propertyMap.ok()) { | 
|  | ALOGE("Error loading input device configuration file for device '%s'.  " | 
|  | "Using default configuration.", | 
|  | identifier.name.c_str()); | 
|  | } else { | 
|  | configuration = std::move(*propertyMap); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool EventHub::Device::loadVirtualKeyMapLocked() { | 
|  | // The virtual key map is supplied by the kernel as a system board property file. | 
|  | std::string propPath = "/sys/board_properties/virtualkeys."; | 
|  | propPath += identifier.getCanonicalName(); | 
|  | if (access(propPath.c_str(), R_OK)) { | 
|  | return false; | 
|  | } | 
|  | virtualKeyMap = VirtualKeyMap::load(propPath); | 
|  | return virtualKeyMap != nullptr; | 
|  | } | 
|  |  | 
|  | status_t EventHub::Device::loadKeyMapLocked() { | 
|  | return keyMap.load(identifier, configuration.get()); | 
|  | } | 
|  |  | 
|  | bool EventHub::Device::isExternalDeviceLocked() { | 
|  | if (configuration) { | 
|  | std::optional<bool> isInternal = configuration->getBool("device.internal"); | 
|  | if (isInternal.has_value()) { | 
|  | return !isInternal.value(); | 
|  | } | 
|  | } | 
|  | return identifier.bus == BUS_USB || identifier.bus == BUS_BLUETOOTH; | 
|  | } | 
|  |  | 
|  | bool EventHub::Device::deviceHasMicLocked() { | 
|  | if (configuration) { | 
|  | std::optional<bool> hasMic = configuration->getBool("audio.mic"); | 
|  | if (hasMic.has_value()) { | 
|  | return hasMic.value(); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void EventHub::Device::setLedStateLocked(int32_t led, bool on) { | 
|  | int32_t sc; | 
|  | if (hasValidFd() && mapLed(led, &sc) != NAME_NOT_FOUND) { | 
|  | struct input_event ev; | 
|  | ev.input_event_sec = 0; | 
|  | ev.input_event_usec = 0; | 
|  | ev.type = EV_LED; | 
|  | ev.code = sc; | 
|  | ev.value = on ? 1 : 0; | 
|  |  | 
|  | ssize_t nWrite; | 
|  | do { | 
|  | nWrite = write(fd, &ev, sizeof(struct input_event)); | 
|  | } while (nWrite == -1 && errno == EINTR); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EventHub::Device::setLedForControllerLocked() { | 
|  | for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) { | 
|  | setLedStateLocked(ALED_CONTROLLER_1 + i, controllerNumber == i + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t EventHub::Device::mapLed(int32_t led, int32_t* outScanCode) const { | 
|  | if (!keyMap.haveKeyLayout()) { | 
|  | return NAME_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | std::optional<int32_t> scanCode = keyMap.keyLayoutMap->findScanCodeForLed(led); | 
|  | if (scanCode.has_value()) { | 
|  | if (*scanCode >= 0 && *scanCode <= LED_MAX && ledBitmask.test(*scanCode)) { | 
|  | *outScanCode = *scanCode; | 
|  | return NO_ERROR; | 
|  | } | 
|  | } | 
|  | return NAME_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Get the capabilities for the current process. | 
|  | * Crashes the system if unable to create / check / destroy the capabilities object. | 
|  | */ | 
|  | class Capabilities final { | 
|  | public: | 
|  | explicit Capabilities() { | 
|  | mCaps = cap_get_proc(); | 
|  | LOG_ALWAYS_FATAL_IF(mCaps == nullptr, "Could not get capabilities of the current process"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Check whether the current process has a specific capability | 
|  | * in the set of effective capabilities. | 
|  | * Return CAP_SET if the process has the requested capability | 
|  | * Return CAP_CLEAR otherwise. | 
|  | */ | 
|  | cap_flag_value_t checkEffectiveCapability(cap_value_t capability) { | 
|  | cap_flag_value_t value; | 
|  | const int result = cap_get_flag(mCaps, capability, CAP_EFFECTIVE, &value); | 
|  | LOG_ALWAYS_FATAL_IF(result == -1, "Could not obtain the requested capability"); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | ~Capabilities() { | 
|  | const int result = cap_free(mCaps); | 
|  | LOG_ALWAYS_FATAL_IF(result == -1, "Could not release the capabilities structure"); | 
|  | } | 
|  |  | 
|  | private: | 
|  | cap_t mCaps; | 
|  | }; | 
|  |  | 
|  | static void ensureProcessCanBlockSuspend() { | 
|  | Capabilities capabilities; | 
|  | const bool canBlockSuspend = | 
|  | capabilities.checkEffectiveCapability(CAP_BLOCK_SUSPEND) == CAP_SET; | 
|  | LOG_ALWAYS_FATAL_IF(!canBlockSuspend, | 
|  | "Input must be able to block suspend to properly process events"); | 
|  | } | 
|  |  | 
|  | // --- EventHub --- | 
|  |  | 
|  | const int EventHub::EPOLL_MAX_EVENTS; | 
|  |  | 
|  | EventHub::EventHub(void) | 
|  | : mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), | 
|  | mNextDeviceId(1), | 
|  | mControllerNumbers(), | 
|  | mNeedToSendFinishedDeviceScan(false), | 
|  | mNeedToReopenDevices(false), | 
|  | mNeedToScanDevices(true), | 
|  | mPendingEventCount(0), | 
|  | mPendingEventIndex(0), | 
|  | mPendingINotify(false) { | 
|  | ensureProcessCanBlockSuspend(); | 
|  |  | 
|  | mEpollFd = epoll_create1(EPOLL_CLOEXEC); | 
|  | LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno)); | 
|  |  | 
|  | mINotifyFd = inotify_init1(IN_CLOEXEC); | 
|  | LOG_ALWAYS_FATAL_IF(mINotifyFd < 0, "Could not create inotify instance: %s", strerror(errno)); | 
|  |  | 
|  | std::error_code errorCode; | 
|  | bool isDeviceInotifyAdded = false; | 
|  | if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) { | 
|  | addDeviceInputInotify(); | 
|  | } else { | 
|  | addDeviceInotify(); | 
|  | isDeviceInotifyAdded = true; | 
|  | if (errorCode) { | 
|  | ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(), | 
|  | errorCode.message().c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isV4lScanningEnabled() && !isDeviceInotifyAdded) { | 
|  | addDeviceInotify(); | 
|  | } else { | 
|  | ALOGI("Video device scanning disabled"); | 
|  | } | 
|  |  | 
|  | struct epoll_event eventItem = {}; | 
|  | eventItem.events = EPOLLIN | EPOLLWAKEUP; | 
|  | eventItem.data.fd = mINotifyFd; | 
|  | int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); | 
|  | LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance.  errno=%d", errno); | 
|  |  | 
|  | int wakeFds[2]; | 
|  | result = pipe2(wakeFds, O_CLOEXEC); | 
|  | LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe.  errno=%d", errno); | 
|  |  | 
|  | mWakeReadPipeFd = wakeFds[0]; | 
|  | mWakeWritePipeFd = wakeFds[1]; | 
|  |  | 
|  | result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); | 
|  | LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking.  errno=%d", | 
|  | errno); | 
|  |  | 
|  | result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); | 
|  | LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking.  errno=%d", | 
|  | errno); | 
|  |  | 
|  | eventItem.data.fd = mWakeReadPipeFd; | 
|  | result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); | 
|  | LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance.  errno=%d", | 
|  | errno); | 
|  | } | 
|  |  | 
|  | EventHub::~EventHub(void) { | 
|  | closeAllDevicesLocked(); | 
|  |  | 
|  | ::close(mEpollFd); | 
|  | ::close(mINotifyFd); | 
|  | ::close(mWakeReadPipeFd); | 
|  | ::close(mWakeWritePipeFd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * On devices that don't have any input devices (like some development boards), the /dev/input | 
|  | * directory will be absent. However, the user may still plug in an input device at a later time. | 
|  | * Add watch for contents of /dev/input only when /dev/input appears. | 
|  | */ | 
|  | void EventHub::addDeviceInputInotify() { | 
|  | mDeviceInputWd = inotify_add_watch(mINotifyFd, DEVICE_INPUT_PATH, IN_DELETE | IN_CREATE); | 
|  | LOG_ALWAYS_FATAL_IF(mDeviceInputWd < 0, "Could not register INotify for %s: %s", | 
|  | DEVICE_INPUT_PATH, strerror(errno)); | 
|  | } | 
|  |  | 
|  | void EventHub::addDeviceInotify() { | 
|  | mDeviceWd = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); | 
|  | LOG_ALWAYS_FATAL_IF(mDeviceWd < 0, "Could not register INotify for %s: %s", DEVICE_PATH, | 
|  | strerror(errno)); | 
|  | } | 
|  |  | 
|  | void EventHub::populateDeviceAbsoluteAxisInfo(Device& device) { | 
|  | for (int axis = 0; axis <= ABS_MAX; axis++) { | 
|  | if (!device.absBitmask.test(axis)) { | 
|  | continue; | 
|  | } | 
|  | struct input_absinfo info {}; | 
|  | if (ioctl(device.fd, EVIOCGABS(axis), &info)) { | 
|  | ALOGE("Error reading absolute controller %d for device %s fd %d, errno=%d", axis, | 
|  | device.identifier.name.c_str(), device.fd, errno); | 
|  | continue; | 
|  | } | 
|  | if (info.minimum == info.maximum) { | 
|  | continue; | 
|  | } | 
|  | RawAbsoluteAxisInfo& outAxisInfo = device.rawAbsoluteAxisInfoCache[axis]; | 
|  | outAxisInfo.valid = true; | 
|  | outAxisInfo.minValue = info.minimum; | 
|  | outAxisInfo.maxValue = info.maximum; | 
|  | outAxisInfo.flat = info.flat; | 
|  | outAxisInfo.fuzz = info.fuzz; | 
|  | outAxisInfo.resolution = info.resolution; | 
|  | } | 
|  | } | 
|  |  | 
|  | InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | return device != nullptr ? device->identifier : InputDeviceIdentifier(); | 
|  | } | 
|  |  | 
|  | ftl::Flags<InputDeviceClass> EventHub::getDeviceClasses(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | return device != nullptr ? device->classes : ftl::Flags<InputDeviceClass>(0); | 
|  | } | 
|  |  | 
|  | int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | return device != nullptr ? device->controllerNumber : 0; | 
|  | } | 
|  |  | 
|  | std::optional<PropertyMap> EventHub::getConfiguration(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr || device->configuration == nullptr) { | 
|  | return {}; | 
|  | } | 
|  | return *device->configuration; | 
|  | } | 
|  |  | 
|  | status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, | 
|  | RawAbsoluteAxisInfo* outAxisInfo) const { | 
|  | outAxisInfo->clear(); | 
|  | if (axis < 0 || axis > ABS_MAX) { | 
|  | return -1; | 
|  | } | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr) { | 
|  | return -1; | 
|  | } | 
|  | auto it = device->rawAbsoluteAxisInfoCache.find(axis); | 
|  | if (it == device->rawAbsoluteAxisInfoCache.end()) { | 
|  | return -1; | 
|  | } | 
|  | *outAxisInfo = it->second; | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const { | 
|  | if (axis >= 0 && axis <= REL_MAX) { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | return device != nullptr ? device->relBitmask.test(axis) : false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool EventHub::hasInputProperty(int32_t deviceId, int property) const { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | return property >= 0 && property <= INPUT_PROP_MAX && device != nullptr | 
|  | ? device->propBitmask.test(property) | 
|  | : false; | 
|  | } | 
|  |  | 
|  | bool EventHub::hasMscEvent(int32_t deviceId, int mscEvent) const { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | return mscEvent >= 0 && mscEvent <= MSC_MAX && device != nullptr | 
|  | ? device->mscBitmask.test(mscEvent) | 
|  | : false; | 
|  | } | 
|  |  | 
|  | int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { | 
|  | if (scanCode >= 0 && scanCode <= KEY_MAX) { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->hasValidFd() && device->keyBitmask.test(scanCode)) { | 
|  | if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) { | 
|  | return device->keyState.test(scanCode) ? AKEY_STATE_DOWN : AKEY_STATE_UP; | 
|  | } | 
|  | } | 
|  | } | 
|  | return AKEY_STATE_UNKNOWN; | 
|  | } | 
|  |  | 
|  | int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->hasValidFd() && device->keyMap.haveKeyLayout()) { | 
|  | std::vector<int32_t> scanCodes = device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode); | 
|  | if (scanCodes.size() != 0) { | 
|  | if (device->readDeviceBitMask(EVIOCGKEY(0), device->keyState) >= 0) { | 
|  | for (size_t i = 0; i < scanCodes.size(); i++) { | 
|  | int32_t sc = scanCodes[i]; | 
|  | if (sc >= 0 && sc <= KEY_MAX && device->keyState.test(sc)) { | 
|  | return AKEY_STATE_DOWN; | 
|  | } | 
|  | } | 
|  | return AKEY_STATE_UP; | 
|  | } | 
|  | } | 
|  | } | 
|  | return AKEY_STATE_UNKNOWN; | 
|  | } | 
|  |  | 
|  | int32_t EventHub::getKeyCodeForKeyLocation(int32_t deviceId, int32_t locationKeyCode) const { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr || !device->hasValidFd() || device->keyMap.keyCharacterMap == nullptr || | 
|  | device->keyMap.keyLayoutMap == nullptr) { | 
|  | return AKEYCODE_UNKNOWN; | 
|  | } | 
|  | std::vector<int32_t> scanCodes = | 
|  | device->keyMap.keyLayoutMap->findScanCodesForKey(locationKeyCode); | 
|  | if (scanCodes.empty()) { | 
|  | ALOGW("Failed to get key code for key location: no scan code maps to key code %d for input" | 
|  | "device %d", | 
|  | locationKeyCode, deviceId); | 
|  | return AKEYCODE_UNKNOWN; | 
|  | } | 
|  | if (scanCodes.size() > 1) { | 
|  | ALOGW("Multiple scan codes map to the same key code %d, returning only the first match", | 
|  | locationKeyCode); | 
|  | } | 
|  | int32_t outKeyCode; | 
|  | status_t mapKeyRes = | 
|  | device->getKeyCharacterMap()->mapKey(scanCodes[0], /*usageCode=*/0, &outKeyCode); | 
|  | switch (mapKeyRes) { | 
|  | case OK: | 
|  | break; | 
|  | case NAME_NOT_FOUND: | 
|  | // key character map doesn't re-map this scanCode, hence the keyCode remains the same | 
|  | outKeyCode = locationKeyCode; | 
|  | break; | 
|  | default: | 
|  | ALOGW("Failed to get key code for key location: Key character map returned error %s", | 
|  | statusToString(mapKeyRes).c_str()); | 
|  | outKeyCode = AKEYCODE_UNKNOWN; | 
|  | break; | 
|  | } | 
|  | // Remap if there is a Key remapping added to the KCM and return the remapped key | 
|  | return device->getKeyCharacterMap()->applyKeyRemapping(outKeyCode); | 
|  | } | 
|  |  | 
|  | int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { | 
|  | if (sw >= 0 && sw <= SW_MAX) { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->hasValidFd() && device->swBitmask.test(sw)) { | 
|  | if (device->readDeviceBitMask(EVIOCGSW(0), device->swState) >= 0) { | 
|  | return device->swState.test(sw) ? AKEY_STATE_DOWN : AKEY_STATE_UP; | 
|  | } | 
|  | } | 
|  | } | 
|  | return AKEY_STATE_UNKNOWN; | 
|  | } | 
|  |  | 
|  | status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const { | 
|  | *outValue = 0; | 
|  |  | 
|  | if (axis >= 0 && axis <= ABS_MAX) { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->hasValidFd() && device->absBitmask.test(axis)) { | 
|  | struct input_absinfo info; | 
|  | if (ioctl(device->fd, EVIOCGABS(axis), &info)) { | 
|  | ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", axis, | 
|  | device->identifier.name.c_str(), device->fd, errno); | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | *outValue = info.value; | 
|  | return OK; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool EventHub::markSupportedKeyCodes(int32_t deviceId, const std::vector<int32_t>& keyCodes, | 
|  | uint8_t* outFlags) const { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->keyMap.haveKeyLayout()) { | 
|  | for (size_t codeIndex = 0; codeIndex < keyCodes.size(); codeIndex++) { | 
|  | if (device->hasKeycodeLocked(keyCodes[codeIndex])) { | 
|  | outFlags[codeIndex] = 1; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void EventHub::addKeyRemapping(int32_t deviceId, int32_t fromKeyCode, int32_t toKeyCode) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr) { | 
|  | return; | 
|  | } | 
|  | const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap(); | 
|  | if (kcm) { | 
|  | kcm->addKeyRemapping(fromKeyCode, toKeyCode); | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, int32_t metaState, | 
|  | int32_t* outKeycode, int32_t* outMetaState, uint32_t* outFlags) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | status_t status = NAME_NOT_FOUND; | 
|  |  | 
|  | if (device != nullptr) { | 
|  | // Check the key character map first. | 
|  | const std::shared_ptr<KeyCharacterMap> kcm = device->getKeyCharacterMap(); | 
|  | if (kcm) { | 
|  | if (!kcm->mapKey(scanCode, usageCode, outKeycode)) { | 
|  | *outFlags = 0; | 
|  | status = NO_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check the key layout next. | 
|  | if (status != NO_ERROR && device->keyMap.haveKeyLayout()) { | 
|  | if (!device->keyMap.keyLayoutMap->mapKey(scanCode, usageCode, outKeycode, outFlags)) { | 
|  | status = NO_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (status == NO_ERROR) { | 
|  | if (kcm) { | 
|  | // Remap keys based on user-defined key remappings and key behavior defined in the | 
|  | // corresponding kcm file | 
|  | *outKeycode = kcm->applyKeyRemapping(*outKeycode); | 
|  |  | 
|  | // Remap keys based on Key behavior defined in KCM file | 
|  | std::tie(*outKeycode, *outMetaState) = | 
|  | kcm->applyKeyBehavior(*outKeycode, metaState); | 
|  | } else { | 
|  | *outMetaState = metaState; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (status != NO_ERROR) { | 
|  | *outKeycode = 0; | 
|  | *outFlags = 0; | 
|  | *outMetaState = metaState; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  |  | 
|  | if (device == nullptr || !device->keyMap.haveKeyLayout()) { | 
|  | return NAME_NOT_FOUND; | 
|  | } | 
|  | std::optional<AxisInfo> info = device->keyMap.keyLayoutMap->mapAxis(scanCode); | 
|  | if (!info.has_value()) { | 
|  | return NAME_NOT_FOUND; | 
|  | } | 
|  | *outAxisInfo = *info; | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | base::Result<std::pair<InputDeviceSensorType, int32_t>> EventHub::mapSensor(int32_t deviceId, | 
|  | int32_t absCode) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  |  | 
|  | if (device != nullptr && device->keyMap.haveKeyLayout()) { | 
|  | return device->keyMap.keyLayoutMap->mapSensor(absCode); | 
|  | } | 
|  | return Errorf("Device not found or device has no key layout."); | 
|  | } | 
|  |  | 
|  | // Gets the battery info map from battery ID to RawBatteryInfo of the miscellaneous device | 
|  | // associated with the device ID. Returns an empty map if no miscellaneous device found. | 
|  | const std::unordered_map<int32_t, RawBatteryInfo>& EventHub::getBatteryInfoLocked( | 
|  | int32_t deviceId) const { | 
|  | static const std::unordered_map<int32_t, RawBatteryInfo> EMPTY_BATTERY_INFO = {}; | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr || !device->associatedDevice) { | 
|  | return EMPTY_BATTERY_INFO; | 
|  | } | 
|  | return device->associatedDevice->batteryInfos; | 
|  | } | 
|  |  | 
|  | std::vector<int32_t> EventHub::getRawBatteryIds(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | std::vector<int32_t> batteryIds; | 
|  |  | 
|  | for (const auto& [id, info] : getBatteryInfoLocked(deviceId)) { | 
|  | batteryIds.push_back(id); | 
|  | } | 
|  |  | 
|  | return batteryIds; | 
|  | } | 
|  |  | 
|  | std::optional<RawBatteryInfo> EventHub::getRawBatteryInfo(int32_t deviceId, | 
|  | int32_t batteryId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | const auto infos = getBatteryInfoLocked(deviceId); | 
|  |  | 
|  | auto it = infos.find(batteryId); | 
|  | if (it != infos.end()) { | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | // Gets the light info map from light ID to RawLightInfo of the miscellaneous device associated | 
|  | // with the device ID. Returns an empty map if no miscellaneous device found. | 
|  | const std::unordered_map<int32_t, RawLightInfo>& EventHub::getLightInfoLocked( | 
|  | int32_t deviceId) const { | 
|  | static const std::unordered_map<int32_t, RawLightInfo> EMPTY_LIGHT_INFO = {}; | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr || !device->associatedDevice) { | 
|  | return EMPTY_LIGHT_INFO; | 
|  | } | 
|  | return device->associatedDevice->lightInfos; | 
|  | } | 
|  |  | 
|  | std::vector<int32_t> EventHub::getRawLightIds(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | std::vector<int32_t> lightIds; | 
|  |  | 
|  | for (const auto& [id, info] : getLightInfoLocked(deviceId)) { | 
|  | lightIds.push_back(id); | 
|  | } | 
|  |  | 
|  | return lightIds; | 
|  | } | 
|  |  | 
|  | std::optional<RawLightInfo> EventHub::getRawLightInfo(int32_t deviceId, int32_t lightId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | const auto infos = getLightInfoLocked(deviceId); | 
|  |  | 
|  | auto it = infos.find(lightId); | 
|  | if (it != infos.end()) { | 
|  | return it->second; | 
|  | } | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::optional<int32_t> EventHub::getLightBrightness(int32_t deviceId, int32_t lightId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | const auto infos = getLightInfoLocked(deviceId); | 
|  | auto it = infos.find(lightId); | 
|  | if (it == infos.end()) { | 
|  | return std::nullopt; | 
|  | } | 
|  | std::string buffer; | 
|  | if (!base::ReadFileToString(it->second.path / LIGHT_NODES.at(InputLightClass::BRIGHTNESS), | 
|  | &buffer)) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return std::stoi(buffer); | 
|  | } | 
|  |  | 
|  | std::optional<std::unordered_map<LightColor, int32_t>> EventHub::getLightIntensities( | 
|  | int32_t deviceId, int32_t lightId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | const auto infos = getLightInfoLocked(deviceId); | 
|  | auto lightIt = infos.find(lightId); | 
|  | if (lightIt == infos.end()) { | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | auto ret = | 
|  | getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX)); | 
|  |  | 
|  | if (!ret.has_value()) { | 
|  | return std::nullopt; | 
|  | } | 
|  | std::array<LightColor, COLOR_NUM> colors = ret.value(); | 
|  |  | 
|  | std::string intensityStr; | 
|  | if (!base::ReadFileToString(lightIt->second.path / | 
|  | LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY), | 
|  | &intensityStr)) { | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | // Intensity node outputs 3 color values | 
|  | std::regex intensityPattern("([0-9]+)\\s([0-9]+)\\s([0-9]+)[\\n]"); | 
|  | std::smatch results; | 
|  |  | 
|  | if (!std::regex_match(intensityStr, results, intensityPattern)) { | 
|  | return std::nullopt; | 
|  | } | 
|  | std::unordered_map<LightColor, int32_t> intensities; | 
|  | for (size_t i = 1; i < results.size(); i++) { | 
|  | int value = std::stoi(results[i].str()); | 
|  | intensities.emplace(colors[i - 1], value); | 
|  | } | 
|  | return intensities; | 
|  | } | 
|  |  | 
|  | void EventHub::setLightBrightness(int32_t deviceId, int32_t lightId, int32_t brightness) { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | const auto infos = getLightInfoLocked(deviceId); | 
|  | auto lightIt = infos.find(lightId); | 
|  | if (lightIt == infos.end()) { | 
|  | ALOGE("%s lightId %d not found ", __func__, lightId); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!base::WriteStringToFile(std::to_string(brightness), | 
|  | lightIt->second.path / | 
|  | LIGHT_NODES.at(InputLightClass::BRIGHTNESS))) { | 
|  | ALOGE("Can not write to file, error: %s", strerror(errno)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EventHub::setLightIntensities(int32_t deviceId, int32_t lightId, | 
|  | std::unordered_map<LightColor, int32_t> intensities) { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | const auto infos = getLightInfoLocked(deviceId); | 
|  | auto lightIt = infos.find(lightId); | 
|  | if (lightIt == infos.end()) { | 
|  | ALOGE("Light Id %d does not exist.", lightId); | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto ret = | 
|  | getColorIndexArray(lightIt->second.path / LIGHT_NODES.at(InputLightClass::MULTI_INDEX)); | 
|  |  | 
|  | if (!ret.has_value()) { | 
|  | return; | 
|  | } | 
|  | std::array<LightColor, COLOR_NUM> colors = ret.value(); | 
|  |  | 
|  | std::string rgbStr; | 
|  | for (size_t i = 0; i < COLOR_NUM; i++) { | 
|  | auto it = intensities.find(colors[i]); | 
|  | if (it != intensities.end()) { | 
|  | rgbStr += std::to_string(it->second); | 
|  | // Insert space between colors | 
|  | if (i < COLOR_NUM - 1) { | 
|  | rgbStr += " "; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Append new line | 
|  | rgbStr += "\n"; | 
|  |  | 
|  | if (!base::WriteStringToFile(rgbStr, | 
|  | lightIt->second.path / | 
|  | LIGHT_NODES.at(InputLightClass::MULTI_INTENSITY))) { | 
|  | ALOGE("Can not write to file, error: %s", strerror(errno)); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::optional<RawLayoutInfo> EventHub::getRawLayoutInfo(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr || !device->associatedDevice) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return device->associatedDevice->layoutInfo; | 
|  | } | 
|  |  | 
|  | void EventHub::setExcludedDevices(const std::vector<std::string>& devices) { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | mExcludedDevices = devices; | 
|  | } | 
|  |  | 
|  | bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && scanCode >= 0 && scanCode <= KEY_MAX) { | 
|  | return device->keyBitmask.test(scanCode); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool EventHub::hasKeyCode(int32_t deviceId, int32_t keyCode) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr) { | 
|  | return device->hasKeycodeLocked(keyCode); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool EventHub::hasLed(int32_t deviceId, int32_t led) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | int32_t sc; | 
|  | if (device != nullptr && device->mapLed(led, &sc) == NO_ERROR) { | 
|  | return device->ledBitmask.test(sc); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->hasValidFd()) { | 
|  | device->setLedStateLocked(led, on); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EventHub::getVirtualKeyDefinitions(int32_t deviceId, | 
|  | std::vector<VirtualKeyDefinition>& outVirtualKeys) const { | 
|  | outVirtualKeys.clear(); | 
|  |  | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->virtualKeyMap) { | 
|  | const std::vector<VirtualKeyDefinition> virtualKeys = | 
|  | device->virtualKeyMap->getVirtualKeys(); | 
|  | outVirtualKeys.insert(outVirtualKeys.end(), virtualKeys.begin(), virtualKeys.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | const std::shared_ptr<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr) { | 
|  | return device->getKeyCharacterMap(); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If provided map is null, it will reset key character map to default KCM. | 
|  | bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, std::shared_ptr<KeyCharacterMap> map) { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr || device->keyMap.keyCharacterMap == nullptr) { | 
|  | return false; | 
|  | } | 
|  | if (map == nullptr) { | 
|  | device->keyMap.keyCharacterMap->clearLayoutOverlay(); | 
|  | return true; | 
|  | } | 
|  | device->keyMap.keyCharacterMap->combine(*map); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static std::string generateDescriptor(InputDeviceIdentifier& identifier) { | 
|  | std::string rawDescriptor; | 
|  | rawDescriptor += StringPrintf(":%04x:%04x:", identifier.vendor, identifier.product); | 
|  | // TODO add handling for USB devices to not uniqueify kbs that show up twice | 
|  | if (!identifier.uniqueId.empty()) { | 
|  | rawDescriptor += "uniqueId:"; | 
|  | rawDescriptor += identifier.uniqueId; | 
|  | } | 
|  | if (identifier.nonce != 0) { | 
|  | rawDescriptor += StringPrintf("nonce:%04x", identifier.nonce); | 
|  | } | 
|  |  | 
|  | if (identifier.vendor == 0 && identifier.product == 0) { | 
|  | // If we don't know the vendor and product id, then the device is probably | 
|  | // built-in so we need to rely on other information to uniquely identify | 
|  | // the input device.  Usually we try to avoid relying on the device name or | 
|  | // location but for built-in input device, they are unlikely to ever change. | 
|  | if (!identifier.name.empty()) { | 
|  | rawDescriptor += "name:"; | 
|  | rawDescriptor += identifier.name; | 
|  | } else if (!identifier.location.empty()) { | 
|  | rawDescriptor += "location:"; | 
|  | rawDescriptor += identifier.location; | 
|  | } | 
|  | } | 
|  | identifier.descriptor = sha1(rawDescriptor); | 
|  | return rawDescriptor; | 
|  | } | 
|  |  | 
|  | void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) { | 
|  | // Compute a device descriptor that uniquely identifies the device. | 
|  | // The descriptor is assumed to be a stable identifier.  Its value should not | 
|  | // change between reboots, reconnections, firmware updates or new releases | 
|  | // of Android. In practice we sometimes get devices that cannot be uniquely | 
|  | // identified. In this case we enforce uniqueness between connected devices. | 
|  | // Ideally, we also want the descriptor to be short and relatively opaque. | 
|  | // Note that we explicitly do not use the path or location for external devices | 
|  | // as their path or location will change as they are plugged/unplugged or moved | 
|  | // to different ports. We do fallback to using name and location in the case of | 
|  | // internal devices which are detected by the vendor and product being 0 in | 
|  | // generateDescriptor. If two identical descriptors are detected we will fallback | 
|  | // to using a 'nonce' and incrementing it until the new descriptor no longer has | 
|  | // a match with any existing descriptors. | 
|  |  | 
|  | identifier.nonce = 0; | 
|  | std::string rawDescriptor = generateDescriptor(identifier); | 
|  | // Enforce that the generated descriptor is unique. | 
|  | while (hasDeviceWithDescriptorLocked(identifier.descriptor)) { | 
|  | identifier.nonce++; | 
|  | rawDescriptor = generateDescriptor(identifier); | 
|  | } | 
|  | ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.c_str(), | 
|  | identifier.descriptor.c_str()); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<const EventHub::AssociatedDevice> EventHub::obtainAssociatedDeviceLocked( | 
|  | const std::filesystem::path& devicePath) const { | 
|  | const std::optional<std::filesystem::path> sysfsRootPathOpt = | 
|  | getSysfsRootPath(devicePath.c_str()); | 
|  | if (!sysfsRootPathOpt) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const auto& path = *sysfsRootPathOpt; | 
|  |  | 
|  | std::shared_ptr<const AssociatedDevice> associatedDevice = std::make_shared<AssociatedDevice>( | 
|  | AssociatedDevice{.sysfsRootPath = path, | 
|  | .batteryInfos = readBatteryConfiguration(path), | 
|  | .lightInfos = readLightsConfiguration(path), | 
|  | .layoutInfo = readLayoutConfiguration(path)}); | 
|  |  | 
|  | bool associatedDeviceChanged = false; | 
|  | for (const auto& [id, dev] : mDevices) { | 
|  | if (dev->associatedDevice && dev->associatedDevice->sysfsRootPath == path) { | 
|  | if (*associatedDevice != *dev->associatedDevice) { | 
|  | associatedDeviceChanged = true; | 
|  | dev->associatedDevice = associatedDevice; | 
|  | } | 
|  | associatedDevice = dev->associatedDevice; | 
|  | } | 
|  | } | 
|  | ALOGI_IF(associatedDeviceChanged, | 
|  | "The AssociatedDevice changed for path '%s'. Using new AssociatedDevice: %s", | 
|  | path.c_str(), associatedDevice->dump().c_str()); | 
|  |  | 
|  | return associatedDevice; | 
|  | } | 
|  |  | 
|  | bool EventHub::AssociatedDevice::isChanged() const { | 
|  | std::unordered_map<int32_t, RawBatteryInfo> newBatteryInfos = | 
|  | readBatteryConfiguration(sysfsRootPath); | 
|  | std::unordered_map<int32_t, RawLightInfo> newLightInfos = | 
|  | readLightsConfiguration(sysfsRootPath); | 
|  | std::optional<RawLayoutInfo> newLayoutInfo = readLayoutConfiguration(sysfsRootPath); | 
|  |  | 
|  | if (newBatteryInfos == batteryInfos && newLightInfos == lightInfos && | 
|  | newLayoutInfo == layoutInfo) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void EventHub::vibrate(int32_t deviceId, const VibrationElement& element) { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->hasValidFd()) { | 
|  | ff_effect effect; | 
|  | memset(&effect, 0, sizeof(effect)); | 
|  | effect.type = FF_RUMBLE; | 
|  | effect.id = device->ffEffectId; | 
|  | // evdev FF_RUMBLE effect only supports two channels of vibration. | 
|  | effect.u.rumble.strong_magnitude = element.getMagnitude(FF_STRONG_MAGNITUDE_CHANNEL_IDX); | 
|  | effect.u.rumble.weak_magnitude = element.getMagnitude(FF_WEAK_MAGNITUDE_CHANNEL_IDX); | 
|  | effect.replay.length = element.duration.count(); | 
|  | effect.replay.delay = 0; | 
|  | if (ioctl(device->fd, EVIOCSFF, &effect)) { | 
|  | ALOGW("Could not upload force feedback effect to device %s due to error %d.", | 
|  | device->identifier.name.c_str(), errno); | 
|  | return; | 
|  | } | 
|  | device->ffEffectId = effect.id; | 
|  |  | 
|  | struct input_event ev; | 
|  | ev.input_event_sec = 0; | 
|  | ev.input_event_usec = 0; | 
|  | ev.type = EV_FF; | 
|  | ev.code = device->ffEffectId; | 
|  | ev.value = 1; | 
|  | if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { | 
|  | ALOGW("Could not start force feedback effect on device %s due to error %d.", | 
|  | device->identifier.name.c_str(), errno); | 
|  | return; | 
|  | } | 
|  | device->ffEffectPlaying = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void EventHub::cancelVibrate(int32_t deviceId) { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->hasValidFd()) { | 
|  | if (device->ffEffectPlaying) { | 
|  | device->ffEffectPlaying = false; | 
|  |  | 
|  | struct input_event ev; | 
|  | ev.input_event_sec = 0; | 
|  | ev.input_event_usec = 0; | 
|  | ev.type = EV_FF; | 
|  | ev.code = device->ffEffectId; | 
|  | ev.value = 0; | 
|  | if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { | 
|  | ALOGW("Could not stop force feedback effect on device %s due to error %d.", | 
|  | device->identifier.name.c_str(), errno); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<int32_t> EventHub::getVibratorIds(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | std::vector<int32_t> vibrators; | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device != nullptr && device->hasValidFd() && | 
|  | device->classes.test(InputDeviceClass::VIBRATOR)) { | 
|  | vibrators.push_back(FF_STRONG_MAGNITUDE_CHANNEL_IDX); | 
|  | vibrators.push_back(FF_WEAK_MAGNITUDE_CHANNEL_IDX); | 
|  | } | 
|  | return vibrators; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Checks both mDevices and mOpeningDevices for a device with the descriptor passed. | 
|  | */ | 
|  | bool EventHub::hasDeviceWithDescriptorLocked(const std::string& descriptor) const { | 
|  | for (const auto& device : mOpeningDevices) { | 
|  | if (descriptor == device->identifier.descriptor) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto& [id, device] : mDevices) { | 
|  | if (descriptor == device->identifier.descriptor) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const { | 
|  | if (deviceId == ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID) { | 
|  | deviceId = mBuiltInKeyboardId; | 
|  | } | 
|  | const auto& it = mDevices.find(deviceId); | 
|  | return it != mDevices.end() ? it->second.get() : nullptr; | 
|  | } | 
|  |  | 
|  | EventHub::Device* EventHub::getDeviceByPathLocked(const std::string& devicePath) const { | 
|  | for (const auto& [id, device] : mDevices) { | 
|  | if (device->path == devicePath) { | 
|  | return device.get(); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * The file descriptor could be either input device, or a video device (associated with a | 
|  | * specific input device). Check both cases here, and return the device that this event | 
|  | * belongs to. Caller can compare the fd's once more to determine event type. | 
|  | * Looks through all input devices, and only attached video devices. Unattached video | 
|  | * devices are ignored. | 
|  | */ | 
|  | EventHub::Device* EventHub::getDeviceByFdLocked(int fd) const { | 
|  | for (const auto& [id, device] : mDevices) { | 
|  | if (device->fd == fd) { | 
|  | // This is an input device event | 
|  | return device.get(); | 
|  | } | 
|  | if (device->videoDevice && device->videoDevice->getFd() == fd) { | 
|  | // This is a video device event | 
|  | return device.get(); | 
|  | } | 
|  | } | 
|  | // We do not check mUnattachedVideoDevices here because they should not participate in epoll, | 
|  | // and therefore should never be looked up by fd. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::optional<int32_t> EventHub::getBatteryCapacity(int32_t deviceId, int32_t batteryId) const { | 
|  | std::filesystem::path batteryPath; | 
|  | { | 
|  | // Do not read the sysfs node to get the battery state while holding | 
|  | // the EventHub lock. For some peripheral devices, reading battery state | 
|  | // can be broken and take 5+ seconds. Holding the lock in this case would | 
|  | // block all other event processing during this time. For now, we assume this | 
|  | // call never happens on the InputReader thread and read the sysfs node outside | 
|  | // the lock to prevent event processing from being blocked by this call. | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | const auto& infos = getBatteryInfoLocked(deviceId); | 
|  | auto it = infos.find(batteryId); | 
|  | if (it == infos.end()) { | 
|  | return std::nullopt; | 
|  | } | 
|  | batteryPath = it->second.path; | 
|  | } // release lock | 
|  |  | 
|  | std::string buffer; | 
|  |  | 
|  | // Some devices report battery capacity as an integer through the "capacity" file | 
|  | if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY), | 
|  | &buffer)) { | 
|  | return std::stoi(base::Trim(buffer)); | 
|  | } | 
|  |  | 
|  | // Other devices report capacity as an enum value POWER_SUPPLY_CAPACITY_LEVEL_XXX | 
|  | // These values are taken from kernel source code include/linux/power_supply.h | 
|  | if (base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::CAPACITY_LEVEL), | 
|  | &buffer)) { | 
|  | // Remove any white space such as trailing new line | 
|  | const auto levelIt = BATTERY_LEVEL.find(base::Trim(buffer)); | 
|  | if (levelIt != BATTERY_LEVEL.end()) { | 
|  | return levelIt->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::optional<int32_t> EventHub::getBatteryStatus(int32_t deviceId, int32_t batteryId) const { | 
|  | std::filesystem::path batteryPath; | 
|  | { | 
|  | // Do not read the sysfs node to get the battery state while holding | 
|  | // the EventHub lock. For some peripheral devices, reading battery state | 
|  | // can be broken and take 5+ seconds. Holding the lock in this case would | 
|  | // block all other event processing during this time. For now, we assume this | 
|  | // call never happens on the InputReader thread and read the sysfs node outside | 
|  | // the lock to prevent event processing from being blocked by this call. | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | const auto& infos = getBatteryInfoLocked(deviceId); | 
|  | auto it = infos.find(batteryId); | 
|  | if (it == infos.end()) { | 
|  | return std::nullopt; | 
|  | } | 
|  | batteryPath = it->second.path; | 
|  | } // release lock | 
|  |  | 
|  | std::string buffer; | 
|  |  | 
|  | if (!base::ReadFileToString(batteryPath / BATTERY_NODES.at(InputBatteryClass::STATUS), | 
|  | &buffer)) { | 
|  | ALOGE("Failed to read sysfs battery info: %s", strerror(errno)); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | // Remove white space like trailing new line | 
|  | const auto statusIt = BATTERY_STATUS.find(base::Trim(buffer)); | 
|  | if (statusIt != BATTERY_STATUS.end()) { | 
|  | return statusIt->second; | 
|  | } | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::vector<RawEvent> EventHub::getEvents(int timeoutMillis) { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | std::array<input_event, EVENT_BUFFER_SIZE> readBuffer; | 
|  |  | 
|  | std::vector<RawEvent> events; | 
|  | bool awoken = false; | 
|  | for (;;) { | 
|  | nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); | 
|  |  | 
|  | // Reopen input devices if needed. | 
|  | if (mNeedToReopenDevices) { | 
|  | mNeedToReopenDevices = false; | 
|  |  | 
|  | ALOGI("Reopening all input devices due to a configuration change."); | 
|  |  | 
|  | closeAllDevicesLocked(); | 
|  | mNeedToScanDevices = true; | 
|  | break; // return to the caller before we actually rescan | 
|  | } | 
|  |  | 
|  | // Report any devices that had last been added/removed. | 
|  | for (auto it = mClosingDevices.begin(); it != mClosingDevices.end();) { | 
|  | std::unique_ptr<Device> device = std::move(*it); | 
|  | ALOGV("Reporting device closed: id=%d, name=%s\n", device->id, device->path.c_str()); | 
|  | const int32_t deviceId = (device->id == mBuiltInKeyboardId) | 
|  | ? ReservedInputDeviceId::BUILT_IN_KEYBOARD_ID | 
|  | : device->id; | 
|  | events.push_back({ | 
|  | .when = now, | 
|  | .deviceId = deviceId, | 
|  | .type = DEVICE_REMOVED, | 
|  | }); | 
|  | it = mClosingDevices.erase(it); | 
|  | mNeedToSendFinishedDeviceScan = true; | 
|  | if (events.size() == EVENT_BUFFER_SIZE) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mNeedToScanDevices) { | 
|  | mNeedToScanDevices = false; | 
|  | scanDevicesLocked(); | 
|  | mNeedToSendFinishedDeviceScan = true; | 
|  | } | 
|  |  | 
|  | while (!mOpeningDevices.empty()) { | 
|  | std::unique_ptr<Device> device = std::move(*mOpeningDevices.rbegin()); | 
|  | mOpeningDevices.pop_back(); | 
|  | ALOGV("Reporting device opened: id=%d, name=%s\n", device->id, device->path.c_str()); | 
|  | const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; | 
|  | events.push_back({ | 
|  | .when = now, | 
|  | .deviceId = deviceId, | 
|  | .type = DEVICE_ADDED, | 
|  | }); | 
|  |  | 
|  | // Try to find a matching video device by comparing device names | 
|  | for (auto it = mUnattachedVideoDevices.begin(); it != mUnattachedVideoDevices.end(); | 
|  | it++) { | 
|  | std::unique_ptr<TouchVideoDevice>& videoDevice = *it; | 
|  | if (tryAddVideoDeviceLocked(*device, videoDevice)) { | 
|  | // videoDevice was transferred to 'device' | 
|  | it = mUnattachedVideoDevices.erase(it); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto [dev_it, inserted] = mDevices.insert_or_assign(device->id, std::move(device)); | 
|  | if (!inserted) { | 
|  | ALOGW("Device id %d exists, replaced.", device->id); | 
|  | } | 
|  | mNeedToSendFinishedDeviceScan = true; | 
|  | if (events.size() == EVENT_BUFFER_SIZE) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mNeedToSendFinishedDeviceScan) { | 
|  | mNeedToSendFinishedDeviceScan = false; | 
|  | events.push_back({ | 
|  | .when = now, | 
|  | .type = FINISHED_DEVICE_SCAN, | 
|  | }); | 
|  | if (events.size() == EVENT_BUFFER_SIZE) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Grab the next input event. | 
|  | bool deviceChanged = false; | 
|  | while (mPendingEventIndex < mPendingEventCount) { | 
|  | const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; | 
|  | if (eventItem.data.fd == mINotifyFd) { | 
|  | if (eventItem.events & EPOLLIN) { | 
|  | mPendingINotify = true; | 
|  | } else { | 
|  | ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (eventItem.data.fd == mWakeReadPipeFd) { | 
|  | if (eventItem.events & EPOLLIN) { | 
|  | ALOGV("awoken after wake()"); | 
|  | awoken = true; | 
|  | char wakeReadBuffer[16]; | 
|  | ssize_t nRead; | 
|  | do { | 
|  | nRead = read(mWakeReadPipeFd, wakeReadBuffer, sizeof(wakeReadBuffer)); | 
|  | } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(wakeReadBuffer)); | 
|  | } else { | 
|  | ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.", | 
|  | eventItem.events); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Device* device = getDeviceByFdLocked(eventItem.data.fd); | 
|  | if (device == nullptr) { | 
|  | ALOGE("Received unexpected epoll event 0x%08x for unknown fd %d.", eventItem.events, | 
|  | eventItem.data.fd); | 
|  | ALOG_ASSERT(!DEBUG); | 
|  | continue; | 
|  | } | 
|  | if (device->videoDevice && eventItem.data.fd == device->videoDevice->getFd()) { | 
|  | if (eventItem.events & EPOLLIN) { | 
|  | size_t numFrames = device->videoDevice->readAndQueueFrames(); | 
|  | if (numFrames == 0) { | 
|  | ALOGE("Received epoll event for video device %s, but could not read frame", | 
|  | device->videoDevice->getName().c_str()); | 
|  | } | 
|  | } else if (eventItem.events & EPOLLHUP) { | 
|  | // TODO(b/121395353) - consider adding EPOLLRDHUP | 
|  | ALOGI("Removing video device %s due to epoll hang-up event.", | 
|  | device->videoDevice->getName().c_str()); | 
|  | unregisterVideoDeviceFromEpollLocked(*device->videoDevice); | 
|  | device->videoDevice = nullptr; | 
|  | } else { | 
|  | ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events, | 
|  | device->videoDevice->getName().c_str()); | 
|  | ALOG_ASSERT(!DEBUG); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | // This must be an input event | 
|  | if (eventItem.events & EPOLLIN) { | 
|  | int32_t readSize = | 
|  | read(device->fd, readBuffer.data(), | 
|  | sizeof(decltype(readBuffer)::value_type) * readBuffer.size()); | 
|  | if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { | 
|  | // Device was removed before INotify noticed. | 
|  | ALOGW("could not get event, removed? (fd: %d size: %" PRId32 | 
|  | " capacity: %zu errno: %d)\n", | 
|  | device->fd, readSize, readBuffer.size(), errno); | 
|  | deviceChanged = true; | 
|  | closeDeviceLocked(*device); | 
|  | } else if (readSize < 0) { | 
|  | if (errno != EAGAIN && errno != EINTR) { | 
|  | ALOGW("could not get event (errno=%d)", errno); | 
|  | } | 
|  | } else if ((readSize % sizeof(struct input_event)) != 0) { | 
|  | ALOGE("could not get event (wrong size: %d)", readSize); | 
|  | } else { | 
|  | const int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; | 
|  |  | 
|  | const size_t count = size_t(readSize) / sizeof(struct input_event); | 
|  | for (size_t i = 0; i < count; i++) { | 
|  | struct input_event& iev = readBuffer[i]; | 
|  | events.push_back({ | 
|  | .when = processEventTimestamp(iev), | 
|  | .readTime = systemTime(SYSTEM_TIME_MONOTONIC), | 
|  | .deviceId = deviceId, | 
|  | .type = iev.type, | 
|  | .code = iev.code, | 
|  | .value = iev.value, | 
|  | }); | 
|  | } | 
|  | if (events.size() >= EVENT_BUFFER_SIZE) { | 
|  | // The result buffer is full.  Reset the pending event index | 
|  | // so we will try to read the device again on the next iteration. | 
|  | mPendingEventIndex -= 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (eventItem.events & EPOLLHUP) { | 
|  | ALOGI("Removing device %s due to epoll hang-up event.", | 
|  | device->identifier.name.c_str()); | 
|  | deviceChanged = true; | 
|  | closeDeviceLocked(*device); | 
|  | } else { | 
|  | ALOGW("Received unexpected epoll event 0x%08x for device %s.", eventItem.events, | 
|  | device->identifier.name.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // readNotify() will modify the list of devices so this must be done after | 
|  | // processing all other events to ensure that we read all remaining events | 
|  | // before closing the devices. | 
|  | if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) { | 
|  | mPendingINotify = false; | 
|  | const auto res = readNotifyLocked(); | 
|  | if (!res.ok()) { | 
|  | ALOGW("Failed to read from inotify: %s", res.error().message().c_str()); | 
|  | } | 
|  | deviceChanged = true; | 
|  | } | 
|  |  | 
|  | // Report added or removed devices immediately. | 
|  | if (deviceChanged) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Return now if we have collected any events or if we were explicitly awoken. | 
|  | if (!events.empty() || awoken) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Poll for events. | 
|  | // When a device driver has pending (unread) events, it acquires | 
|  | // a kernel wake lock.  Once the last pending event has been read, the device | 
|  | // driver will release the kernel wake lock, but the epoll will hold the wakelock, | 
|  | // since we are using EPOLLWAKEUP. The wakelock is released by the epoll when epoll_wait | 
|  | // is called again for the same fd that produced the event. | 
|  | // Thus the system can only sleep if there are no events pending or | 
|  | // currently being processed. | 
|  | // | 
|  | // The timeout is advisory only.  If the device is asleep, it will not wake just to | 
|  | // service the timeout. | 
|  | mPendingEventIndex = 0; | 
|  |  | 
|  | mLock.unlock(); // release lock before poll | 
|  |  | 
|  | int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); | 
|  |  | 
|  | mLock.lock(); // reacquire lock after poll | 
|  |  | 
|  | if (pollResult == 0) { | 
|  | // Timed out. | 
|  | mPendingEventCount = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (pollResult < 0) { | 
|  | // An error occurred. | 
|  | mPendingEventCount = 0; | 
|  |  | 
|  | // Sleep after errors to avoid locking up the system. | 
|  | // Hopefully the error is transient. | 
|  | if (errno != EINTR) { | 
|  | ALOGW("poll failed (errno=%d)\n", errno); | 
|  | usleep(100000); | 
|  | } | 
|  | } else { | 
|  | // Some events occurred. | 
|  | mPendingEventCount = size_t(pollResult); | 
|  | } | 
|  | } | 
|  |  | 
|  | // All done, return the number of events we read. | 
|  | return events; | 
|  | } | 
|  |  | 
|  | std::vector<TouchVideoFrame> EventHub::getVideoFrames(int32_t deviceId) { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr || !device->videoDevice) { | 
|  | return {}; | 
|  | } | 
|  | return device->videoDevice->consumeFrames(); | 
|  | } | 
|  |  | 
|  | void EventHub::wake() { | 
|  | ALOGV("wake() called"); | 
|  |  | 
|  | ssize_t nWrite; | 
|  | do { | 
|  | nWrite = write(mWakeWritePipeFd, "W", 1); | 
|  | } while (nWrite == -1 && errno == EINTR); | 
|  |  | 
|  | if (nWrite != 1 && errno != EAGAIN) { | 
|  | ALOGW("Could not write wake signal: %s", strerror(errno)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EventHub::scanDevicesLocked() { | 
|  | status_t result; | 
|  | std::error_code errorCode; | 
|  |  | 
|  | if (std::filesystem::exists(DEVICE_INPUT_PATH, errorCode)) { | 
|  | result = scanDirLocked(DEVICE_INPUT_PATH); | 
|  | if (result < 0) { | 
|  | ALOGE("scan dir failed for %s", DEVICE_INPUT_PATH); | 
|  | } | 
|  | } else { | 
|  | if (errorCode) { | 
|  | ALOGW("Could not run filesystem::exists() due to error %d : %s.", errorCode.value(), | 
|  | errorCode.message().c_str()); | 
|  | } | 
|  | } | 
|  | if (isV4lScanningEnabled()) { | 
|  | result = scanVideoDirLocked(DEVICE_PATH); | 
|  | if (result != OK) { | 
|  | ALOGE("scan video dir failed for %s", DEVICE_PATH); | 
|  | } | 
|  | } | 
|  | if (mDevices.find(ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID) == mDevices.end()) { | 
|  | createVirtualKeyboardLocked(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | status_t EventHub::registerFdForEpoll(int fd) { | 
|  | // TODO(b/121395353) - consider adding EPOLLRDHUP | 
|  | struct epoll_event eventItem = {}; | 
|  | eventItem.events = EPOLLIN | EPOLLWAKEUP; | 
|  | eventItem.data.fd = fd; | 
|  | if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { | 
|  | ALOGE("Could not add fd to epoll instance: %s", strerror(errno)); | 
|  | return -errno; | 
|  | } | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | status_t EventHub::unregisterFdFromEpoll(int fd) { | 
|  | if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, fd, nullptr)) { | 
|  | ALOGW("Could not remove fd from epoll instance: %s", strerror(errno)); | 
|  | return -errno; | 
|  | } | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | status_t EventHub::registerDeviceForEpollLocked(Device& device) { | 
|  | status_t result = registerFdForEpoll(device.fd); | 
|  | if (result != OK) { | 
|  | ALOGE("Could not add input device fd to epoll for device %" PRId32, device.id); | 
|  | return result; | 
|  | } | 
|  | if (device.videoDevice) { | 
|  | registerVideoDeviceForEpollLocked(*device.videoDevice); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void EventHub::registerVideoDeviceForEpollLocked(const TouchVideoDevice& videoDevice) { | 
|  | status_t result = registerFdForEpoll(videoDevice.getFd()); | 
|  | if (result != OK) { | 
|  | ALOGE("Could not add video device %s to epoll", videoDevice.getName().c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t EventHub::unregisterDeviceFromEpollLocked(Device& device) { | 
|  | if (device.hasValidFd()) { | 
|  | status_t result = unregisterFdFromEpoll(device.fd); | 
|  | if (result != OK) { | 
|  | ALOGW("Could not remove input device fd from epoll for device %" PRId32, device.id); | 
|  | return result; | 
|  | } | 
|  | } | 
|  | if (device.videoDevice) { | 
|  | unregisterVideoDeviceFromEpollLocked(*device.videoDevice); | 
|  | } | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | void EventHub::unregisterVideoDeviceFromEpollLocked(const TouchVideoDevice& videoDevice) { | 
|  | if (videoDevice.hasValidFd()) { | 
|  | status_t result = unregisterFdFromEpoll(videoDevice.getFd()); | 
|  | if (result != OK) { | 
|  | ALOGW("Could not remove video device fd from epoll for device: %s", | 
|  | videoDevice.getName().c_str()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void EventHub::reportDeviceAddedForStatisticsLocked(const InputDeviceIdentifier& identifier, | 
|  | ftl::Flags<InputDeviceClass> classes) { | 
|  | SHA256_CTX ctx; | 
|  | SHA256_Init(&ctx); | 
|  | SHA256_Update(&ctx, reinterpret_cast<const uint8_t*>(identifier.uniqueId.c_str()), | 
|  | identifier.uniqueId.size()); | 
|  | std::array<uint8_t, SHA256_DIGEST_LENGTH> digest; | 
|  | SHA256_Final(digest.data(), &ctx); | 
|  |  | 
|  | std::string obfuscatedId; | 
|  | for (size_t i = 0; i < OBFUSCATED_LENGTH; i++) { | 
|  | obfuscatedId += StringPrintf("%02x", digest[i]); | 
|  | } | 
|  |  | 
|  | android::util::stats_write(android::util::INPUTDEVICE_REGISTERED, identifier.name.c_str(), | 
|  | identifier.vendor, identifier.product, identifier.version, | 
|  | identifier.bus, obfuscatedId.c_str(), classes.get()); | 
|  | } | 
|  |  | 
|  | void EventHub::openDeviceLocked(const std::string& devicePath) { | 
|  | // If an input device happens to register around the time when EventHub's constructor runs, it | 
|  | // is possible that the same input event node (for example, /dev/input/event3) will be noticed | 
|  | // in both 'inotify' callback and also in the 'scanDirLocked' pass. To prevent duplicate devices | 
|  | // from getting registered, ensure that this path is not already covered by an existing device. | 
|  | for (const auto& [deviceId, device] : mDevices) { | 
|  | if (device->path == devicePath) { | 
|  | return; // device was already registered | 
|  | } | 
|  | } | 
|  |  | 
|  | char buffer[80]; | 
|  |  | 
|  | ALOGV("Opening device: %s", devicePath.c_str()); | 
|  |  | 
|  | int fd = open(devicePath.c_str(), O_RDWR | O_CLOEXEC | O_NONBLOCK); | 
|  | if (fd < 0) { | 
|  | ALOGE("could not open %s, %s\n", devicePath.c_str(), strerror(errno)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | InputDeviceIdentifier identifier; | 
|  |  | 
|  | // Get device name. | 
|  | if (ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { | 
|  | ALOGE("Could not get device name for %s: %s", devicePath.c_str(), strerror(errno)); | 
|  | } else { | 
|  | buffer[sizeof(buffer) - 1] = '\0'; | 
|  | identifier.name = buffer; | 
|  | } | 
|  |  | 
|  | // Check to see if the device is on our excluded list | 
|  | for (size_t i = 0; i < mExcludedDevices.size(); i++) { | 
|  | const std::string& item = mExcludedDevices[i]; | 
|  | if (identifier.name == item) { | 
|  | ALOGI("ignoring event id %s driver %s\n", devicePath.c_str(), item.c_str()); | 
|  | close(fd); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get device driver version. | 
|  | int driverVersion; | 
|  | if (ioctl(fd, EVIOCGVERSION, &driverVersion)) { | 
|  | ALOGE("could not get driver version for %s, %s\n", devicePath.c_str(), strerror(errno)); | 
|  | close(fd); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get device identifier. | 
|  | struct input_id inputId; | 
|  | if (ioctl(fd, EVIOCGID, &inputId)) { | 
|  | ALOGE("could not get device input id for %s, %s\n", devicePath.c_str(), strerror(errno)); | 
|  | close(fd); | 
|  | return; | 
|  | } | 
|  | identifier.bus = inputId.bustype; | 
|  | identifier.product = inputId.product; | 
|  | identifier.vendor = inputId.vendor; | 
|  | identifier.version = inputId.version; | 
|  |  | 
|  | // Get device physical location. | 
|  | if (ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) { | 
|  | // fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno)); | 
|  | } else { | 
|  | buffer[sizeof(buffer) - 1] = '\0'; | 
|  | identifier.location = buffer; | 
|  | } | 
|  |  | 
|  | // Get device unique id. | 
|  | if (ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) { | 
|  | // fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno)); | 
|  | } else { | 
|  | buffer[sizeof(buffer) - 1] = '\0'; | 
|  | identifier.uniqueId = buffer; | 
|  | } | 
|  |  | 
|  | // Attempt to get the bluetooth address of an input device from the uniqueId. | 
|  | if (identifier.bus == BUS_BLUETOOTH && | 
|  | std::regex_match(identifier.uniqueId, | 
|  | std::regex("^[A-Fa-f0-9]{2}(?::[A-Fa-f0-9]{2}){5}$"))) { | 
|  | identifier.bluetoothAddress = identifier.uniqueId; | 
|  | // The Bluetooth stack requires alphabetic characters to be uppercase in a valid address. | 
|  | for (auto& c : *identifier.bluetoothAddress) { | 
|  | c = ::toupper(c); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fill in the descriptor. | 
|  | assignDescriptorLocked(identifier); | 
|  |  | 
|  | // Allocate device.  (The device object takes ownership of the fd at this point.) | 
|  | int32_t deviceId = mNextDeviceId++; | 
|  | std::unique_ptr<Device> device = | 
|  | std::make_unique<Device>(fd, deviceId, devicePath, identifier, | 
|  | obtainAssociatedDeviceLocked(devicePath)); | 
|  |  | 
|  | ALOGV("add device %d: %s\n", deviceId, devicePath.c_str()); | 
|  | ALOGV("  bus:        %04x\n" | 
|  | "  vendor      %04x\n" | 
|  | "  product     %04x\n" | 
|  | "  version     %04x\n", | 
|  | identifier.bus, identifier.vendor, identifier.product, identifier.version); | 
|  | ALOGV("  name:       \"%s\"\n", identifier.name.c_str()); | 
|  | ALOGV("  location:   \"%s\"\n", identifier.location.c_str()); | 
|  | ALOGV("  unique id:  \"%s\"\n", identifier.uniqueId.c_str()); | 
|  | ALOGV("  descriptor: \"%s\"\n", identifier.descriptor.c_str()); | 
|  | ALOGV("  driver:     v%d.%d.%d\n", driverVersion >> 16, (driverVersion >> 8) & 0xff, | 
|  | driverVersion & 0xff); | 
|  |  | 
|  | // Load the configuration file for the device. | 
|  | device->loadConfigurationLocked(); | 
|  |  | 
|  | // Figure out the kinds of events the device reports. | 
|  | device->readDeviceBitMask(EVIOCGBIT(EV_KEY, 0), device->keyBitmask); | 
|  | device->readDeviceBitMask(EVIOCGBIT(EV_ABS, 0), device->absBitmask); | 
|  | device->readDeviceBitMask(EVIOCGBIT(EV_REL, 0), device->relBitmask); | 
|  | device->readDeviceBitMask(EVIOCGBIT(EV_SW, 0), device->swBitmask); | 
|  | device->readDeviceBitMask(EVIOCGBIT(EV_LED, 0), device->ledBitmask); | 
|  | device->readDeviceBitMask(EVIOCGBIT(EV_FF, 0), device->ffBitmask); | 
|  | device->readDeviceBitMask(EVIOCGBIT(EV_MSC, 0), device->mscBitmask); | 
|  | device->readDeviceBitMask(EVIOCGPROP(0), device->propBitmask); | 
|  |  | 
|  | // See if this is a device with keys. This could be full keyboard, or other devices like | 
|  | // gamepads, joysticks, and styluses with buttons that should generate key presses. | 
|  | bool haveKeyboardKeys = | 
|  | device->keyBitmask.any(0, BTN_MISC) || device->keyBitmask.any(BTN_WHEEL, KEY_MAX + 1); | 
|  | bool haveGamepadButtons = device->keyBitmask.any(BTN_MISC, BTN_MOUSE) || | 
|  | device->keyBitmask.any(BTN_JOYSTICK, BTN_DIGI); | 
|  | bool haveStylusButtons = device->keyBitmask.test(BTN_STYLUS) || | 
|  | device->keyBitmask.test(BTN_STYLUS2) || device->keyBitmask.test(BTN_STYLUS3); | 
|  | if (haveKeyboardKeys || haveGamepadButtons || haveStylusButtons) { | 
|  | device->classes |= InputDeviceClass::KEYBOARD; | 
|  | } | 
|  |  | 
|  | // See if this is a cursor device such as a trackball or mouse. | 
|  | if (device->keyBitmask.test(BTN_MOUSE) && device->relBitmask.test(REL_X) && | 
|  | device->relBitmask.test(REL_Y)) { | 
|  | device->classes |= InputDeviceClass::CURSOR; | 
|  | } | 
|  |  | 
|  | // See if the device is specially configured to be of a certain type. | 
|  | if (device->configuration) { | 
|  | std::string deviceType = device->configuration->getString("device.type").value_or(""); | 
|  | if (deviceType == "rotaryEncoder") { | 
|  | device->classes |= InputDeviceClass::ROTARY_ENCODER; | 
|  | } else if (deviceType == "externalStylus") { | 
|  | device->classes |= InputDeviceClass::EXTERNAL_STYLUS; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if this is a touch pad. | 
|  | // Is this a new modern multi-touch driver? | 
|  | if (device->absBitmask.test(ABS_MT_POSITION_X) && device->absBitmask.test(ABS_MT_POSITION_Y)) { | 
|  | // Some joysticks such as the PS3 controller report axes that conflict | 
|  | // with the ABS_MT range.  Try to confirm that the device really is | 
|  | // a touch screen. | 
|  | if (device->keyBitmask.test(BTN_TOUCH) || !haveGamepadButtons) { | 
|  | device->classes |= (InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT); | 
|  | if (device->propBitmask.test(INPUT_PROP_POINTER) && | 
|  | !device->keyBitmask.any(BTN_TOOL_PEN, BTN_TOOL_FINGER) && !haveStylusButtons) { | 
|  | device->classes |= InputDeviceClass::TOUCHPAD; | 
|  | } | 
|  | } | 
|  | // Is this an old style single-touch driver? | 
|  | } else if (device->keyBitmask.test(BTN_TOUCH) && device->absBitmask.test(ABS_X) && | 
|  | device->absBitmask.test(ABS_Y)) { | 
|  | device->classes |= InputDeviceClass::TOUCH; | 
|  | // Is this a stylus that reports contact/pressure independently of touch coordinates? | 
|  | } else if ((device->absBitmask.test(ABS_PRESSURE) || device->keyBitmask.test(BTN_TOUCH)) && | 
|  | !device->absBitmask.test(ABS_X) && !device->absBitmask.test(ABS_Y)) { | 
|  | device->classes |= InputDeviceClass::EXTERNAL_STYLUS; | 
|  | } | 
|  |  | 
|  | // See if this device is a joystick. | 
|  | // Assumes that joysticks always have gamepad buttons in order to distinguish them | 
|  | // from other devices such as accelerometers that also have absolute axes. | 
|  | if (haveGamepadButtons) { | 
|  | auto assumedClasses = device->classes | InputDeviceClass::JOYSTICK; | 
|  | for (int i = 0; i <= ABS_MAX; i++) { | 
|  | if (device->absBitmask.test(i) && | 
|  | (getAbsAxisUsage(i, assumedClasses).test(InputDeviceClass::JOYSTICK))) { | 
|  | device->classes = assumedClasses; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether this device is an accelerometer. | 
|  | if (device->propBitmask.test(INPUT_PROP_ACCELEROMETER)) { | 
|  | device->classes |= InputDeviceClass::SENSOR; | 
|  | } | 
|  |  | 
|  | // Check whether this device has switches. | 
|  | for (int i = 0; i <= SW_MAX; i++) { | 
|  | if (device->swBitmask.test(i)) { | 
|  | device->classes |= InputDeviceClass::SWITCH; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check whether this device supports the vibrator. | 
|  | if (device->ffBitmask.test(FF_RUMBLE)) { | 
|  | device->classes |= InputDeviceClass::VIBRATOR; | 
|  | } | 
|  |  | 
|  | // Configure virtual keys. | 
|  | if ((device->classes.test(InputDeviceClass::TOUCH))) { | 
|  | // Load the virtual keys for the touch screen, if any. | 
|  | // We do this now so that we can make sure to load the keymap if necessary. | 
|  | bool success = device->loadVirtualKeyMapLocked(); | 
|  | if (success) { | 
|  | device->classes |= InputDeviceClass::KEYBOARD; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Load the key map. | 
|  | // We need to do this for joysticks too because the key layout may specify axes, and for | 
|  | // sensor as well because the key layout may specify the axes to sensor data mapping. | 
|  | status_t keyMapStatus = NAME_NOT_FOUND; | 
|  | if (device->classes.any(InputDeviceClass::KEYBOARD | InputDeviceClass::JOYSTICK | | 
|  | InputDeviceClass::SENSOR)) { | 
|  | // Load the keymap for the device. | 
|  | keyMapStatus = device->loadKeyMapLocked(); | 
|  | } | 
|  |  | 
|  | // Configure the keyboard, gamepad or virtual keyboard. | 
|  | if (device->classes.test(InputDeviceClass::KEYBOARD)) { | 
|  | // Register the keyboard as a built-in keyboard if it is eligible. | 
|  | if (!keyMapStatus && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD && | 
|  | isEligibleBuiltInKeyboard(device->identifier, device->configuration.get(), | 
|  | &device->keyMap)) { | 
|  | mBuiltInKeyboardId = device->id; | 
|  | } | 
|  |  | 
|  | // 'Q' key support = cheap test of whether this is an alpha-capable kbd | 
|  | if (device->hasKeycodeLocked(AKEYCODE_Q)) { | 
|  | device->classes |= InputDeviceClass::ALPHAKEY; | 
|  | } | 
|  |  | 
|  | // See if this device has a D-pad. | 
|  | if (std::all_of(DPAD_REQUIRED_KEYCODES.begin(), DPAD_REQUIRED_KEYCODES.end(), | 
|  | [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) { | 
|  | device->classes |= InputDeviceClass::DPAD; | 
|  | } | 
|  |  | 
|  | // See if this device has a gamepad. | 
|  | if (std::any_of(GAMEPAD_KEYCODES.begin(), GAMEPAD_KEYCODES.end(), | 
|  | [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) { | 
|  | device->classes |= InputDeviceClass::GAMEPAD; | 
|  | } | 
|  |  | 
|  | // See if this device has any stylus buttons that we would want to fuse with touch data. | 
|  | if (!device->classes.any(InputDeviceClass::TOUCH | InputDeviceClass::TOUCH_MT) && | 
|  | std::any_of(STYLUS_BUTTON_KEYCODES.begin(), STYLUS_BUTTON_KEYCODES.end(), | 
|  | [&](int32_t keycode) { return device->hasKeycodeLocked(keycode); })) { | 
|  | device->classes |= InputDeviceClass::EXTERNAL_STYLUS; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the device isn't recognized as something we handle, don't monitor it. | 
|  | if (device->classes == ftl::Flags<InputDeviceClass>(0)) { | 
|  | ALOGV("Dropping device: id=%d, path='%s', name='%s'", deviceId, devicePath.c_str(), | 
|  | device->identifier.name.c_str()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Classify InputDeviceClass::BATTERY. | 
|  | if (device->associatedDevice && !device->associatedDevice->batteryInfos.empty()) { | 
|  | device->classes |= InputDeviceClass::BATTERY; | 
|  | } | 
|  |  | 
|  | // Classify InputDeviceClass::LIGHT. | 
|  | if (device->associatedDevice && !device->associatedDevice->lightInfos.empty()) { | 
|  | device->classes |= InputDeviceClass::LIGHT; | 
|  | } | 
|  |  | 
|  | // Determine whether the device has a mic. | 
|  | if (device->deviceHasMicLocked()) { | 
|  | device->classes |= InputDeviceClass::MIC; | 
|  | } | 
|  |  | 
|  | // Determine whether the device is external or internal. | 
|  | if (device->isExternalDeviceLocked()) { | 
|  | device->classes |= InputDeviceClass::EXTERNAL; | 
|  | } | 
|  |  | 
|  | if (device->classes.any(InputDeviceClass::JOYSTICK | InputDeviceClass::DPAD) && | 
|  | device->classes.test(InputDeviceClass::GAMEPAD)) { | 
|  | device->controllerNumber = getNextControllerNumberLocked(device->identifier.name); | 
|  | device->setLedForControllerLocked(); | 
|  | } | 
|  |  | 
|  | if (registerDeviceForEpollLocked(*device) != OK) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | device->configureFd(); | 
|  |  | 
|  | // read absolute axis info for all available axes for the device | 
|  | populateDeviceAbsoluteAxisInfo(*device); | 
|  |  | 
|  | ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=%s, " | 
|  | "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, ", | 
|  | deviceId, fd, devicePath.c_str(), device->identifier.name.c_str(), | 
|  | device->classes.string().c_str(), device->configurationFile.c_str(), | 
|  | device->keyMap.keyLayoutFile.c_str(), device->keyMap.keyCharacterMapFile.c_str(), | 
|  | toString(mBuiltInKeyboardId == deviceId)); | 
|  |  | 
|  | addDeviceLocked(std::move(device)); | 
|  | } | 
|  |  | 
|  | void EventHub::openVideoDeviceLocked(const std::string& devicePath) { | 
|  | std::unique_ptr<TouchVideoDevice> videoDevice = TouchVideoDevice::create(devicePath); | 
|  | if (!videoDevice) { | 
|  | ALOGE("Could not create touch video device for %s. Ignoring", devicePath.c_str()); | 
|  | return; | 
|  | } | 
|  | // Transfer ownership of this video device to a matching input device | 
|  | for (const auto& [id, device] : mDevices) { | 
|  | if (tryAddVideoDeviceLocked(*device, videoDevice)) { | 
|  | return; // 'device' now owns 'videoDevice' | 
|  | } | 
|  | } | 
|  |  | 
|  | // Couldn't find a matching input device, so just add it to a temporary holding queue. | 
|  | // A matching input device may appear later. | 
|  | ALOGI("Adding video device %s to list of unattached video devices", | 
|  | videoDevice->getName().c_str()); | 
|  | mUnattachedVideoDevices.push_back(std::move(videoDevice)); | 
|  | } | 
|  |  | 
|  | bool EventHub::tryAddVideoDeviceLocked(EventHub::Device& device, | 
|  | std::unique_ptr<TouchVideoDevice>& videoDevice) { | 
|  | if (videoDevice->getName() != device.identifier.name) { | 
|  | return false; | 
|  | } | 
|  | device.videoDevice = std::move(videoDevice); | 
|  | if (device.enabled) { | 
|  | registerVideoDeviceForEpollLocked(*device.videoDevice); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool EventHub::isDeviceEnabled(int32_t deviceId) const { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr) { | 
|  | ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__); | 
|  | return false; | 
|  | } | 
|  | return device->enabled; | 
|  | } | 
|  |  | 
|  | status_t EventHub::enableDevice(int32_t deviceId) { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr) { | 
|  | ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__); | 
|  | return BAD_VALUE; | 
|  | } | 
|  | if (device->enabled) { | 
|  | ALOGW("Duplicate call to %s, input device %" PRId32 " already enabled", __func__, deviceId); | 
|  | return OK; | 
|  | } | 
|  | status_t result = device->enable(); | 
|  | if (result != OK) { | 
|  | ALOGE("Failed to enable device %" PRId32, deviceId); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | device->configureFd(); | 
|  |  | 
|  | return registerDeviceForEpollLocked(*device); | 
|  | } | 
|  |  | 
|  | status_t EventHub::disableDevice(int32_t deviceId) { | 
|  | std::scoped_lock _l(mLock); | 
|  | Device* device = getDeviceLocked(deviceId); | 
|  | if (device == nullptr) { | 
|  | ALOGE("Invalid device id=%" PRId32 " provided to %s", deviceId, __func__); | 
|  | return BAD_VALUE; | 
|  | } | 
|  | if (!device->enabled) { | 
|  | ALOGW("Duplicate call to %s, input device already disabled", __func__); | 
|  | return OK; | 
|  | } | 
|  | unregisterDeviceFromEpollLocked(*device); | 
|  | return device->disable(); | 
|  | } | 
|  |  | 
|  | // TODO(b/274755573): Shift to uevent handling on native side and remove this method | 
|  | // Currently using Java UEventObserver to trigger this which uses UEvent infrastructure that uses a | 
|  | // NETLINK socket to observe UEvents. We can create similar infrastructure on Eventhub side to | 
|  | // directly observe UEvents instead of triggering from Java side. | 
|  | void EventHub::sysfsNodeChanged(const std::string& sysfsNodePath) { | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | // Check in opening devices | 
|  | for (auto it = mOpeningDevices.begin(); it != mOpeningDevices.end(); it++) { | 
|  | std::unique_ptr<Device>& device = *it; | 
|  | if (device->associatedDevice && | 
|  | sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) != | 
|  | std::string::npos && | 
|  | device->associatedDevice->isChanged()) { | 
|  | it = mOpeningDevices.erase(it); | 
|  | openDeviceLocked(device->path); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check in already added device | 
|  | std::vector<Device*> devicesToReopen; | 
|  | for (const auto& [id, device] : mDevices) { | 
|  | if (device->associatedDevice && | 
|  | sysfsNodePath.find(device->associatedDevice->sysfsRootPath.string()) != | 
|  | std::string::npos && | 
|  | device->associatedDevice->isChanged()) { | 
|  | devicesToReopen.push_back(device.get()); | 
|  | } | 
|  | } | 
|  | for (const auto& device : devicesToReopen) { | 
|  | closeDeviceLocked(*device); | 
|  | openDeviceLocked(device->path); | 
|  | } | 
|  | devicesToReopen.clear(); | 
|  | } | 
|  |  | 
|  | void EventHub::createVirtualKeyboardLocked() { | 
|  | InputDeviceIdentifier identifier; | 
|  | identifier.name = "Virtual"; | 
|  | identifier.uniqueId = "<virtual>"; | 
|  | assignDescriptorLocked(identifier); | 
|  |  | 
|  | std::unique_ptr<Device> device = | 
|  | std::make_unique<Device>(-1, ReservedInputDeviceId::VIRTUAL_KEYBOARD_ID, "<virtual>", | 
|  | identifier, /*associatedDevice=*/nullptr); | 
|  | device->classes = InputDeviceClass::KEYBOARD | InputDeviceClass::ALPHAKEY | | 
|  | InputDeviceClass::DPAD | InputDeviceClass::VIRTUAL; | 
|  | device->loadKeyMapLocked(); | 
|  | addDeviceLocked(std::move(device)); | 
|  | } | 
|  |  | 
|  | void EventHub::addDeviceLocked(std::unique_ptr<Device> device) { | 
|  | reportDeviceAddedForStatisticsLocked(device->identifier, device->classes); | 
|  | mOpeningDevices.push_back(std::move(device)); | 
|  | } | 
|  |  | 
|  | int32_t EventHub::getNextControllerNumberLocked(const std::string& name) { | 
|  | if (mControllerNumbers.isFull()) { | 
|  | ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s", | 
|  | name.c_str()); | 
|  | return 0; | 
|  | } | 
|  | // Since the controller number 0 is reserved for non-controllers, translate all numbers up by | 
|  | // one | 
|  | return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1); | 
|  | } | 
|  |  | 
|  | void EventHub::releaseControllerNumberLocked(int32_t num) { | 
|  | if (num > 0) { | 
|  | mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EventHub::closeDeviceByPathLocked(const std::string& devicePath) { | 
|  | Device* device = getDeviceByPathLocked(devicePath); | 
|  | if (device != nullptr) { | 
|  | closeDeviceLocked(*device); | 
|  | return; | 
|  | } | 
|  | ALOGV("Remove device: %s not found, device may already have been removed.", devicePath.c_str()); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Find the video device by filename, and close it. | 
|  | * The video device is closed by path during an inotify event, where we don't have the | 
|  | * additional context about the video device fd, or the associated input device. | 
|  | */ | 
|  | void EventHub::closeVideoDeviceByPathLocked(const std::string& devicePath) { | 
|  | // A video device may be owned by an existing input device, or it may be stored in | 
|  | // the mUnattachedVideoDevices queue. Check both locations. | 
|  | for (const auto& [id, device] : mDevices) { | 
|  | if (device->videoDevice && device->videoDevice->getPath() == devicePath) { | 
|  | unregisterVideoDeviceFromEpollLocked(*device->videoDevice); | 
|  | device->videoDevice = nullptr; | 
|  | return; | 
|  | } | 
|  | } | 
|  | std::erase_if(mUnattachedVideoDevices, | 
|  | [&devicePath](const std::unique_ptr<TouchVideoDevice>& videoDevice) { | 
|  | return videoDevice->getPath() == devicePath; | 
|  | }); | 
|  | } | 
|  |  | 
|  | void EventHub::closeAllDevicesLocked() { | 
|  | mUnattachedVideoDevices.clear(); | 
|  | while (!mDevices.empty()) { | 
|  | closeDeviceLocked(*(mDevices.begin()->second)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EventHub::closeDeviceLocked(Device& device) { | 
|  | ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=%s", device.path.c_str(), | 
|  | device.identifier.name.c_str(), device.id, device.fd, device.classes.string().c_str()); | 
|  |  | 
|  | if (device.id == mBuiltInKeyboardId) { | 
|  | ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", | 
|  | device.path.c_str(), mBuiltInKeyboardId); | 
|  | mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD; | 
|  | } | 
|  |  | 
|  | unregisterDeviceFromEpollLocked(device); | 
|  | if (device.videoDevice) { | 
|  | // This must be done after the video device is removed from epoll | 
|  | mUnattachedVideoDevices.push_back(std::move(device.videoDevice)); | 
|  | } | 
|  |  | 
|  | releaseControllerNumberLocked(device.controllerNumber); | 
|  | device.controllerNumber = 0; | 
|  | device.close(); | 
|  | mClosingDevices.push_back(std::move(mDevices[device.id])); | 
|  |  | 
|  | mDevices.erase(device.id); | 
|  | } | 
|  |  | 
|  | base::Result<void> EventHub::readNotifyLocked() { | 
|  | static constexpr auto EVENT_SIZE = static_cast<ssize_t>(sizeof(inotify_event)); | 
|  | uint8_t eventBuffer[512]; | 
|  | ssize_t sizeRead; | 
|  |  | 
|  | ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd); | 
|  | do { | 
|  | sizeRead = read(mINotifyFd, eventBuffer, sizeof(eventBuffer)); | 
|  | } while (sizeRead < 0 && errno == EINTR); | 
|  |  | 
|  | if (sizeRead < EVENT_SIZE) return Errorf("could not get event, %s", strerror(errno)); | 
|  |  | 
|  | for (ssize_t eventPos = 0; sizeRead >= EVENT_SIZE;) { | 
|  | const inotify_event* event; | 
|  | event = (const inotify_event*)(eventBuffer + eventPos); | 
|  | if (event->len == 0) continue; | 
|  |  | 
|  | handleNotifyEventLocked(*event); | 
|  |  | 
|  | const ssize_t eventSize = EVENT_SIZE + event->len; | 
|  | sizeRead -= eventSize; | 
|  | eventPos += eventSize; | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | void EventHub::handleNotifyEventLocked(const inotify_event& event) { | 
|  | if (event.wd == mDeviceInputWd) { | 
|  | std::string filename = std::string(DEVICE_INPUT_PATH) + "/" + event.name; | 
|  | if (event.mask & IN_CREATE) { | 
|  | openDeviceLocked(filename); | 
|  | } else { | 
|  | ALOGI("Removing device '%s' due to inotify event\n", filename.c_str()); | 
|  | closeDeviceByPathLocked(filename); | 
|  | } | 
|  | } else if (event.wd == mDeviceWd) { | 
|  | if (isV4lTouchNode(event.name)) { | 
|  | std::string filename = std::string(DEVICE_PATH) + "/" + event.name; | 
|  | if (event.mask & IN_CREATE) { | 
|  | openVideoDeviceLocked(filename); | 
|  | } else { | 
|  | ALOGI("Removing video device '%s' due to inotify event", filename.c_str()); | 
|  | closeVideoDeviceByPathLocked(filename); | 
|  | } | 
|  | } else if (strcmp(event.name, "input") == 0 && event.mask & IN_CREATE) { | 
|  | addDeviceInputInotify(); | 
|  | } | 
|  | } else { | 
|  | LOG_ALWAYS_FATAL("Unexpected inotify event, wd = %i", event.wd); | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t EventHub::scanDirLocked(const std::string& dirname) { | 
|  | for (const auto& entry : std::filesystem::directory_iterator(dirname)) { | 
|  | openDeviceLocked(entry.path()); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Look for all dirname/v4l-touch* devices, and open them. | 
|  | */ | 
|  | status_t EventHub::scanVideoDirLocked(const std::string& dirname) { | 
|  | for (const auto& entry : std::filesystem::directory_iterator(dirname)) { | 
|  | if (isV4lTouchNode(entry.path())) { | 
|  | ALOGI("Found touch video device %s", entry.path().c_str()); | 
|  | openVideoDeviceLocked(entry.path()); | 
|  | } | 
|  | } | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | void EventHub::requestReopenDevices() { | 
|  | ALOGV("requestReopenDevices() called"); | 
|  |  | 
|  | std::scoped_lock _l(mLock); | 
|  | mNeedToReopenDevices = true; | 
|  | } | 
|  |  | 
|  | void EventHub::dump(std::string& dump) const { | 
|  | dump += "Event Hub State:\n"; | 
|  |  | 
|  | { // acquire lock | 
|  | std::scoped_lock _l(mLock); | 
|  |  | 
|  | dump += StringPrintf(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId); | 
|  |  | 
|  | dump += INDENT "Devices:\n"; | 
|  |  | 
|  | for (const auto& [id, device] : mDevices) { | 
|  | if (mBuiltInKeyboardId == device->id) { | 
|  | dump += StringPrintf(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n", | 
|  | device->id, device->identifier.name.c_str()); | 
|  | } else { | 
|  | dump += StringPrintf(INDENT2 "%d: %s\n", device->id, | 
|  | device->identifier.name.c_str()); | 
|  | } | 
|  | dump += StringPrintf(INDENT3 "Classes: %s\n", device->classes.string().c_str()); | 
|  | dump += StringPrintf(INDENT3 "Path: %s\n", device->path.c_str()); | 
|  | dump += StringPrintf(INDENT3 "Enabled: %s\n", toString(device->enabled)); | 
|  | dump += StringPrintf(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.c_str()); | 
|  | dump += StringPrintf(INDENT3 "Location: %s\n", device->identifier.location.c_str()); | 
|  | dump += StringPrintf(INDENT3 "ControllerNumber: %d\n", device->controllerNumber); | 
|  | dump += StringPrintf(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.c_str()); | 
|  | dump += StringPrintf(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, " | 
|  | "product=0x%04x, version=0x%04x, bluetoothAddress=%s\n", | 
|  | device->identifier.bus, device->identifier.vendor, | 
|  | device->identifier.product, device->identifier.version, | 
|  | toString(device->identifier.bluetoothAddress).c_str()); | 
|  | dump += StringPrintf(INDENT3 "KeyLayoutFile: %s\n", | 
|  | device->keyMap.keyLayoutFile.c_str()); | 
|  | dump += StringPrintf(INDENT3 "KeyCharacterMapFile: %s\n", | 
|  | device->keyMap.keyCharacterMapFile.c_str()); | 
|  | if (device->associatedDevice && device->associatedDevice->layoutInfo) { | 
|  | dump += StringPrintf(INDENT3 "LanguageTag: %s\n", | 
|  | device->associatedDevice->layoutInfo->languageTag.c_str()); | 
|  | dump += StringPrintf(INDENT3 "LayoutType: %s\n", | 
|  | device->associatedDevice->layoutInfo->layoutType.c_str()); | 
|  | } | 
|  | dump += StringPrintf(INDENT3 "ConfigurationFile: %s\n", | 
|  | device->configurationFile.c_str()); | 
|  | dump += StringPrintf(INDENT3 "VideoDevice: %s\n", | 
|  | device->videoDevice ? device->videoDevice->dump().c_str() | 
|  | : "<none>"); | 
|  | dump += StringPrintf(INDENT3 "SysfsDevicePath: %s\n", | 
|  | device->associatedDevice | 
|  | ? device->associatedDevice->sysfsRootPath.c_str() | 
|  | : "<none>"); | 
|  | } | 
|  |  | 
|  | dump += INDENT "Unattached video devices:\n"; | 
|  | for (const std::unique_ptr<TouchVideoDevice>& videoDevice : mUnattachedVideoDevices) { | 
|  | dump += INDENT2 + videoDevice->dump() + "\n"; | 
|  | } | 
|  | if (mUnattachedVideoDevices.empty()) { | 
|  | dump += INDENT2 "<none>\n"; | 
|  | } | 
|  | } // release lock | 
|  | } | 
|  |  | 
|  | void EventHub::monitor() const { | 
|  | // Acquire and release the lock to ensure that the event hub has not deadlocked. | 
|  | std::unique_lock<std::mutex> lock(mLock); | 
|  | } | 
|  |  | 
|  | std::string EventHub::AssociatedDevice::dump() const { | 
|  | return StringPrintf("path=%s, numBatteries=%zu, numLight=%zu", sysfsRootPath.c_str(), | 
|  | batteryInfos.size(), lightInfos.size()); | 
|  | } | 
|  |  | 
|  | } // namespace android |