blob: e06bd24cfa73c8b6b5122eebdf088dcf49524a08 [file] [log] [blame]
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <jpegrecoverymap/recoverymap.h>
#include <jpegrecoverymap/jpegencoder.h>
#include <jpegrecoverymap/jpegdecoder.h>
#include <jpegrecoverymap/recoverymapmath.h>
#include <jpegrecoverymap/recoverymaputils.h>
#include <image_io/jpeg/jpeg_marker.h>
#include <image_io/jpeg/jpeg_info.h>
#include <image_io/jpeg/jpeg_scanner.h>
#include <image_io/jpeg/jpeg_info_builder.h>
#include <image_io/base/data_segment_data_source.h>
#include <utils/Log.h>
#include "SkColorSpace.h"
#include "SkICC.h"
#include <map>
#include <memory>
#include <sstream>
#include <string>
#include <cmath>
#include <condition_variable>
#include <deque>
#include <mutex>
#include <thread>
#include <unistd.h>
using namespace std;
using namespace photos_editing_formats::image_io;
namespace android::recoverymap {
#define USE_SRGB_INVOETF_LUT 1
#define USE_HLG_OETF_LUT 1
#define USE_PQ_OETF_LUT 1
#define USE_HLG_INVOETF_LUT 1
#define USE_PQ_INVOETF_LUT 1
#define USE_APPLY_RECOVERY_LUT 1
#define JPEGR_CHECK(x) \
{ \
status_t status = (x); \
if ((status) != NO_ERROR) { \
return status; \
} \
}
// The current JPEGR version that we encode to
static const uint32_t kJpegrVersion = 1;
// Map is quarter res / sixteenth size
static const size_t kMapDimensionScaleFactor = 4;
// JPEG block size.
// JPEG encoding / decoding will require 8 x 8 DCT transform.
// Width must be 8 dividable, and height must be 2 dividable.
static const size_t kJpegBlock = 8;
// JPEG compress quality (0 ~ 100) for recovery map
static const int kMapCompressQuality = 85;
// TODO: fill in st2086 metadata
static const st2086_metadata kSt2086Metadata = {
{0.0f, 0.0f},
{0.0f, 0.0f},
{0.0f, 0.0f},
{0.0f, 0.0f},
0,
1.0f,
};
#define CONFIG_MULTITHREAD 1
int GetCPUCoreCount() {
int cpuCoreCount = 1;
#if CONFIG_MULTITHREAD
#if defined(_SC_NPROCESSORS_ONLN)
cpuCoreCount = sysconf(_SC_NPROCESSORS_ONLN);
#else
// _SC_NPROC_ONLN must be defined...
cpuCoreCount = sysconf(_SC_NPROC_ONLN);
#endif
#endif
return cpuCoreCount;
}
static const map<recoverymap::jpegr_color_gamut, skcms_Matrix3x3> jrGamut_to_skGamut {
{JPEGR_COLORGAMUT_BT709, SkNamedGamut::kSRGB},
{JPEGR_COLORGAMUT_P3, SkNamedGamut::kDisplayP3},
{JPEGR_COLORGAMUT_BT2100, SkNamedGamut::kRec2020},
};
static const map<
recoverymap::jpegr_transfer_function, skcms_TransferFunction> jrTransFunc_to_skTransFunc {
{JPEGR_TF_SRGB, SkNamedTransferFn::kSRGB},
{JPEGR_TF_LINEAR, SkNamedTransferFn::kLinear},
{JPEGR_TF_HLG, SkNamedTransferFn::kHLG},
{JPEGR_TF_PQ, SkNamedTransferFn::kPQ},
};
/* Encode API-0 */
status_t RecoveryMap::encodeJPEGR(jr_uncompressed_ptr uncompressed_p010_image,
jpegr_transfer_function hdr_tf,
jr_compressed_ptr dest,
int quality,
jr_exif_ptr exif) {
if (uncompressed_p010_image == nullptr || dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
if (quality < 0 || quality > 100) {
return ERROR_JPEGR_INVALID_INPUT_TYPE;
}
if (uncompressed_p010_image->width % kJpegBlock != 0
|| uncompressed_p010_image->height % 2 != 0) {
ALOGE("Image size can not be handled: %dx%d",
uncompressed_p010_image->width, uncompressed_p010_image->height);
return ERROR_JPEGR_INVALID_INPUT_TYPE;
}
jpegr_metadata metadata;
metadata.version = kJpegrVersion;
metadata.transferFunction = hdr_tf;
if (hdr_tf == JPEGR_TF_PQ) {
metadata.hdr10Metadata.st2086Metadata = kSt2086Metadata;
}
jpegr_uncompressed_struct uncompressed_yuv_420_image;
unique_ptr<uint8_t[]> uncompressed_yuv_420_image_data = make_unique<uint8_t[]>(
uncompressed_p010_image->width * uncompressed_p010_image->height * 3 / 2);
uncompressed_yuv_420_image.data = uncompressed_yuv_420_image_data.get();
JPEGR_CHECK(toneMap(uncompressed_p010_image, &uncompressed_yuv_420_image));
jpegr_uncompressed_struct map;
JPEGR_CHECK(generateRecoveryMap(
&uncompressed_yuv_420_image, uncompressed_p010_image, &metadata, &map));
std::unique_ptr<uint8_t[]> map_data;
map_data.reset(reinterpret_cast<uint8_t*>(map.data));
jpegr_compressed_struct compressed_map;
compressed_map.maxLength = map.width * map.height;
unique_ptr<uint8_t[]> compressed_map_data = make_unique<uint8_t[]>(compressed_map.maxLength);
compressed_map.data = compressed_map_data.get();
JPEGR_CHECK(compressRecoveryMap(&map, &compressed_map));
sk_sp<SkData> icc = SkWriteICCProfile(
jrTransFunc_to_skTransFunc.at(JPEGR_TF_SRGB),
jrGamut_to_skGamut.at(uncompressed_yuv_420_image.colorGamut));
JpegEncoder jpeg_encoder;
if (!jpeg_encoder.compressImage(uncompressed_yuv_420_image.data,
uncompressed_yuv_420_image.width,
uncompressed_yuv_420_image.height, quality,
icc.get()->data(), icc.get()->size())) {
return ERROR_JPEGR_ENCODE_ERROR;
}
jpegr_compressed_struct jpeg;
jpeg.data = jpeg_encoder.getCompressedImagePtr();
jpeg.length = jpeg_encoder.getCompressedImageSize();
JPEGR_CHECK(appendRecoveryMap(&jpeg, &compressed_map, exif, &metadata, dest));
return NO_ERROR;
}
/* Encode API-1 */
status_t RecoveryMap::encodeJPEGR(jr_uncompressed_ptr uncompressed_p010_image,
jr_uncompressed_ptr uncompressed_yuv_420_image,
jpegr_transfer_function hdr_tf,
jr_compressed_ptr dest,
int quality,
jr_exif_ptr exif) {
if (uncompressed_p010_image == nullptr
|| uncompressed_yuv_420_image == nullptr
|| dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
if (quality < 0 || quality > 100) {
return ERROR_JPEGR_INVALID_INPUT_TYPE;
}
if (uncompressed_p010_image->width != uncompressed_yuv_420_image->width
|| uncompressed_p010_image->height != uncompressed_yuv_420_image->height) {
return ERROR_JPEGR_RESOLUTION_MISMATCH;
}
if (uncompressed_p010_image->width % kJpegBlock != 0
|| uncompressed_p010_image->height % 2 != 0) {
ALOGE("Image size can not be handled: %dx%d",
uncompressed_p010_image->width, uncompressed_p010_image->height);
return ERROR_JPEGR_INVALID_INPUT_TYPE;
}
jpegr_metadata metadata;
metadata.version = kJpegrVersion;
metadata.transferFunction = hdr_tf;
if (hdr_tf == JPEGR_TF_PQ) {
metadata.hdr10Metadata.st2086Metadata = kSt2086Metadata;
}
jpegr_uncompressed_struct map;
JPEGR_CHECK(generateRecoveryMap(
uncompressed_yuv_420_image, uncompressed_p010_image, &metadata, &map));
std::unique_ptr<uint8_t[]> map_data;
map_data.reset(reinterpret_cast<uint8_t*>(map.data));
jpegr_compressed_struct compressed_map;
compressed_map.maxLength = map.width * map.height;
unique_ptr<uint8_t[]> compressed_map_data = make_unique<uint8_t[]>(compressed_map.maxLength);
compressed_map.data = compressed_map_data.get();
JPEGR_CHECK(compressRecoveryMap(&map, &compressed_map));
sk_sp<SkData> icc = SkWriteICCProfile(
jrTransFunc_to_skTransFunc.at(JPEGR_TF_SRGB),
jrGamut_to_skGamut.at(uncompressed_yuv_420_image->colorGamut));
JpegEncoder jpeg_encoder;
if (!jpeg_encoder.compressImage(uncompressed_yuv_420_image->data,
uncompressed_yuv_420_image->width,
uncompressed_yuv_420_image->height, quality,
icc.get()->data(), icc.get()->size())) {
return ERROR_JPEGR_ENCODE_ERROR;
}
jpegr_compressed_struct jpeg;
jpeg.data = jpeg_encoder.getCompressedImagePtr();
jpeg.length = jpeg_encoder.getCompressedImageSize();
JPEGR_CHECK(appendRecoveryMap(&jpeg, &compressed_map, exif, &metadata, dest));
return NO_ERROR;
}
/* Encode API-2 */
status_t RecoveryMap::encodeJPEGR(jr_uncompressed_ptr uncompressed_p010_image,
jr_uncompressed_ptr uncompressed_yuv_420_image,
jr_compressed_ptr compressed_jpeg_image,
jpegr_transfer_function hdr_tf,
jr_compressed_ptr dest) {
if (uncompressed_p010_image == nullptr
|| uncompressed_yuv_420_image == nullptr
|| compressed_jpeg_image == nullptr
|| dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
if (uncompressed_p010_image->width != uncompressed_yuv_420_image->width
|| uncompressed_p010_image->height != uncompressed_yuv_420_image->height) {
return ERROR_JPEGR_RESOLUTION_MISMATCH;
}
if (uncompressed_p010_image->width % kJpegBlock != 0
|| uncompressed_p010_image->height % 2 != 0) {
ALOGE("Image size can not be handled: %dx%d",
uncompressed_p010_image->width, uncompressed_p010_image->height);
return ERROR_JPEGR_INVALID_INPUT_TYPE;
}
jpegr_metadata metadata;
metadata.version = kJpegrVersion;
metadata.transferFunction = hdr_tf;
if (hdr_tf == JPEGR_TF_PQ) {
metadata.hdr10Metadata.st2086Metadata = kSt2086Metadata;
}
jpegr_uncompressed_struct map;
JPEGR_CHECK(generateRecoveryMap(
uncompressed_yuv_420_image, uncompressed_p010_image, &metadata, &map));
std::unique_ptr<uint8_t[]> map_data;
map_data.reset(reinterpret_cast<uint8_t*>(map.data));
jpegr_compressed_struct compressed_map;
compressed_map.maxLength = map.width * map.height;
unique_ptr<uint8_t[]> compressed_map_data = make_unique<uint8_t[]>(compressed_map.maxLength);
compressed_map.data = compressed_map_data.get();
JPEGR_CHECK(compressRecoveryMap(&map, &compressed_map));
JPEGR_CHECK(appendRecoveryMap(compressed_jpeg_image, &compressed_map, nullptr, &metadata, dest));
return NO_ERROR;
}
/* Encode API-3 */
status_t RecoveryMap::encodeJPEGR(jr_uncompressed_ptr uncompressed_p010_image,
jr_compressed_ptr compressed_jpeg_image,
jpegr_transfer_function hdr_tf,
jr_compressed_ptr dest) {
if (uncompressed_p010_image == nullptr
|| compressed_jpeg_image == nullptr
|| dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
if (uncompressed_p010_image->width % kJpegBlock != 0
|| uncompressed_p010_image->height % 2 != 0) {
ALOGE("Image size can not be handled: %dx%d",
uncompressed_p010_image->width, uncompressed_p010_image->height);
return ERROR_JPEGR_INVALID_INPUT_TYPE;
}
JpegDecoder jpeg_decoder;
if (!jpeg_decoder.decompressImage(compressed_jpeg_image->data, compressed_jpeg_image->length)) {
return ERROR_JPEGR_DECODE_ERROR;
}
jpegr_uncompressed_struct uncompressed_yuv_420_image;
uncompressed_yuv_420_image.data = jpeg_decoder.getDecompressedImagePtr();
uncompressed_yuv_420_image.width = jpeg_decoder.getDecompressedImageWidth();
uncompressed_yuv_420_image.height = jpeg_decoder.getDecompressedImageHeight();
uncompressed_yuv_420_image.colorGamut = compressed_jpeg_image->colorGamut;
if (uncompressed_p010_image->width != uncompressed_yuv_420_image.width
|| uncompressed_p010_image->height != uncompressed_yuv_420_image.height) {
return ERROR_JPEGR_RESOLUTION_MISMATCH;
}
jpegr_metadata metadata;
metadata.version = kJpegrVersion;
metadata.transferFunction = hdr_tf;
if (hdr_tf == JPEGR_TF_PQ) {
metadata.hdr10Metadata.st2086Metadata = kSt2086Metadata;
}
jpegr_uncompressed_struct map;
JPEGR_CHECK(generateRecoveryMap(
&uncompressed_yuv_420_image, uncompressed_p010_image, &metadata, &map));
std::unique_ptr<uint8_t[]> map_data;
map_data.reset(reinterpret_cast<uint8_t*>(map.data));
jpegr_compressed_struct compressed_map;
compressed_map.maxLength = map.width * map.height;
unique_ptr<uint8_t[]> compressed_map_data = make_unique<uint8_t[]>(compressed_map.maxLength);
compressed_map.data = compressed_map_data.get();
JPEGR_CHECK(compressRecoveryMap(&map, &compressed_map));
JPEGR_CHECK(appendRecoveryMap(compressed_jpeg_image, &compressed_map, nullptr, &metadata, dest));
return NO_ERROR;
}
status_t RecoveryMap::getJPEGRInfo(jr_compressed_ptr compressed_jpegr_image,
jr_info_ptr jpegr_info) {
if (compressed_jpegr_image == nullptr || jpegr_info == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
jpegr_compressed_struct primary_image, recovery_map;
JPEGR_CHECK(extractPrimaryImageAndRecoveryMap(compressed_jpegr_image,
&primary_image, &recovery_map));
JpegDecoder jpeg_decoder;
if (!jpeg_decoder.getCompressedImageParameters(primary_image.data, primary_image.length,
&jpegr_info->width, &jpegr_info->height,
jpegr_info->iccData, jpegr_info->exifData)) {
return ERROR_JPEGR_DECODE_ERROR;
}
return NO_ERROR;
}
/* Decode API */
status_t RecoveryMap::decodeJPEGR(jr_compressed_ptr compressed_jpegr_image,
jr_uncompressed_ptr dest,
jr_exif_ptr exif,
bool request_sdr) {
if (compressed_jpegr_image == nullptr || dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
// TODO: fill EXIF data
(void) exif;
if (request_sdr) {
JpegDecoder jpeg_decoder;
if (!jpeg_decoder.decompressImage(compressed_jpegr_image->data, compressed_jpegr_image->length,
true)) {
return ERROR_JPEGR_DECODE_ERROR;
}
jpegr_uncompressed_struct uncompressed_rgba_image;
uncompressed_rgba_image.data = jpeg_decoder.getDecompressedImagePtr();
uncompressed_rgba_image.width = jpeg_decoder.getDecompressedImageWidth();
uncompressed_rgba_image.height = jpeg_decoder.getDecompressedImageHeight();
memcpy(dest->data, uncompressed_rgba_image.data,
uncompressed_rgba_image.width * uncompressed_rgba_image.height * 4);
dest->width = uncompressed_rgba_image.width;
dest->height = uncompressed_rgba_image.height;
return NO_ERROR;
}
jpegr_compressed_struct compressed_map;
jpegr_metadata metadata;
JPEGR_CHECK(extractRecoveryMap(compressed_jpegr_image, &compressed_map));
JpegDecoder jpeg_decoder;
if (!jpeg_decoder.decompressImage(compressed_jpegr_image->data, compressed_jpegr_image->length)) {
return ERROR_JPEGR_DECODE_ERROR;
}
JpegDecoder recovery_map_decoder;
if (!recovery_map_decoder.decompressImage(compressed_map.data, compressed_map.length)) {
return ERROR_JPEGR_DECODE_ERROR;
}
jpegr_uncompressed_struct map;
map.data = recovery_map_decoder.getDecompressedImagePtr();
map.width = recovery_map_decoder.getDecompressedImageWidth();
map.height = recovery_map_decoder.getDecompressedImageHeight();
jpegr_uncompressed_struct uncompressed_yuv_420_image;
uncompressed_yuv_420_image.data = jpeg_decoder.getDecompressedImagePtr();
uncompressed_yuv_420_image.width = jpeg_decoder.getDecompressedImageWidth();
uncompressed_yuv_420_image.height = jpeg_decoder.getDecompressedImageHeight();
if (!getMetadataFromXMP(static_cast<uint8_t*>(jpeg_decoder.getXMPPtr()),
jpeg_decoder.getXMPSize(), &metadata)) {
return ERROR_JPEGR_DECODE_ERROR;
}
JPEGR_CHECK(applyRecoveryMap(&uncompressed_yuv_420_image, &map, &metadata, dest));
return NO_ERROR;
}
status_t RecoveryMap::compressRecoveryMap(jr_uncompressed_ptr uncompressed_recovery_map,
jr_compressed_ptr dest) {
if (uncompressed_recovery_map == nullptr || dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
// TODO: should we have ICC data for the map?
JpegEncoder jpeg_encoder;
if (!jpeg_encoder.compressImage(uncompressed_recovery_map->data,
uncompressed_recovery_map->width,
uncompressed_recovery_map->height,
kMapCompressQuality,
nullptr,
0,
true /* isSingleChannel */)) {
return ERROR_JPEGR_ENCODE_ERROR;
}
if (dest->maxLength < jpeg_encoder.getCompressedImageSize()) {
return ERROR_JPEGR_BUFFER_TOO_SMALL;
}
memcpy(dest->data, jpeg_encoder.getCompressedImagePtr(), jpeg_encoder.getCompressedImageSize());
dest->length = jpeg_encoder.getCompressedImageSize();
dest->colorGamut = JPEGR_COLORGAMUT_UNSPECIFIED;
return NO_ERROR;
}
const int kJobSzInRows = 16;
static_assert(kJobSzInRows > 0 && kJobSzInRows % kMapDimensionScaleFactor == 0,
"align job size to kMapDimensionScaleFactor");
class JobQueue {
public:
bool dequeueJob(size_t& rowStart, size_t& rowEnd);
void enqueueJob(size_t rowStart, size_t rowEnd);
void markQueueForEnd();
void reset();
private:
bool mQueuedAllJobs = false;
std::deque<std::tuple<size_t, size_t>> mJobs;
std::mutex mMutex;
std::condition_variable mCv;
};
bool JobQueue::dequeueJob(size_t& rowStart, size_t& rowEnd) {
std::unique_lock<std::mutex> lock{mMutex};
while (true) {
if (mJobs.empty()) {
if (mQueuedAllJobs) {
return false;
} else {
mCv.wait(lock);
}
} else {
auto it = mJobs.begin();
rowStart = std::get<0>(*it);
rowEnd = std::get<1>(*it);
mJobs.erase(it);
return true;
}
}
return false;
}
void JobQueue::enqueueJob(size_t rowStart, size_t rowEnd) {
std::unique_lock<std::mutex> lock{mMutex};
mJobs.push_back(std::make_tuple(rowStart, rowEnd));
lock.unlock();
mCv.notify_one();
}
void JobQueue::markQueueForEnd() {
std::unique_lock<std::mutex> lock{mMutex};
mQueuedAllJobs = true;
}
void JobQueue::reset() {
std::unique_lock<std::mutex> lock{mMutex};
mJobs.clear();
mQueuedAllJobs = false;
}
status_t RecoveryMap::generateRecoveryMap(jr_uncompressed_ptr uncompressed_yuv_420_image,
jr_uncompressed_ptr uncompressed_p010_image,
jr_metadata_ptr metadata,
jr_uncompressed_ptr dest) {
if (uncompressed_yuv_420_image == nullptr
|| uncompressed_p010_image == nullptr
|| metadata == nullptr
|| dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
if (uncompressed_yuv_420_image->width != uncompressed_p010_image->width
|| uncompressed_yuv_420_image->height != uncompressed_p010_image->height) {
return ERROR_JPEGR_RESOLUTION_MISMATCH;
}
if (uncompressed_yuv_420_image->colorGamut == JPEGR_COLORGAMUT_UNSPECIFIED
|| uncompressed_p010_image->colorGamut == JPEGR_COLORGAMUT_UNSPECIFIED) {
return ERROR_JPEGR_INVALID_COLORGAMUT;
}
size_t image_width = uncompressed_yuv_420_image->width;
size_t image_height = uncompressed_yuv_420_image->height;
size_t map_width = image_width / kMapDimensionScaleFactor;
size_t map_height = image_height / kMapDimensionScaleFactor;
size_t map_stride = static_cast<size_t>(
floor((map_width + kJpegBlock - 1) / kJpegBlock)) * kJpegBlock;
size_t map_height_aligned = ((map_height + 1) >> 1) << 1;
dest->width = map_stride;
dest->height = map_height_aligned;
dest->colorGamut = JPEGR_COLORGAMUT_UNSPECIFIED;
dest->data = new uint8_t[map_stride * map_height_aligned];
std::unique_ptr<uint8_t[]> map_data;
map_data.reset(reinterpret_cast<uint8_t*>(dest->data));
ColorTransformFn hdrInvOetf = nullptr;
float hdr_white_nits = 0.0f;
switch (metadata->transferFunction) {
case JPEGR_TF_LINEAR:
hdrInvOetf = identityConversion;
break;
case JPEGR_TF_HLG:
#if USE_HLG_INVOETF_LUT
hdrInvOetf = hlgInvOetfLUT;
#else
hdrInvOetf = hlgInvOetf;
#endif
hdr_white_nits = kHlgMaxNits;
break;
case JPEGR_TF_PQ:
#if USE_PQ_INVOETF_LUT
hdrInvOetf = pqInvOetfLUT;
#else
hdrInvOetf = pqInvOetf;
#endif
hdr_white_nits = kPqMaxNits;
break;
default:
// Should be impossible to hit after input validation.
return ERROR_JPEGR_INVALID_TRANS_FUNC;
}
ColorTransformFn hdrGamutConversionFn = getHdrConversionFn(
uncompressed_yuv_420_image->colorGamut, uncompressed_p010_image->colorGamut);
ColorCalculationFn luminanceFn = nullptr;
switch (uncompressed_yuv_420_image->colorGamut) {
case JPEGR_COLORGAMUT_BT709:
luminanceFn = srgbLuminance;
break;
case JPEGR_COLORGAMUT_P3:
luminanceFn = p3Luminance;
break;
case JPEGR_COLORGAMUT_BT2100:
luminanceFn = bt2100Luminance;
break;
case JPEGR_COLORGAMUT_UNSPECIFIED:
// Should be impossible to hit after input validation.
return ERROR_JPEGR_INVALID_COLORGAMUT;
}
std::mutex mutex;
float hdr_y_nits_max = 0.0f;
double hdr_y_nits_avg = 0.0f;
const int threads = std::clamp(GetCPUCoreCount(), 1, 4);
size_t rowStep = threads == 1 ? image_height : kJobSzInRows;
JobQueue jobQueue;
std::function<void()> computeMetadata = [uncompressed_p010_image, hdrInvOetf,
hdrGamutConversionFn, luminanceFn, hdr_white_nits,
threads, &mutex, &hdr_y_nits_avg,
&hdr_y_nits_max, &jobQueue]() -> void {
size_t rowStart, rowEnd;
float hdr_y_nits_max_th = 0.0f;
double hdr_y_nits_avg_th = 0.0f;
while (jobQueue.dequeueJob(rowStart, rowEnd)) {
for (size_t y = rowStart; y < rowEnd; ++y) {
for (size_t x = 0; x < uncompressed_p010_image->width; ++x) {
Color hdr_yuv_gamma = getP010Pixel(uncompressed_p010_image, x, y);
Color hdr_rgb_gamma = bt2100YuvToRgb(hdr_yuv_gamma);
Color hdr_rgb = hdrInvOetf(hdr_rgb_gamma);
hdr_rgb = hdrGamutConversionFn(hdr_rgb);
float hdr_y_nits = luminanceFn(hdr_rgb) * hdr_white_nits;
hdr_y_nits_avg_th += hdr_y_nits;
if (hdr_y_nits > hdr_y_nits_max_th) {
hdr_y_nits_max_th = hdr_y_nits;
}
}
}
}
std::unique_lock<std::mutex> lock{mutex};
hdr_y_nits_avg += hdr_y_nits_avg_th;
hdr_y_nits_max = std::max(hdr_y_nits_max, hdr_y_nits_max_th);
};
std::function<void()> generateMap = [uncompressed_yuv_420_image, uncompressed_p010_image,
metadata, dest, hdrInvOetf, hdrGamutConversionFn,
luminanceFn, hdr_white_nits, &jobQueue]() -> void {
size_t rowStart, rowEnd;
while (jobQueue.dequeueJob(rowStart, rowEnd)) {
for (size_t y = rowStart; y < rowEnd; ++y) {
for (size_t x = 0; x < dest->width; ++x) {
Color sdr_yuv_gamma =
sampleYuv420(uncompressed_yuv_420_image, kMapDimensionScaleFactor, x, y);
Color sdr_rgb_gamma = srgbYuvToRgb(sdr_yuv_gamma);
#if USE_SRGB_INVOETF_LUT
Color sdr_rgb = srgbInvOetfLUT(sdr_rgb_gamma);
#else
Color sdr_rgb = srgbInvOetf(sdr_rgb_gamma);
#endif
float sdr_y_nits = luminanceFn(sdr_rgb) * kSdrWhiteNits;
Color hdr_yuv_gamma = sampleP010(uncompressed_p010_image, kMapDimensionScaleFactor, x, y);
Color hdr_rgb_gamma = bt2100YuvToRgb(hdr_yuv_gamma);
Color hdr_rgb = hdrInvOetf(hdr_rgb_gamma);
hdr_rgb = hdrGamutConversionFn(hdr_rgb);
float hdr_y_nits = luminanceFn(hdr_rgb) * hdr_white_nits;
size_t pixel_idx = x + y * dest->width;
reinterpret_cast<uint8_t*>(dest->data)[pixel_idx] =
encodeRecovery(sdr_y_nits, hdr_y_nits, metadata->rangeScalingFactor);
}
}
}
};
std::vector<std::thread> workers;
for (int th = 0; th < threads - 1; th++) {
workers.push_back(std::thread(computeMetadata));
}
// compute metadata
for (size_t rowStart = 0; rowStart < image_height;) {
size_t rowEnd = std::min(rowStart + rowStep, image_height);
jobQueue.enqueueJob(rowStart, rowEnd);
rowStart = rowEnd;
}
jobQueue.markQueueForEnd();
computeMetadata();
std::for_each(workers.begin(), workers.end(), [](std::thread& t) { t.join(); });
workers.clear();
hdr_y_nits_avg /= image_width * image_height;
metadata->rangeScalingFactor = hdr_y_nits_max / kSdrWhiteNits;
if (metadata->transferFunction == JPEGR_TF_PQ) {
metadata->hdr10Metadata.maxFALL = hdr_y_nits_avg;
metadata->hdr10Metadata.maxCLL = hdr_y_nits_max;
}
// generate map
jobQueue.reset();
for (int th = 0; th < threads - 1; th++) {
workers.push_back(std::thread(generateMap));
}
rowStep = (threads == 1 ? image_height : kJobSzInRows) / kMapDimensionScaleFactor;
for (size_t rowStart = 0; rowStart < map_height;) {
size_t rowEnd = std::min(rowStart + rowStep, map_height);
jobQueue.enqueueJob(rowStart, rowEnd);
rowStart = rowEnd;
}
jobQueue.markQueueForEnd();
generateMap();
std::for_each(workers.begin(), workers.end(), [](std::thread& t) { t.join(); });
map_data.release();
return NO_ERROR;
}
status_t RecoveryMap::applyRecoveryMap(jr_uncompressed_ptr uncompressed_yuv_420_image,
jr_uncompressed_ptr uncompressed_recovery_map,
jr_metadata_ptr metadata,
jr_uncompressed_ptr dest) {
if (uncompressed_yuv_420_image == nullptr
|| uncompressed_recovery_map == nullptr
|| metadata == nullptr
|| dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
dest->width = uncompressed_yuv_420_image->width;
dest->height = uncompressed_yuv_420_image->height;
ShepardsIDW idwTable(kMapDimensionScaleFactor);
RecoveryLUT recoveryLUT(metadata->rangeScalingFactor);
JobQueue jobQueue;
std::function<void()> applyRecMap = [uncompressed_yuv_420_image, uncompressed_recovery_map,
metadata, dest, &jobQueue, &idwTable,
&recoveryLUT]() -> void {
const float hdr_ratio = metadata->rangeScalingFactor;
size_t width = uncompressed_yuv_420_image->width;
size_t height = uncompressed_yuv_420_image->height;
ColorTransformFn hdrOetf = nullptr;
switch (metadata->transferFunction) {
case JPEGR_TF_LINEAR:
hdrOetf = identityConversion;
break;
case JPEGR_TF_HLG:
#if USE_HLG_OETF_LUT
hdrOetf = hlgOetfLUT;
#else
hdrOetf = hlgOetf;
#endif
break;
case JPEGR_TF_PQ:
#if USE_PQ_OETF_LUT
hdrOetf = pqOetfLUT;
#else
hdrOetf = pqOetf;
#endif
break;
default:
// Should be impossible to hit after input validation.
hdrOetf = identityConversion;
}
size_t rowStart, rowEnd;
while (jobQueue.dequeueJob(rowStart, rowEnd)) {
for (size_t y = rowStart; y < rowEnd; ++y) {
for (size_t x = 0; x < width; ++x) {
Color yuv_gamma_sdr = getYuv420Pixel(uncompressed_yuv_420_image, x, y);
Color rgb_gamma_sdr = srgbYuvToRgb(yuv_gamma_sdr);
#if USE_SRGB_INVOETF_LUT
Color rgb_sdr = srgbInvOetfLUT(rgb_gamma_sdr);
#else
Color rgb_sdr = srgbInvOetf(rgb_gamma_sdr);
#endif
float recovery;
// TODO: determine map scaling factor based on actual map dims
size_t map_scale_factor = kMapDimensionScaleFactor;
// TODO: If map_scale_factor is guaranteed to be an integer, then remove the following.
// Currently map_scale_factor is of type size_t, but it could be changed to a float
// later.
if (map_scale_factor != floorf(map_scale_factor)) {
recovery = sampleMap(uncompressed_recovery_map, map_scale_factor, x, y);
} else {
recovery = sampleMap(uncompressed_recovery_map, map_scale_factor, x, y,
idwTable);
}
#if USE_APPLY_RECOVERY_LUT
Color rgb_hdr = applyRecoveryLUT(rgb_sdr, recovery, recoveryLUT);
#else
Color rgb_hdr = applyRecovery(rgb_sdr, recovery, hdr_ratio);
#endif
Color rgb_gamma_hdr = hdrOetf(rgb_hdr / metadata->rangeScalingFactor);
uint32_t rgba1010102 = colorToRgba1010102(rgb_gamma_hdr);
size_t pixel_idx = x + y * width;
reinterpret_cast<uint32_t*>(dest->data)[pixel_idx] = rgba1010102;
}
}
}
};
const int threads = std::clamp(GetCPUCoreCount(), 1, 4);
std::vector<std::thread> workers;
for (int th = 0; th < threads - 1; th++) {
workers.push_back(std::thread(applyRecMap));
}
const int rowStep = threads == 1 ? uncompressed_yuv_420_image->height : kJobSzInRows;
for (int rowStart = 0; rowStart < uncompressed_yuv_420_image->height;) {
int rowEnd = std::min(rowStart + rowStep, uncompressed_yuv_420_image->height);
jobQueue.enqueueJob(rowStart, rowEnd);
rowStart = rowEnd;
}
jobQueue.markQueueForEnd();
applyRecMap();
std::for_each(workers.begin(), workers.end(), [](std::thread& t) { t.join(); });
return NO_ERROR;
}
status_t RecoveryMap::extractPrimaryImageAndRecoveryMap(jr_compressed_ptr compressed_jpegr_image,
jr_compressed_ptr primary_image,
jr_compressed_ptr recovery_map) {
if (compressed_jpegr_image == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
MessageHandler msg_handler;
std::shared_ptr<DataSegment> seg =
DataSegment::Create(DataRange(0, compressed_jpegr_image->length),
static_cast<const uint8_t*>(compressed_jpegr_image->data),
DataSegment::BufferDispositionPolicy::kDontDelete);
DataSegmentDataSource data_source(seg);
JpegInfoBuilder jpeg_info_builder;
jpeg_info_builder.SetImageLimit(2);
JpegScanner jpeg_scanner(&msg_handler);
jpeg_scanner.Run(&data_source, &jpeg_info_builder);
data_source.Reset();
if (jpeg_scanner.HasError()) {
return ERROR_JPEGR_INVALID_INPUT_TYPE;
}
const auto& jpeg_info = jpeg_info_builder.GetInfo();
const auto& image_ranges = jpeg_info.GetImageRanges();
if (image_ranges.empty()) {
return ERROR_JPEGR_INVALID_INPUT_TYPE;
}
if (image_ranges.size() != 2) {
// Must be 2 JPEG Images
return ERROR_JPEGR_INVALID_INPUT_TYPE;
}
if (primary_image != nullptr) {
primary_image->data = static_cast<uint8_t*>(compressed_jpegr_image->data) +
image_ranges[0].GetBegin();
primary_image->length = image_ranges[0].GetLength();
}
if (recovery_map != nullptr) {
recovery_map->data = static_cast<uint8_t*>(compressed_jpegr_image->data) +
image_ranges[1].GetBegin();
recovery_map->length = image_ranges[1].GetLength();
}
return NO_ERROR;
}
status_t RecoveryMap::extractRecoveryMap(jr_compressed_ptr compressed_jpegr_image,
jr_compressed_ptr dest) {
if (compressed_jpegr_image == nullptr || dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
return extractPrimaryImageAndRecoveryMap(compressed_jpegr_image, nullptr, dest);
}
// JPEG/R structure:
// SOI (ff d8)
//
// (Optional, only if EXIF package is from outside)
// APP1 (ff e1)
// 2 bytes of length (2 + length of exif package)
// EXIF package (this includes the first two bytes representing the package length)
//
// (Required, XMP package) APP1 (ff e1)
// 2 bytes of length (2 + 29 + length of xmp package)
// name space ("http://ns.adobe.com/xap/1.0/\0")
// xmp
//
// (Required) primary image (without the first two bytes (SOI), may have other packages)
//
// (Required) secondary image (the recovery map)
//
// Metadata versions we are using:
// ECMA TR-98 for JFIF marker
// Exif 2.2 spec for EXIF marker
// Adobe XMP spec part 3 for XMP marker
// ICC v4.3 spec for ICC
status_t RecoveryMap::appendRecoveryMap(jr_compressed_ptr compressed_jpeg_image,
jr_compressed_ptr compressed_recovery_map,
jr_exif_ptr exif,
jr_metadata_ptr metadata,
jr_compressed_ptr dest) {
if (compressed_jpeg_image == nullptr
|| compressed_recovery_map == nullptr
|| metadata == nullptr
|| dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
int pos = 0;
// Write SOI
JPEGR_CHECK(Write(dest, &photos_editing_formats::image_io::JpegMarker::kStart, 1, pos));
JPEGR_CHECK(Write(dest, &photos_editing_formats::image_io::JpegMarker::kSOI, 1, pos));
// Write EXIF
if (exif != nullptr) {
const int length = 2 + exif->length;
const uint8_t lengthH = ((length >> 8) & 0xff);
const uint8_t lengthL = (length & 0xff);
JPEGR_CHECK(Write(dest, &photos_editing_formats::image_io::JpegMarker::kStart, 1, pos));
JPEGR_CHECK(Write(dest, &photos_editing_formats::image_io::JpegMarker::kAPP1, 1, pos));
JPEGR_CHECK(Write(dest, &lengthH, 1, pos));
JPEGR_CHECK(Write(dest, &lengthL, 1, pos));
JPEGR_CHECK(Write(dest, exif->data, exif->length, pos));
}
// Prepare and write XMP
{
const string xmp = generateXmp(compressed_recovery_map->length, *metadata);
const string nameSpace = "http://ns.adobe.com/xap/1.0/\0";
const int nameSpaceLength = nameSpace.size() + 1; // need to count the null terminator
// 2 bytes: representing the length of the package
// 29 bytes: length of name space "http://ns.adobe.com/xap/1.0/\0",
// x bytes: length of xmp packet
const int length = 2 + nameSpaceLength + xmp.size();
const uint8_t lengthH = ((length >> 8) & 0xff);
const uint8_t lengthL = (length & 0xff);
JPEGR_CHECK(Write(dest, &photos_editing_formats::image_io::JpegMarker::kStart, 1, pos));
JPEGR_CHECK(Write(dest, &photos_editing_formats::image_io::JpegMarker::kAPP1, 1, pos));
JPEGR_CHECK(Write(dest, &lengthH, 1, pos));
JPEGR_CHECK(Write(dest, &lengthL, 1, pos));
JPEGR_CHECK(Write(dest, (void*)nameSpace.c_str(), nameSpaceLength, pos));
JPEGR_CHECK(Write(dest, (void*)xmp.c_str(), xmp.size(), pos));
}
// Write primary image
JPEGR_CHECK(Write(dest,
(uint8_t*)compressed_jpeg_image->data + 2, compressed_jpeg_image->length - 2, pos));
// Write secondary image
JPEGR_CHECK(Write(dest, compressed_recovery_map->data, compressed_recovery_map->length, pos));
// Set back length
dest->length = pos;
// Done!
return NO_ERROR;
}
status_t RecoveryMap::toneMap(jr_uncompressed_ptr src,
jr_uncompressed_ptr dest) {
if (src == nullptr || dest == nullptr) {
return ERROR_JPEGR_INVALID_NULL_PTR;
}
dest->width = src->width;
dest->height = src->height;
size_t pixel_count = src->width * src->height;
for (size_t y = 0; y < src->height; ++y) {
for (size_t x = 0; x < src->width; ++x) {
size_t pixel_y_idx = x + y * src->width;
size_t pixel_uv_idx = x / 2 + (y / 2) * (src->width / 2);
uint16_t y_uint = reinterpret_cast<uint16_t*>(src->data)[pixel_y_idx]
>> 6;
uint16_t u_uint = reinterpret_cast<uint16_t*>(src->data)[pixel_count + pixel_uv_idx * 2]
>> 6;
uint16_t v_uint = reinterpret_cast<uint16_t*>(src->data)[pixel_count + pixel_uv_idx * 2 + 1]
>> 6;
uint8_t* y = &reinterpret_cast<uint8_t*>(dest->data)[pixel_y_idx];
uint8_t* u = &reinterpret_cast<uint8_t*>(dest->data)[pixel_count + pixel_uv_idx];
uint8_t* v = &reinterpret_cast<uint8_t*>(dest->data)[pixel_count * 5 / 4 + pixel_uv_idx];
*y = static_cast<uint8_t>((y_uint >> 2) & 0xff);
*u = static_cast<uint8_t>((u_uint >> 2) & 0xff);
*v = static_cast<uint8_t>((v_uint >> 2) & 0xff);
}
}
dest->colorGamut = src->colorGamut;
return NO_ERROR;
}
} // namespace android::recoverymap