|  | /* | 
|  | * Copyright (C) 2017 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
|  | #pragma clang diagnostic push | 
|  | #pragma clang diagnostic ignored "-Wconversion" | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "BufferLayer" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include "BufferLayer.h" | 
|  |  | 
|  | #include <compositionengine/CompositionEngine.h> | 
|  | #include <compositionengine/Layer.h> | 
|  | #include <compositionengine/LayerCreationArgs.h> | 
|  | #include <compositionengine/LayerFECompositionState.h> | 
|  | #include <compositionengine/OutputLayer.h> | 
|  | #include <compositionengine/impl/OutputLayerCompositionState.h> | 
|  | #include <cutils/compiler.h> | 
|  | #include <cutils/native_handle.h> | 
|  | #include <cutils/properties.h> | 
|  | #include <gui/BufferItem.h> | 
|  | #include <gui/BufferQueue.h> | 
|  | #include <gui/GLConsumer.h> | 
|  | #include <gui/LayerDebugInfo.h> | 
|  | #include <gui/Surface.h> | 
|  | #include <renderengine/RenderEngine.h> | 
|  | #include <ui/DebugUtils.h> | 
|  | #include <utils/Errors.h> | 
|  | #include <utils/Log.h> | 
|  | #include <utils/NativeHandle.h> | 
|  | #include <utils/StopWatch.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <cmath> | 
|  | #include <cstdlib> | 
|  | #include <mutex> | 
|  | #include <sstream> | 
|  |  | 
|  | #include "Colorizer.h" | 
|  | #include "DisplayDevice.h" | 
|  | #include "FrameTracer/FrameTracer.h" | 
|  | #include "LayerRejecter.h" | 
|  | #include "TimeStats/TimeStats.h" | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | static constexpr float defaultMaxMasteringLuminance = 1000.0; | 
|  | static constexpr float defaultMaxContentLuminance = 1000.0; | 
|  |  | 
|  | BufferLayer::BufferLayer(const LayerCreationArgs& args) | 
|  | : Layer(args), | 
|  | mTextureName(args.textureName), | 
|  | mCompositionLayer{mFlinger->getCompositionEngine().createLayer( | 
|  | compositionengine::LayerCreationArgs{this})} { | 
|  | ALOGV("Creating Layer %s", getDebugName()); | 
|  |  | 
|  | mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied); | 
|  |  | 
|  | mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow; | 
|  | mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp; | 
|  | } | 
|  |  | 
|  | BufferLayer::~BufferLayer() { | 
|  | if (!isClone()) { | 
|  | // The original layer and the clone layer share the same texture. Therefore, only one of | 
|  | // the layers, in this case the original layer, needs to handle the deletion. The original | 
|  | // layer and the clone should be removed at the same time so there shouldn't be any issue | 
|  | // with the clone layer trying to use the deleted texture. | 
|  | mFlinger->deleteTextureAsync(mTextureName); | 
|  | } | 
|  | const int32_t layerId = getSequence(); | 
|  | mFlinger->mTimeStats->onDestroy(layerId); | 
|  | mFlinger->mFrameTracer->onDestroy(layerId); | 
|  | } | 
|  |  | 
|  | void BufferLayer::useSurfaceDamage() { | 
|  | if (mFlinger->mForceFullDamage) { | 
|  | surfaceDamageRegion = Region::INVALID_REGION; | 
|  | } else { | 
|  | surfaceDamageRegion = mBufferInfo.mSurfaceDamage; | 
|  | } | 
|  | } | 
|  |  | 
|  | void BufferLayer::useEmptyDamage() { | 
|  | surfaceDamageRegion.clear(); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isOpaque(const Layer::State& s) const { | 
|  | // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the | 
|  | // layer's opaque flag. | 
|  | if ((mSidebandStream == nullptr) && (mBufferInfo.mBuffer == nullptr)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the layer has the opaque flag, then we're always opaque, | 
|  | // otherwise we use the current buffer's format. | 
|  | return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat()); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isVisible() const { | 
|  | return !isHiddenByPolicy() && getAlpha() > 0.0f && | 
|  | (mBufferInfo.mBuffer != nullptr || mSidebandStream != nullptr); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isFixedSize() const { | 
|  | return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::usesSourceCrop() const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static constexpr mat4 inverseOrientation(uint32_t transform) { | 
|  | const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); | 
|  | const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); | 
|  | const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); | 
|  | mat4 tr; | 
|  |  | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
|  | tr = tr * rot90; | 
|  | } | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { | 
|  | tr = tr * flipH; | 
|  | } | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { | 
|  | tr = tr * flipV; | 
|  | } | 
|  | return inverse(tr); | 
|  | } | 
|  |  | 
|  | std::optional<compositionengine::LayerFE::LayerSettings> BufferLayer::prepareClientComposition( | 
|  | compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | std::optional<compositionengine::LayerFE::LayerSettings> result = | 
|  | Layer::prepareClientComposition(targetSettings); | 
|  | if (!result) { | 
|  | return result; | 
|  | } | 
|  |  | 
|  | if (CC_UNLIKELY(mBufferInfo.mBuffer == 0)) { | 
|  | // the texture has not been created yet, this Layer has | 
|  | // in fact never been drawn into. This happens frequently with | 
|  | // SurfaceView because the WindowManager can't know when the client | 
|  | // has drawn the first time. | 
|  |  | 
|  | // If there is nothing under us, we paint the screen in black, otherwise | 
|  | // we just skip this update. | 
|  |  | 
|  | // figure out if there is something below us | 
|  | Region under; | 
|  | bool finished = false; | 
|  | mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { | 
|  | if (finished || layer == static_cast<BufferLayer const*>(this)) { | 
|  | finished = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | under.orSelf(layer->getScreenBounds()); | 
|  | }); | 
|  | // if not everything below us is covered, we plug the holes! | 
|  | Region holes(targetSettings.clip.subtract(under)); | 
|  | if (!holes.isEmpty()) { | 
|  | targetSettings.clearRegion.orSelf(holes); | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  | bool blackOutLayer = (isProtected() && !targetSettings.supportsProtectedContent) || | 
|  | (isSecure() && !targetSettings.isSecure); | 
|  | const State& s(getDrawingState()); | 
|  | LayerFE::LayerSettings& layer = *result; | 
|  | if (!blackOutLayer) { | 
|  | layer.source.buffer.buffer = mBufferInfo.mBuffer; | 
|  | layer.source.buffer.isOpaque = isOpaque(s); | 
|  | layer.source.buffer.fence = mBufferInfo.mFence; | 
|  | layer.source.buffer.textureName = mTextureName; | 
|  | layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha(); | 
|  | layer.source.buffer.isY410BT2020 = isHdrY410(); | 
|  | bool hasSmpte2086 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::SMPTE2086; | 
|  | bool hasCta861_3 = mBufferInfo.mHdrMetadata.validTypes & HdrMetadata::CTA861_3; | 
|  | layer.source.buffer.maxMasteringLuminance = hasSmpte2086 | 
|  | ? mBufferInfo.mHdrMetadata.smpte2086.maxLuminance | 
|  | : defaultMaxMasteringLuminance; | 
|  | layer.source.buffer.maxContentLuminance = hasCta861_3 | 
|  | ? mBufferInfo.mHdrMetadata.cta8613.maxContentLightLevel | 
|  | : defaultMaxContentLuminance; | 
|  | layer.frameNumber = mCurrentFrameNumber; | 
|  | layer.bufferId = mBufferInfo.mBuffer ? mBufferInfo.mBuffer->getId() : 0; | 
|  |  | 
|  | // TODO: we could be more subtle with isFixedSize() | 
|  | const bool useFiltering = targetSettings.needsFiltering || mNeedsFiltering || isFixedSize(); | 
|  |  | 
|  | // Query the texture matrix given our current filtering mode. | 
|  | float textureMatrix[16]; | 
|  | getDrawingTransformMatrix(useFiltering, textureMatrix); | 
|  |  | 
|  | if (getTransformToDisplayInverse()) { | 
|  | /* | 
|  | * the code below applies the primary display's inverse transform to | 
|  | * the texture transform | 
|  | */ | 
|  | uint32_t transform = DisplayDevice::getPrimaryDisplayRotationFlags(); | 
|  | mat4 tr = inverseOrientation(transform); | 
|  |  | 
|  | /** | 
|  | * TODO(b/36727915): This is basically a hack. | 
|  | * | 
|  | * Ensure that regardless of the parent transformation, | 
|  | * this buffer is always transformed from native display | 
|  | * orientation to display orientation. For example, in the case | 
|  | * of a camera where the buffer remains in native orientation, | 
|  | * we want the pixels to always be upright. | 
|  | */ | 
|  | sp<Layer> p = mDrawingParent.promote(); | 
|  | if (p != nullptr) { | 
|  | const auto parentTransform = p->getTransform(); | 
|  | tr = tr * inverseOrientation(parentTransform.getOrientation()); | 
|  | } | 
|  |  | 
|  | // and finally apply it to the original texture matrix | 
|  | const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); | 
|  | memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); | 
|  | } | 
|  |  | 
|  | const Rect win{getBounds()}; | 
|  | float bufferWidth = getBufferSize(s).getWidth(); | 
|  | float bufferHeight = getBufferSize(s).getHeight(); | 
|  |  | 
|  | // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has | 
|  | // been set and there is no parent layer bounds. In that case, the scale is meaningless so | 
|  | // ignore them. | 
|  | if (!getBufferSize(s).isValid()) { | 
|  | bufferWidth = float(win.right) - float(win.left); | 
|  | bufferHeight = float(win.bottom) - float(win.top); | 
|  | } | 
|  |  | 
|  | const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight; | 
|  | const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth; | 
|  | const float translateY = float(win.top) / bufferHeight; | 
|  | const float translateX = float(win.left) / bufferWidth; | 
|  |  | 
|  | // Flip y-coordinates because GLConsumer expects OpenGL convention. | 
|  | mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) * | 
|  | mat4::translate(vec4(-.5, -.5, 0, 1)) * | 
|  | mat4::translate(vec4(translateX, translateY, 0, 1)) * | 
|  | mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0)); | 
|  |  | 
|  | layer.source.buffer.useTextureFiltering = useFiltering; | 
|  | layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr; | 
|  | } else { | 
|  | // If layer is blacked out, force alpha to 1 so that we draw a black color | 
|  | // layer. | 
|  | layer.source.buffer.buffer = nullptr; | 
|  | layer.alpha = 1.0; | 
|  | layer.frameNumber = 0; | 
|  | layer.bufferId = 0; | 
|  | } | 
|  |  | 
|  | return layer; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isHdrY410() const { | 
|  | // pixel format is HDR Y410 masquerading as RGBA_1010102 | 
|  | return (mBufferInfo.mDataspace == ui::Dataspace::BT2020_ITU_PQ && | 
|  | mBufferInfo.mApi == NATIVE_WINDOW_API_MEDIA && | 
|  | mBufferInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102); | 
|  | } | 
|  |  | 
|  | void BufferLayer::latchPerFrameState( | 
|  | compositionengine::LayerFECompositionState& compositionState) const { | 
|  | Layer::latchPerFrameState(compositionState); | 
|  |  | 
|  | // Sideband layers | 
|  | if (compositionState.sidebandStream.get()) { | 
|  | compositionState.compositionType = Hwc2::IComposerClient::Composition::SIDEBAND; | 
|  | } else { | 
|  | // Normal buffer layers | 
|  | compositionState.hdrMetadata = mBufferInfo.mHdrMetadata; | 
|  | compositionState.compositionType = mPotentialCursor | 
|  | ? Hwc2::IComposerClient::Composition::CURSOR | 
|  | : Hwc2::IComposerClient::Composition::DEVICE; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { | 
|  | if (mBufferInfo.mBuffer != nullptr) { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); | 
|  | } | 
|  | mRefreshPending = false; | 
|  | return hasReadyFrame(); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::onPostComposition(sp<const DisplayDevice> displayDevice, | 
|  | const std::shared_ptr<FenceTime>& glDoneFence, | 
|  | const std::shared_ptr<FenceTime>& presentFence, | 
|  | const CompositorTiming& compositorTiming) { | 
|  | // mFrameLatencyNeeded is true when a new frame was latched for the | 
|  | // composition. | 
|  | if (!mBufferInfo.mFrameLatencyNeeded) return false; | 
|  |  | 
|  | // Update mFrameEventHistory. | 
|  | { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence, | 
|  | compositorTiming); | 
|  | } | 
|  |  | 
|  | // Update mFrameTracker. | 
|  | nsecs_t desiredPresentTime = mBufferInfo.mDesiredPresentTime; | 
|  | mFrameTracker.setDesiredPresentTime(desiredPresentTime); | 
|  |  | 
|  | const int32_t layerId = getSequence(); | 
|  | mFlinger->mTimeStats->setDesiredTime(layerId, mCurrentFrameNumber, desiredPresentTime); | 
|  |  | 
|  | const auto outputLayer = findOutputLayerForDisplay(displayDevice); | 
|  | if (outputLayer && outputLayer->requiresClientComposition()) { | 
|  | nsecs_t clientCompositionTimestamp = outputLayer->getState().clientCompositionTimestamp; | 
|  | mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber, | 
|  | clientCompositionTimestamp, | 
|  | FrameTracer::FrameEvent::FALLBACK_COMPOSITION); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<FenceTime> frameReadyFence = mBufferInfo.mFenceTime; | 
|  | if (frameReadyFence->isValid()) { | 
|  | mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); | 
|  | } else { | 
|  | // There was no fence for this frame, so assume that it was ready | 
|  | // to be presented at the desired present time. | 
|  | mFrameTracker.setFrameReadyTime(desiredPresentTime); | 
|  | } | 
|  |  | 
|  | const auto displayId = displayDevice->getId(); | 
|  | if (presentFence->isValid()) { | 
|  | mFlinger->mTimeStats->setPresentFence(layerId, mCurrentFrameNumber, presentFence); | 
|  | mFlinger->mFrameTracer->traceFence(layerId, getCurrentBufferId(), mCurrentFrameNumber, | 
|  | presentFence, FrameTracer::FrameEvent::PRESENT_FENCE); | 
|  | mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence)); | 
|  | } else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) { | 
|  | // The HWC doesn't support present fences, so use the refresh | 
|  | // timestamp instead. | 
|  | const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId); | 
|  | mFlinger->mTimeStats->setPresentTime(layerId, mCurrentFrameNumber, actualPresentTime); | 
|  | mFlinger->mFrameTracer->traceTimestamp(layerId, getCurrentBufferId(), mCurrentFrameNumber, | 
|  | actualPresentTime, | 
|  | FrameTracer::FrameEvent::PRESENT_FENCE); | 
|  | mFrameTracker.setActualPresentTime(actualPresentTime); | 
|  | } | 
|  |  | 
|  | mFrameTracker.advanceFrame(); | 
|  | mBufferInfo.mFrameLatencyNeeded = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime, | 
|  | nsecs_t expectedPresentTime) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | bool refreshRequired = latchSidebandStream(recomputeVisibleRegions); | 
|  |  | 
|  | if (refreshRequired) { | 
|  | return refreshRequired; | 
|  | } | 
|  |  | 
|  | if (!hasReadyFrame()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if we've already called updateTexImage() without going through | 
|  | // a composition step, we have to skip this layer at this point | 
|  | // because we cannot call updateTeximage() without a corresponding | 
|  | // compositionComplete() call. | 
|  | // we'll trigger an update in onPreComposition(). | 
|  | if (mRefreshPending) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the head buffer's acquire fence hasn't signaled yet, return and | 
|  | // try again later | 
|  | if (!fenceHasSignaled()) { | 
|  | ATRACE_NAME("!fenceHasSignaled()"); | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Capture the old state of the layer for comparisons later | 
|  | const State& s(getDrawingState()); | 
|  | const bool oldOpacity = isOpaque(s); | 
|  |  | 
|  | BufferInfo oldBufferInfo = mBufferInfo; | 
|  |  | 
|  | if (!allTransactionsSignaled(expectedPresentTime)) { | 
|  | mFlinger->setTransactionFlags(eTraversalNeeded); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | status_t err = updateTexImage(recomputeVisibleRegions, latchTime, expectedPresentTime); | 
|  | if (err != NO_ERROR) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | err = updateActiveBuffer(); | 
|  | if (err != NO_ERROR) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | err = updateFrameNumber(latchTime); | 
|  | if (err != NO_ERROR) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | gatherBufferInfo(); | 
|  |  | 
|  | mRefreshPending = true; | 
|  | mBufferInfo.mFrameLatencyNeeded = true; | 
|  | if (oldBufferInfo.mBuffer == nullptr) { | 
|  | // the first time we receive a buffer, we need to trigger a | 
|  | // geometry invalidation. | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | if ((mBufferInfo.mCrop != oldBufferInfo.mCrop) || | 
|  | (mBufferInfo.mTransform != oldBufferInfo.mTransform) || | 
|  | (mBufferInfo.mScaleMode != oldBufferInfo.mScaleMode) || | 
|  | (mBufferInfo.mTransformToDisplayInverse != oldBufferInfo.mTransformToDisplayInverse)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | if (oldBufferInfo.mBuffer != nullptr) { | 
|  | uint32_t bufWidth = mBufferInfo.mBuffer->getWidth(); | 
|  | uint32_t bufHeight = mBufferInfo.mBuffer->getHeight(); | 
|  | if (bufWidth != uint32_t(oldBufferInfo.mBuffer->width) || | 
|  | bufHeight != uint32_t(oldBufferInfo.mBuffer->height)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (oldOpacity != isOpaque(s)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | // Remove any sync points corresponding to the buffer which was just | 
|  | // latched | 
|  | { | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | auto point = mLocalSyncPoints.begin(); | 
|  | while (point != mLocalSyncPoints.end()) { | 
|  | if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { | 
|  | // This sync point must have been added since we started | 
|  | // latching. Don't drop it yet. | 
|  | ++point; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { | 
|  | std::stringstream ss; | 
|  | ss << "Dropping sync point " << (*point)->getFrameNumber(); | 
|  | ATRACE_NAME(ss.str().c_str()); | 
|  | point = mLocalSyncPoints.erase(point); | 
|  | } else { | 
|  | ++point; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // transaction | 
|  | void BufferLayer::notifyAvailableFrames(nsecs_t expectedPresentTime) { | 
|  | const auto headFrameNumber = getHeadFrameNumber(expectedPresentTime); | 
|  | const bool headFenceSignaled = fenceHasSignaled(); | 
|  | const bool presentTimeIsCurrent = framePresentTimeIsCurrent(expectedPresentTime); | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled && | 
|  | presentTimeIsCurrent) { | 
|  | point->setFrameAvailable(); | 
|  | sp<Layer> requestedSyncLayer = point->getRequestedSyncLayer(); | 
|  | if (requestedSyncLayer) { | 
|  | // Need to update the transaction flag to ensure the layer's pending transaction | 
|  | // gets applied. | 
|  | requestedSyncLayer->setTransactionFlags(eTransactionNeeded); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BufferLayer::hasReadyFrame() const { | 
|  | return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh(); | 
|  | } | 
|  |  | 
|  | uint32_t BufferLayer::getEffectiveScalingMode() const { | 
|  | if (mOverrideScalingMode >= 0) { | 
|  | return mOverrideScalingMode; | 
|  | } | 
|  |  | 
|  | return mBufferInfo.mScaleMode; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isProtected() const { | 
|  | const sp<GraphicBuffer>& buffer(mBufferInfo.mBuffer); | 
|  | return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::latchUnsignaledBuffers() { | 
|  | static bool propertyLoaded = false; | 
|  | static bool latch = false; | 
|  | static std::mutex mutex; | 
|  | std::lock_guard<std::mutex> lock(mutex); | 
|  | if (!propertyLoaded) { | 
|  | char value[PROPERTY_VALUE_MAX] = {}; | 
|  | property_get("debug.sf.latch_unsignaled", value, "0"); | 
|  | latch = atoi(value); | 
|  | propertyLoaded = true; | 
|  | } | 
|  | return latch; | 
|  | } | 
|  |  | 
|  | // h/w composer set-up | 
|  | bool BufferLayer::allTransactionsSignaled(nsecs_t expectedPresentTime) { | 
|  | const auto headFrameNumber = getHeadFrameNumber(expectedPresentTime); | 
|  | bool matchingFramesFound = false; | 
|  | bool allTransactionsApplied = true; | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  |  | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | if (point->getFrameNumber() > headFrameNumber) { | 
|  | break; | 
|  | } | 
|  | matchingFramesFound = true; | 
|  |  | 
|  | if (!point->frameIsAvailable()) { | 
|  | // We haven't notified the remote layer that the frame for | 
|  | // this point is available yet. Notify it now, and then | 
|  | // abort this attempt to latch. | 
|  | point->setFrameAvailable(); | 
|  | allTransactionsApplied = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); | 
|  | } | 
|  | return !matchingFramesFound || allTransactionsApplied; | 
|  | } | 
|  |  | 
|  | // As documented in libhardware header, formats in the range | 
|  | // 0x100 - 0x1FF are specific to the HAL implementation, and | 
|  | // are known to have no alpha channel | 
|  | // TODO: move definition for device-specific range into | 
|  | // hardware.h, instead of using hard-coded values here. | 
|  | #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) | 
|  |  | 
|  | bool BufferLayer::getOpacityForFormat(uint32_t format) { | 
|  | if (HARDWARE_IS_DEVICE_FORMAT(format)) { | 
|  | return true; | 
|  | } | 
|  | switch (format) { | 
|  | case HAL_PIXEL_FORMAT_RGBA_8888: | 
|  | case HAL_PIXEL_FORMAT_BGRA_8888: | 
|  | case HAL_PIXEL_FORMAT_RGBA_FP16: | 
|  | case HAL_PIXEL_FORMAT_RGBA_1010102: | 
|  | return false; | 
|  | } | 
|  | // in all other case, we have no blending (also for unknown formats) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const { | 
|  | // If we are not capturing based on the state of a known display device, | 
|  | // just return false. | 
|  | if (displayDevice == nullptr) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const auto outputLayer = findOutputLayerForDisplay(displayDevice); | 
|  | if (outputLayer == nullptr) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We need filtering if the sourceCrop rectangle size does not match the | 
|  | // displayframe rectangle size (not a 1:1 render) | 
|  | const auto& compositionState = outputLayer->getState(); | 
|  | const auto displayFrame = compositionState.displayFrame; | 
|  | const auto sourceCrop = compositionState.sourceCrop; | 
|  | return sourceCrop.getHeight() != displayFrame.getHeight() || | 
|  | sourceCrop.getWidth() != displayFrame.getWidth(); | 
|  | } | 
|  |  | 
|  | uint64_t BufferLayer::getHeadFrameNumber(nsecs_t expectedPresentTime) const { | 
|  | if (hasFrameUpdate()) { | 
|  | return getFrameNumber(expectedPresentTime); | 
|  | } else { | 
|  | return mCurrentFrameNumber; | 
|  | } | 
|  | } | 
|  |  | 
|  | Rect BufferLayer::getBufferSize(const State& s) const { | 
|  | // If we have a sideband stream, or we are scaling the buffer then return the layer size since | 
|  | // we cannot determine the buffer size. | 
|  | if ((s.sidebandStream != nullptr) || | 
|  | (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { | 
|  | return Rect(getActiveWidth(s), getActiveHeight(s)); | 
|  | } | 
|  |  | 
|  | if (mBufferInfo.mBuffer == nullptr) { | 
|  | return Rect::INVALID_RECT; | 
|  | } | 
|  |  | 
|  | uint32_t bufWidth = mBufferInfo.mBuffer->getWidth(); | 
|  | uint32_t bufHeight = mBufferInfo.mBuffer->getHeight(); | 
|  |  | 
|  | // Undo any transformations on the buffer and return the result. | 
|  | if (mBufferInfo.mTransform & ui::Transform::ROT_90) { | 
|  | std::swap(bufWidth, bufHeight); | 
|  | } | 
|  |  | 
|  | if (getTransformToDisplayInverse()) { | 
|  | uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags(); | 
|  | if (invTransform & ui::Transform::ROT_90) { | 
|  | std::swap(bufWidth, bufHeight); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Rect(bufWidth, bufHeight); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<compositionengine::Layer> BufferLayer::getCompositionLayer() const { | 
|  | return mCompositionLayer; | 
|  | } | 
|  |  | 
|  | FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const { | 
|  | const State& s(getDrawingState()); | 
|  |  | 
|  | // If we have a sideband stream, or we are scaling the buffer then return the layer size since | 
|  | // we cannot determine the buffer size. | 
|  | if ((s.sidebandStream != nullptr) || | 
|  | (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { | 
|  | return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s)); | 
|  | } | 
|  |  | 
|  | if (mBufferInfo.mBuffer == nullptr) { | 
|  | return parentBounds; | 
|  | } | 
|  |  | 
|  | uint32_t bufWidth = mBufferInfo.mBuffer->getWidth(); | 
|  | uint32_t bufHeight = mBufferInfo.mBuffer->getHeight(); | 
|  |  | 
|  | // Undo any transformations on the buffer and return the result. | 
|  | if (mBufferInfo.mTransform & ui::Transform::ROT_90) { | 
|  | std::swap(bufWidth, bufHeight); | 
|  | } | 
|  |  | 
|  | if (getTransformToDisplayInverse()) { | 
|  | uint32_t invTransform = DisplayDevice::getPrimaryDisplayRotationFlags(); | 
|  | if (invTransform & ui::Transform::ROT_90) { | 
|  | std::swap(bufWidth, bufHeight); | 
|  | } | 
|  | } | 
|  |  | 
|  | return FloatRect(0, 0, bufWidth, bufHeight); | 
|  | } | 
|  |  | 
|  | void BufferLayer::latchAndReleaseBuffer() { | 
|  | mRefreshPending = false; | 
|  | if (hasReadyFrame()) { | 
|  | bool ignored = false; | 
|  | latchBuffer(ignored, systemTime(), 0 /* expectedPresentTime */); | 
|  | } | 
|  | releasePendingBuffer(systemTime()); | 
|  | } | 
|  |  | 
|  | PixelFormat BufferLayer::getPixelFormat() const { | 
|  | return mBufferInfo.mPixelFormat; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::getTransformToDisplayInverse() const { | 
|  | return mBufferInfo.mTransformToDisplayInverse; | 
|  | } | 
|  |  | 
|  | Rect BufferLayer::getBufferCrop() const { | 
|  | // this is the crop rectangle that applies to the buffer | 
|  | // itself (as opposed to the window) | 
|  | if (!mBufferInfo.mCrop.isEmpty()) { | 
|  | // if the buffer crop is defined, we use that | 
|  | return mBufferInfo.mCrop; | 
|  | } else if (mBufferInfo.mBuffer != nullptr) { | 
|  | // otherwise we use the whole buffer | 
|  | return mBufferInfo.mBuffer->getBounds(); | 
|  | } else { | 
|  | // if we don't have a buffer yet, we use an empty/invalid crop | 
|  | return Rect(); | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t BufferLayer::getBufferTransform() const { | 
|  | return mBufferInfo.mTransform; | 
|  | } | 
|  |  | 
|  | ui::Dataspace BufferLayer::getDataSpace() const { | 
|  | return mBufferInfo.mDataspace; | 
|  | } | 
|  |  | 
|  | ui::Dataspace BufferLayer::translateDataspace(ui::Dataspace dataspace) { | 
|  | ui::Dataspace updatedDataspace = dataspace; | 
|  | // translate legacy dataspaces to modern dataspaces | 
|  | switch (dataspace) { | 
|  | case ui::Dataspace::SRGB: | 
|  | updatedDataspace = ui::Dataspace::V0_SRGB; | 
|  | break; | 
|  | case ui::Dataspace::SRGB_LINEAR: | 
|  | updatedDataspace = ui::Dataspace::V0_SRGB_LINEAR; | 
|  | break; | 
|  | case ui::Dataspace::JFIF: | 
|  | updatedDataspace = ui::Dataspace::V0_JFIF; | 
|  | break; | 
|  | case ui::Dataspace::BT601_625: | 
|  | updatedDataspace = ui::Dataspace::V0_BT601_625; | 
|  | break; | 
|  | case ui::Dataspace::BT601_525: | 
|  | updatedDataspace = ui::Dataspace::V0_BT601_525; | 
|  | break; | 
|  | case ui::Dataspace::BT709: | 
|  | updatedDataspace = ui::Dataspace::V0_BT709; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return updatedDataspace; | 
|  | } | 
|  |  | 
|  | sp<GraphicBuffer> BufferLayer::getBuffer() const { | 
|  | return mBufferInfo.mBuffer; | 
|  | } | 
|  |  | 
|  | void BufferLayer::getDrawingTransformMatrix(bool filteringEnabled, float outMatrix[16]) { | 
|  | GLConsumer::computeTransformMatrix(outMatrix, mBufferInfo.mBuffer, mBufferInfo.mCrop, | 
|  | mBufferInfo.mTransform, filteringEnabled); | 
|  | } | 
|  |  | 
|  | void BufferLayer::setInitialValuesForClone(const sp<Layer>& clonedFrom) { | 
|  | Layer::setInitialValuesForClone(clonedFrom); | 
|  |  | 
|  | sp<BufferLayer> bufferClonedFrom = static_cast<BufferLayer*>(clonedFrom.get()); | 
|  | mPremultipliedAlpha = bufferClonedFrom->mPremultipliedAlpha; | 
|  | mPotentialCursor = bufferClonedFrom->mPotentialCursor; | 
|  | mProtectedByApp = bufferClonedFrom->mProtectedByApp; | 
|  |  | 
|  | updateCloneBufferInfo(); | 
|  | } | 
|  |  | 
|  | void BufferLayer::updateCloneBufferInfo() { | 
|  | if (!isClone() || !isClonedFromAlive()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | sp<BufferLayer> clonedFrom = static_cast<BufferLayer*>(getClonedFrom().get()); | 
|  | mBufferInfo = clonedFrom->mBufferInfo; | 
|  | mSidebandStream = clonedFrom->mSidebandStream; | 
|  | surfaceDamageRegion = clonedFrom->surfaceDamageRegion; | 
|  | mCurrentFrameNumber = clonedFrom->mCurrentFrameNumber.load(); | 
|  | mPreviousFrameNumber = clonedFrom->mPreviousFrameNumber; | 
|  |  | 
|  | // After buffer info is updated, the drawingState from the real layer needs to be copied into | 
|  | // the cloned. This is because some properties of drawingState can change when latchBuffer is | 
|  | // called. However, copying the drawingState would also overwrite the cloned layer's relatives | 
|  | // and touchableRegionCrop. Therefore, temporarily store the relatives so they can be set in | 
|  | // the cloned drawingState again. | 
|  | wp<Layer> tmpZOrderRelativeOf = mDrawingState.zOrderRelativeOf; | 
|  | SortedVector<wp<Layer>> tmpZOrderRelatives = mDrawingState.zOrderRelatives; | 
|  | wp<Layer> tmpTouchableRegionCrop = mDrawingState.touchableRegionCrop; | 
|  | InputWindowInfo tmpInputInfo = mDrawingState.inputInfo; | 
|  |  | 
|  | mDrawingState = clonedFrom->mDrawingState; | 
|  |  | 
|  | mDrawingState.touchableRegionCrop = tmpTouchableRegionCrop; | 
|  | mDrawingState.zOrderRelativeOf = tmpZOrderRelativeOf; | 
|  | mDrawingState.zOrderRelatives = tmpZOrderRelatives; | 
|  | mDrawingState.inputInfo = tmpInputInfo; | 
|  | } | 
|  |  | 
|  | } // namespace android | 
|  |  | 
|  | #if defined(__gl_h_) | 
|  | #error "don't include gl/gl.h in this file" | 
|  | #endif | 
|  |  | 
|  | #if defined(__gl2_h_) | 
|  | #error "don't include gl2/gl2.h in this file" | 
|  | #endif | 
|  |  | 
|  | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
|  | #pragma clang diagnostic pop // ignored "-Wconversion" |