|  | /* | 
|  | * Copyright (C) 2012 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define LOG_TAG "VelocityTracker" | 
|  | //#define LOG_NDEBUG 0 | 
|  |  | 
|  | // Log debug messages about velocity tracking. | 
|  | #define DEBUG_VELOCITY 0 | 
|  |  | 
|  | // Log debug messages about the progress of the algorithm itself. | 
|  | #define DEBUG_STRATEGY 0 | 
|  |  | 
|  | #include <math.h> | 
|  | #include <limits.h> | 
|  |  | 
|  | #include <cutils/properties.h> | 
|  | #include <input/VelocityTracker.h> | 
|  | #include <utils/BitSet.h> | 
|  | #include <utils/String8.h> | 
|  | #include <utils/Timers.h> | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // Nanoseconds per milliseconds. | 
|  | static const nsecs_t NANOS_PER_MS = 1000000; | 
|  |  | 
|  | // Threshold for determining that a pointer has stopped moving. | 
|  | // Some input devices do not send ACTION_MOVE events in the case where a pointer has | 
|  | // stopped.  We need to detect this case so that we can accurately predict the | 
|  | // velocity after the pointer starts moving again. | 
|  | static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS; | 
|  |  | 
|  |  | 
|  | static float vectorDot(const float* a, const float* b, uint32_t m) { | 
|  | float r = 0; | 
|  | while (m) { | 
|  | m--; | 
|  | r += *(a++) * *(b++); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static float vectorNorm(const float* a, uint32_t m) { | 
|  | float r = 0; | 
|  | while (m) { | 
|  | m--; | 
|  | float t = *(a++); | 
|  | r += t * t; | 
|  | } | 
|  | return sqrtf(r); | 
|  | } | 
|  |  | 
|  | #if DEBUG_STRATEGY || DEBUG_VELOCITY | 
|  | static String8 vectorToString(const float* a, uint32_t m) { | 
|  | String8 str; | 
|  | str.append("["); | 
|  | while (m--) { | 
|  | str.appendFormat(" %f", *(a++)); | 
|  | if (m) { | 
|  | str.append(","); | 
|  | } | 
|  | } | 
|  | str.append(" ]"); | 
|  | return str; | 
|  | } | 
|  |  | 
|  | static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { | 
|  | String8 str; | 
|  | str.append("["); | 
|  | for (size_t i = 0; i < m; i++) { | 
|  | if (i) { | 
|  | str.append(","); | 
|  | } | 
|  | str.append(" ["); | 
|  | for (size_t j = 0; j < n; j++) { | 
|  | if (j) { | 
|  | str.append(","); | 
|  | } | 
|  | str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]); | 
|  | } | 
|  | str.append(" ]"); | 
|  | } | 
|  | str.append(" ]"); | 
|  | return str; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | // --- VelocityTracker --- | 
|  |  | 
|  | // The default velocity tracker strategy. | 
|  | // Although other strategies are available for testing and comparison purposes, | 
|  | // this is the strategy that applications will actually use.  Be very careful | 
|  | // when adjusting the default strategy because it can dramatically affect | 
|  | // (often in a bad way) the user experience. | 
|  | const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2"; | 
|  |  | 
|  | VelocityTracker::VelocityTracker(const char* strategy) : | 
|  | mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) { | 
|  | char value[PROPERTY_VALUE_MAX]; | 
|  |  | 
|  | // Allow the default strategy to be overridden using a system property for debugging. | 
|  | if (!strategy) { | 
|  | int length = property_get("debug.velocitytracker.strategy", value, NULL); | 
|  | if (length > 0) { | 
|  | strategy = value; | 
|  | } else { | 
|  | strategy = DEFAULT_STRATEGY; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Configure the strategy. | 
|  | if (!configureStrategy(strategy)) { | 
|  | ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy); | 
|  | if (!configureStrategy(DEFAULT_STRATEGY)) { | 
|  | LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!", | 
|  | strategy); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | VelocityTracker::~VelocityTracker() { | 
|  | delete mStrategy; | 
|  | } | 
|  |  | 
|  | bool VelocityTracker::configureStrategy(const char* strategy) { | 
|  | mStrategy = createStrategy(strategy); | 
|  | return mStrategy != NULL; | 
|  | } | 
|  |  | 
|  | VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) { | 
|  | if (!strcmp("lsq1", strategy)) { | 
|  | // 1st order least squares.  Quality: POOR. | 
|  | // Frequently underfits the touch data especially when the finger accelerates | 
|  | // or changes direction.  Often underestimates velocity.  The direction | 
|  | // is overly influenced by historical touch points. | 
|  | return new LeastSquaresVelocityTrackerStrategy(1); | 
|  | } | 
|  | if (!strcmp("lsq2", strategy)) { | 
|  | // 2nd order least squares.  Quality: VERY GOOD. | 
|  | // Pretty much ideal, but can be confused by certain kinds of touch data, | 
|  | // particularly if the panel has a tendency to generate delayed, | 
|  | // duplicate or jittery touch coordinates when the finger is released. | 
|  | return new LeastSquaresVelocityTrackerStrategy(2); | 
|  | } | 
|  | if (!strcmp("lsq3", strategy)) { | 
|  | // 3rd order least squares.  Quality: UNUSABLE. | 
|  | // Frequently overfits the touch data yielding wildly divergent estimates | 
|  | // of the velocity when the finger is released. | 
|  | return new LeastSquaresVelocityTrackerStrategy(3); | 
|  | } | 
|  | if (!strcmp("wlsq2-delta", strategy)) { | 
|  | // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL | 
|  | return new LeastSquaresVelocityTrackerStrategy(2, | 
|  | LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA); | 
|  | } | 
|  | if (!strcmp("wlsq2-central", strategy)) { | 
|  | // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL | 
|  | return new LeastSquaresVelocityTrackerStrategy(2, | 
|  | LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL); | 
|  | } | 
|  | if (!strcmp("wlsq2-recent", strategy)) { | 
|  | // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL | 
|  | return new LeastSquaresVelocityTrackerStrategy(2, | 
|  | LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT); | 
|  | } | 
|  | if (!strcmp("int1", strategy)) { | 
|  | // 1st order integrating filter.  Quality: GOOD. | 
|  | // Not as good as 'lsq2' because it cannot estimate acceleration but it is | 
|  | // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate | 
|  | // the velocity of a fling but this strategy tends to respond to changes in | 
|  | // direction more quickly and accurately. | 
|  | return new IntegratingVelocityTrackerStrategy(1); | 
|  | } | 
|  | if (!strcmp("int2", strategy)) { | 
|  | // 2nd order integrating filter.  Quality: EXPERIMENTAL. | 
|  | // For comparison purposes only.  Unlike 'int1' this strategy can compensate | 
|  | // for acceleration but it typically overestimates the effect. | 
|  | return new IntegratingVelocityTrackerStrategy(2); | 
|  | } | 
|  | if (!strcmp("legacy", strategy)) { | 
|  | // Legacy velocity tracker algorithm.  Quality: POOR. | 
|  | // For comparison purposes only.  This algorithm is strongly influenced by | 
|  | // old data points, consistently underestimates velocity and takes a very long | 
|  | // time to adjust to changes in direction. | 
|  | return new LegacyVelocityTrackerStrategy(); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void VelocityTracker::clear() { | 
|  | mCurrentPointerIdBits.clear(); | 
|  | mActivePointerId = -1; | 
|  |  | 
|  | mStrategy->clear(); | 
|  | } | 
|  |  | 
|  | void VelocityTracker::clearPointers(BitSet32 idBits) { | 
|  | BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value); | 
|  | mCurrentPointerIdBits = remainingIdBits; | 
|  |  | 
|  | if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { | 
|  | mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; | 
|  | } | 
|  |  | 
|  | mStrategy->clearPointers(idBits); | 
|  | } | 
|  |  | 
|  | void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { | 
|  | while (idBits.count() > MAX_POINTERS) { | 
|  | idBits.clearLastMarkedBit(); | 
|  | } | 
|  |  | 
|  | if ((mCurrentPointerIdBits.value & idBits.value) | 
|  | && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) { | 
|  | #if DEBUG_VELOCITY | 
|  | ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.", | 
|  | (eventTime - mLastEventTime) * 0.000001f); | 
|  | #endif | 
|  | // We have not received any movements for too long.  Assume that all pointers | 
|  | // have stopped. | 
|  | mStrategy->clear(); | 
|  | } | 
|  | mLastEventTime = eventTime; | 
|  |  | 
|  | mCurrentPointerIdBits = idBits; | 
|  | if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { | 
|  | mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit(); | 
|  | } | 
|  |  | 
|  | mStrategy->addMovement(eventTime, idBits, positions); | 
|  |  | 
|  | #if DEBUG_VELOCITY | 
|  | ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d", | 
|  | eventTime, idBits.value, mActivePointerId); | 
|  | for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { | 
|  | uint32_t id = iterBits.firstMarkedBit(); | 
|  | uint32_t index = idBits.getIndexOfBit(id); | 
|  | iterBits.clearBit(id); | 
|  | Estimator estimator; | 
|  | getEstimator(id, &estimator); | 
|  | ALOGD("  %d: position (%0.3f, %0.3f), " | 
|  | "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", | 
|  | id, positions[index].x, positions[index].y, | 
|  | int(estimator.degree), | 
|  | vectorToString(estimator.xCoeff, estimator.degree + 1).string(), | 
|  | vectorToString(estimator.yCoeff, estimator.degree + 1).string(), | 
|  | estimator.confidence); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void VelocityTracker::addMovement(const MotionEvent* event) { | 
|  | int32_t actionMasked = event->getActionMasked(); | 
|  |  | 
|  | switch (actionMasked) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: | 
|  | case AMOTION_EVENT_ACTION_HOVER_ENTER: | 
|  | // Clear all pointers on down before adding the new movement. | 
|  | clear(); | 
|  | break; | 
|  | case AMOTION_EVENT_ACTION_POINTER_DOWN: { | 
|  | // Start a new movement trace for a pointer that just went down. | 
|  | // We do this on down instead of on up because the client may want to query the | 
|  | // final velocity for a pointer that just went up. | 
|  | BitSet32 downIdBits; | 
|  | downIdBits.markBit(event->getPointerId(event->getActionIndex())); | 
|  | clearPointers(downIdBits); | 
|  | break; | 
|  | } | 
|  | case AMOTION_EVENT_ACTION_MOVE: | 
|  | case AMOTION_EVENT_ACTION_HOVER_MOVE: | 
|  | break; | 
|  | default: | 
|  | // Ignore all other actions because they do not convey any new information about | 
|  | // pointer movement.  We also want to preserve the last known velocity of the pointers. | 
|  | // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position | 
|  | // of the pointers that went up.  ACTION_POINTER_UP does include the new position of | 
|  | // pointers that remained down but we will also receive an ACTION_MOVE with this | 
|  | // information if any of them actually moved.  Since we don't know how many pointers | 
|  | // will be going up at once it makes sense to just wait for the following ACTION_MOVE | 
|  | // before adding the movement. | 
|  | return; | 
|  | } | 
|  |  | 
|  | size_t pointerCount = event->getPointerCount(); | 
|  | if (pointerCount > MAX_POINTERS) { | 
|  | pointerCount = MAX_POINTERS; | 
|  | } | 
|  |  | 
|  | BitSet32 idBits; | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | idBits.markBit(event->getPointerId(i)); | 
|  | } | 
|  |  | 
|  | uint32_t pointerIndex[MAX_POINTERS]; | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i)); | 
|  | } | 
|  |  | 
|  | nsecs_t eventTime; | 
|  | Position positions[pointerCount]; | 
|  |  | 
|  | size_t historySize = event->getHistorySize(); | 
|  | for (size_t h = 0; h < historySize; h++) { | 
|  | eventTime = event->getHistoricalEventTime(h); | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | uint32_t index = pointerIndex[i]; | 
|  | positions[index].x = event->getHistoricalX(i, h); | 
|  | positions[index].y = event->getHistoricalY(i, h); | 
|  | } | 
|  | addMovement(eventTime, idBits, positions); | 
|  | } | 
|  |  | 
|  | eventTime = event->getEventTime(); | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | uint32_t index = pointerIndex[i]; | 
|  | positions[index].x = event->getX(i); | 
|  | positions[index].y = event->getY(i); | 
|  | } | 
|  | addMovement(eventTime, idBits, positions); | 
|  | } | 
|  |  | 
|  | bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { | 
|  | Estimator estimator; | 
|  | if (getEstimator(id, &estimator) && estimator.degree >= 1) { | 
|  | *outVx = estimator.xCoeff[1]; | 
|  | *outVy = estimator.yCoeff[1]; | 
|  | return true; | 
|  | } | 
|  | *outVx = 0; | 
|  | *outVy = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const { | 
|  | return mStrategy->getEstimator(id, outEstimator); | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- LeastSquaresVelocityTrackerStrategy --- | 
|  |  | 
|  | const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON; | 
|  | const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE; | 
|  |  | 
|  | LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy( | 
|  | uint32_t degree, Weighting weighting) : | 
|  | mDegree(degree), mWeighting(weighting) { | 
|  | clear(); | 
|  | } | 
|  |  | 
|  | LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() { | 
|  | } | 
|  |  | 
|  | void LeastSquaresVelocityTrackerStrategy::clear() { | 
|  | mIndex = 0; | 
|  | mMovements[0].idBits.clear(); | 
|  | } | 
|  |  | 
|  | void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { | 
|  | BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); | 
|  | mMovements[mIndex].idBits = remainingIdBits; | 
|  | } | 
|  |  | 
|  | void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, | 
|  | const VelocityTracker::Position* positions) { | 
|  | if (++mIndex == HISTORY_SIZE) { | 
|  | mIndex = 0; | 
|  | } | 
|  |  | 
|  | Movement& movement = mMovements[mIndex]; | 
|  | movement.eventTime = eventTime; | 
|  | movement.idBits = idBits; | 
|  | uint32_t count = idBits.count(); | 
|  | for (uint32_t i = 0; i < count; i++) { | 
|  | movement.positions[i] = positions[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Solves a linear least squares problem to obtain a N degree polynomial that fits | 
|  | * the specified input data as nearly as possible. | 
|  | * | 
|  | * Returns true if a solution is found, false otherwise. | 
|  | * | 
|  | * The input consists of two vectors of data points X and Y with indices 0..m-1 | 
|  | * along with a weight vector W of the same size. | 
|  | * | 
|  | * The output is a vector B with indices 0..n that describes a polynomial | 
|  | * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i] | 
|  | * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized. | 
|  | * | 
|  | * Accordingly, the weight vector W should be initialized by the caller with the | 
|  | * reciprocal square root of the variance of the error in each input data point. | 
|  | * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]). | 
|  | * The weights express the relative importance of each data point.  If the weights are | 
|  | * all 1, then the data points are considered to be of equal importance when fitting | 
|  | * the polynomial.  It is a good idea to choose weights that diminish the importance | 
|  | * of data points that may have higher than usual error margins. | 
|  | * | 
|  | * Errors among data points are assumed to be independent.  W is represented here | 
|  | * as a vector although in the literature it is typically taken to be a diagonal matrix. | 
|  | * | 
|  | * That is to say, the function that generated the input data can be approximated | 
|  | * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. | 
|  | * | 
|  | * The coefficient of determination (R^2) is also returned to describe the goodness | 
|  | * of fit of the model for the given data.  It is a value between 0 and 1, where 1 | 
|  | * indicates perfect correspondence. | 
|  | * | 
|  | * This function first expands the X vector to a m by n matrix A such that | 
|  | * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then | 
|  | * multiplies it by w[i]./ | 
|  | * | 
|  | * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q | 
|  | * and an m by n upper triangular matrix R.  Because R is upper triangular (lower | 
|  | * part is all zeroes), we can simplify the decomposition into an m by n matrix | 
|  | * Q1 and a n by n matrix R1 such that A = Q1 R1. | 
|  | * | 
|  | * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y) | 
|  | * to find B. | 
|  | * | 
|  | * For efficiency, we lay out A and Q column-wise in memory because we frequently | 
|  | * operate on the column vectors.  Conversely, we lay out R row-wise. | 
|  | * | 
|  | * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares | 
|  | * http://en.wikipedia.org/wiki/Gram-Schmidt | 
|  | */ | 
|  | static bool solveLeastSquares(const float* x, const float* y, | 
|  | const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) { | 
|  | #if DEBUG_STRATEGY | 
|  | ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n), | 
|  | vectorToString(x, m).string(), vectorToString(y, m).string(), | 
|  | vectorToString(w, m).string()); | 
|  | #endif | 
|  |  | 
|  | // Expand the X vector to a matrix A, pre-multiplied by the weights. | 
|  | float a[n][m]; // column-major order | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | a[0][h] = w[h]; | 
|  | for (uint32_t i = 1; i < n; i++) { | 
|  | a[i][h] = a[i - 1][h] * x[h]; | 
|  | } | 
|  | } | 
|  | #if DEBUG_STRATEGY | 
|  | ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string()); | 
|  | #endif | 
|  |  | 
|  | // Apply the Gram-Schmidt process to A to obtain its QR decomposition. | 
|  | float q[n][m]; // orthonormal basis, column-major order | 
|  | float r[n][n]; // upper triangular matrix, row-major order | 
|  | for (uint32_t j = 0; j < n; j++) { | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | q[j][h] = a[j][h]; | 
|  | } | 
|  | for (uint32_t i = 0; i < j; i++) { | 
|  | float dot = vectorDot(&q[j][0], &q[i][0], m); | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | q[j][h] -= dot * q[i][h]; | 
|  | } | 
|  | } | 
|  |  | 
|  | float norm = vectorNorm(&q[j][0], m); | 
|  | if (norm < 0.000001f) { | 
|  | // vectors are linearly dependent or zero so no solution | 
|  | #if DEBUG_STRATEGY | 
|  | ALOGD("  - no solution, norm=%f", norm); | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  | float invNorm = 1.0f / norm; | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | q[j][h] *= invNorm; | 
|  | } | 
|  | for (uint32_t i = 0; i < n; i++) { | 
|  | r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); | 
|  | } | 
|  | } | 
|  | #if DEBUG_STRATEGY | 
|  | ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string()); | 
|  | ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string()); | 
|  |  | 
|  | // calculate QR, if we factored A correctly then QR should equal A | 
|  | float qr[n][m]; | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | for (uint32_t i = 0; i < n; i++) { | 
|  | qr[i][h] = 0; | 
|  | for (uint32_t j = 0; j < n; j++) { | 
|  | qr[i][h] += q[j][h] * r[j][i]; | 
|  | } | 
|  | } | 
|  | } | 
|  | ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string()); | 
|  | #endif | 
|  |  | 
|  | // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular. | 
|  | // We just work from bottom-right to top-left calculating B's coefficients. | 
|  | float wy[m]; | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | wy[h] = y[h] * w[h]; | 
|  | } | 
|  | for (uint32_t i = n; i != 0; ) { | 
|  | i--; | 
|  | outB[i] = vectorDot(&q[i][0], wy, m); | 
|  | for (uint32_t j = n - 1; j > i; j--) { | 
|  | outB[i] -= r[i][j] * outB[j]; | 
|  | } | 
|  | outB[i] /= r[i][i]; | 
|  | } | 
|  | #if DEBUG_STRATEGY | 
|  | ALOGD("  - b=%s", vectorToString(outB, n).string()); | 
|  | #endif | 
|  |  | 
|  | // Calculate the coefficient of determination as 1 - (SSerr / SStot) where | 
|  | // SSerr is the residual sum of squares (variance of the error), | 
|  | // and SStot is the total sum of squares (variance of the data) where each | 
|  | // has been weighted. | 
|  | float ymean = 0; | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | ymean += y[h]; | 
|  | } | 
|  | ymean /= m; | 
|  |  | 
|  | float sserr = 0; | 
|  | float sstot = 0; | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | float err = y[h] - outB[0]; | 
|  | float term = 1; | 
|  | for (uint32_t i = 1; i < n; i++) { | 
|  | term *= x[h]; | 
|  | err -= term * outB[i]; | 
|  | } | 
|  | sserr += w[h] * w[h] * err * err; | 
|  | float var = y[h] - ymean; | 
|  | sstot += w[h] * w[h] * var * var; | 
|  | } | 
|  | *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; | 
|  | #if DEBUG_STRATEGY | 
|  | ALOGD("  - sserr=%f", sserr); | 
|  | ALOGD("  - sstot=%f", sstot); | 
|  | ALOGD("  - det=%f", *outDet); | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id, | 
|  | VelocityTracker::Estimator* outEstimator) const { | 
|  | outEstimator->clear(); | 
|  |  | 
|  | // Iterate over movement samples in reverse time order and collect samples. | 
|  | float x[HISTORY_SIZE]; | 
|  | float y[HISTORY_SIZE]; | 
|  | float w[HISTORY_SIZE]; | 
|  | float time[HISTORY_SIZE]; | 
|  | uint32_t m = 0; | 
|  | uint32_t index = mIndex; | 
|  | const Movement& newestMovement = mMovements[mIndex]; | 
|  | do { | 
|  | const Movement& movement = mMovements[index]; | 
|  | if (!movement.idBits.hasBit(id)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | nsecs_t age = newestMovement.eventTime - movement.eventTime; | 
|  | if (age > HORIZON) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | const VelocityTracker::Position& position = movement.getPosition(id); | 
|  | x[m] = position.x; | 
|  | y[m] = position.y; | 
|  | w[m] = chooseWeight(index); | 
|  | time[m] = -age * 0.000000001f; | 
|  | index = (index == 0 ? HISTORY_SIZE : index) - 1; | 
|  | } while (++m < HISTORY_SIZE); | 
|  |  | 
|  | if (m == 0) { | 
|  | return false; // no data | 
|  | } | 
|  |  | 
|  | // Calculate a least squares polynomial fit. | 
|  | uint32_t degree = mDegree; | 
|  | if (degree > m - 1) { | 
|  | degree = m - 1; | 
|  | } | 
|  | if (degree >= 1) { | 
|  | float xdet, ydet; | 
|  | uint32_t n = degree + 1; | 
|  | if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet) | 
|  | && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) { | 
|  | outEstimator->time = newestMovement.eventTime; | 
|  | outEstimator->degree = degree; | 
|  | outEstimator->confidence = xdet * ydet; | 
|  | #if DEBUG_STRATEGY | 
|  | ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", | 
|  | int(outEstimator->degree), | 
|  | vectorToString(outEstimator->xCoeff, n).string(), | 
|  | vectorToString(outEstimator->yCoeff, n).string(), | 
|  | outEstimator->confidence); | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No velocity data available for this pointer, but we do have its current position. | 
|  | outEstimator->xCoeff[0] = x[0]; | 
|  | outEstimator->yCoeff[0] = y[0]; | 
|  | outEstimator->time = newestMovement.eventTime; | 
|  | outEstimator->degree = 0; | 
|  | outEstimator->confidence = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const { | 
|  | switch (mWeighting) { | 
|  | case WEIGHTING_DELTA: { | 
|  | // Weight points based on how much time elapsed between them and the next | 
|  | // point so that points that "cover" a shorter time span are weighed less. | 
|  | //   delta  0ms: 0.5 | 
|  | //   delta 10ms: 1.0 | 
|  | if (index == mIndex) { | 
|  | return 1.0f; | 
|  | } | 
|  | uint32_t nextIndex = (index + 1) % HISTORY_SIZE; | 
|  | float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime) | 
|  | * 0.000001f; | 
|  | if (deltaMillis < 0) { | 
|  | return 0.5f; | 
|  | } | 
|  | if (deltaMillis < 10) { | 
|  | return 0.5f + deltaMillis * 0.05; | 
|  | } | 
|  | return 1.0f; | 
|  | } | 
|  |  | 
|  | case WEIGHTING_CENTRAL: { | 
|  | // Weight points based on their age, weighing very recent and very old points less. | 
|  | //   age  0ms: 0.5 | 
|  | //   age 10ms: 1.0 | 
|  | //   age 50ms: 1.0 | 
|  | //   age 60ms: 0.5 | 
|  | float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime) | 
|  | * 0.000001f; | 
|  | if (ageMillis < 0) { | 
|  | return 0.5f; | 
|  | } | 
|  | if (ageMillis < 10) { | 
|  | return 0.5f + ageMillis * 0.05; | 
|  | } | 
|  | if (ageMillis < 50) { | 
|  | return 1.0f; | 
|  | } | 
|  | if (ageMillis < 60) { | 
|  | return 0.5f + (60 - ageMillis) * 0.05; | 
|  | } | 
|  | return 0.5f; | 
|  | } | 
|  |  | 
|  | case WEIGHTING_RECENT: { | 
|  | // Weight points based on their age, weighing older points less. | 
|  | //   age   0ms: 1.0 | 
|  | //   age  50ms: 1.0 | 
|  | //   age 100ms: 0.5 | 
|  | float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime) | 
|  | * 0.000001f; | 
|  | if (ageMillis < 50) { | 
|  | return 1.0f; | 
|  | } | 
|  | if (ageMillis < 100) { | 
|  | return 0.5f + (100 - ageMillis) * 0.01f; | 
|  | } | 
|  | return 0.5f; | 
|  | } | 
|  |  | 
|  | case WEIGHTING_NONE: | 
|  | default: | 
|  | return 1.0f; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- IntegratingVelocityTrackerStrategy --- | 
|  |  | 
|  | IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) : | 
|  | mDegree(degree) { | 
|  | } | 
|  |  | 
|  | IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() { | 
|  | } | 
|  |  | 
|  | void IntegratingVelocityTrackerStrategy::clear() { | 
|  | mPointerIdBits.clear(); | 
|  | } | 
|  |  | 
|  | void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { | 
|  | mPointerIdBits.value &= ~idBits.value; | 
|  | } | 
|  |  | 
|  | void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, | 
|  | const VelocityTracker::Position* positions) { | 
|  | uint32_t index = 0; | 
|  | for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) { | 
|  | uint32_t id = iterIdBits.clearFirstMarkedBit(); | 
|  | State& state = mPointerState[id]; | 
|  | const VelocityTracker::Position& position = positions[index++]; | 
|  | if (mPointerIdBits.hasBit(id)) { | 
|  | updateState(state, eventTime, position.x, position.y); | 
|  | } else { | 
|  | initState(state, eventTime, position.x, position.y); | 
|  | } | 
|  | } | 
|  |  | 
|  | mPointerIdBits = idBits; | 
|  | } | 
|  |  | 
|  | bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id, | 
|  | VelocityTracker::Estimator* outEstimator) const { | 
|  | outEstimator->clear(); | 
|  |  | 
|  | if (mPointerIdBits.hasBit(id)) { | 
|  | const State& state = mPointerState[id]; | 
|  | populateEstimator(state, outEstimator); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void IntegratingVelocityTrackerStrategy::initState(State& state, | 
|  | nsecs_t eventTime, float xpos, float ypos) const { | 
|  | state.updateTime = eventTime; | 
|  | state.degree = 0; | 
|  |  | 
|  | state.xpos = xpos; | 
|  | state.xvel = 0; | 
|  | state.xaccel = 0; | 
|  | state.ypos = ypos; | 
|  | state.yvel = 0; | 
|  | state.yaccel = 0; | 
|  | } | 
|  |  | 
|  | void IntegratingVelocityTrackerStrategy::updateState(State& state, | 
|  | nsecs_t eventTime, float xpos, float ypos) const { | 
|  | const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS; | 
|  | const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds | 
|  |  | 
|  | if (eventTime <= state.updateTime + MIN_TIME_DELTA) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | float dt = (eventTime - state.updateTime) * 0.000000001f; | 
|  | state.updateTime = eventTime; | 
|  |  | 
|  | float xvel = (xpos - state.xpos) / dt; | 
|  | float yvel = (ypos - state.ypos) / dt; | 
|  | if (state.degree == 0) { | 
|  | state.xvel = xvel; | 
|  | state.yvel = yvel; | 
|  | state.degree = 1; | 
|  | } else { | 
|  | float alpha = dt / (FILTER_TIME_CONSTANT + dt); | 
|  | if (mDegree == 1) { | 
|  | state.xvel += (xvel - state.xvel) * alpha; | 
|  | state.yvel += (yvel - state.yvel) * alpha; | 
|  | } else { | 
|  | float xaccel = (xvel - state.xvel) / dt; | 
|  | float yaccel = (yvel - state.yvel) / dt; | 
|  | if (state.degree == 1) { | 
|  | state.xaccel = xaccel; | 
|  | state.yaccel = yaccel; | 
|  | state.degree = 2; | 
|  | } else { | 
|  | state.xaccel += (xaccel - state.xaccel) * alpha; | 
|  | state.yaccel += (yaccel - state.yaccel) * alpha; | 
|  | } | 
|  | state.xvel += (state.xaccel * dt) * alpha; | 
|  | state.yvel += (state.yaccel * dt) * alpha; | 
|  | } | 
|  | } | 
|  | state.xpos = xpos; | 
|  | state.ypos = ypos; | 
|  | } | 
|  |  | 
|  | void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state, | 
|  | VelocityTracker::Estimator* outEstimator) const { | 
|  | outEstimator->time = state.updateTime; | 
|  | outEstimator->confidence = 1.0f; | 
|  | outEstimator->degree = state.degree; | 
|  | outEstimator->xCoeff[0] = state.xpos; | 
|  | outEstimator->xCoeff[1] = state.xvel; | 
|  | outEstimator->xCoeff[2] = state.xaccel / 2; | 
|  | outEstimator->yCoeff[0] = state.ypos; | 
|  | outEstimator->yCoeff[1] = state.yvel; | 
|  | outEstimator->yCoeff[2] = state.yaccel / 2; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- LegacyVelocityTrackerStrategy --- | 
|  |  | 
|  | const nsecs_t LegacyVelocityTrackerStrategy::HORIZON; | 
|  | const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE; | 
|  | const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION; | 
|  |  | 
|  | LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() { | 
|  | clear(); | 
|  | } | 
|  |  | 
|  | LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() { | 
|  | } | 
|  |  | 
|  | void LegacyVelocityTrackerStrategy::clear() { | 
|  | mIndex = 0; | 
|  | mMovements[0].idBits.clear(); | 
|  | } | 
|  |  | 
|  | void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) { | 
|  | BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); | 
|  | mMovements[mIndex].idBits = remainingIdBits; | 
|  | } | 
|  |  | 
|  | void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits, | 
|  | const VelocityTracker::Position* positions) { | 
|  | if (++mIndex == HISTORY_SIZE) { | 
|  | mIndex = 0; | 
|  | } | 
|  |  | 
|  | Movement& movement = mMovements[mIndex]; | 
|  | movement.eventTime = eventTime; | 
|  | movement.idBits = idBits; | 
|  | uint32_t count = idBits.count(); | 
|  | for (uint32_t i = 0; i < count; i++) { | 
|  | movement.positions[i] = positions[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id, | 
|  | VelocityTracker::Estimator* outEstimator) const { | 
|  | outEstimator->clear(); | 
|  |  | 
|  | const Movement& newestMovement = mMovements[mIndex]; | 
|  | if (!newestMovement.idBits.hasBit(id)) { | 
|  | return false; // no data | 
|  | } | 
|  |  | 
|  | // Find the oldest sample that contains the pointer and that is not older than HORIZON. | 
|  | nsecs_t minTime = newestMovement.eventTime - HORIZON; | 
|  | uint32_t oldestIndex = mIndex; | 
|  | uint32_t numTouches = 1; | 
|  | do { | 
|  | uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1; | 
|  | const Movement& nextOldestMovement = mMovements[nextOldestIndex]; | 
|  | if (!nextOldestMovement.idBits.hasBit(id) | 
|  | || nextOldestMovement.eventTime < minTime) { | 
|  | break; | 
|  | } | 
|  | oldestIndex = nextOldestIndex; | 
|  | } while (++numTouches < HISTORY_SIZE); | 
|  |  | 
|  | // Calculate an exponentially weighted moving average of the velocity estimate | 
|  | // at different points in time measured relative to the oldest sample. | 
|  | // This is essentially an IIR filter.  Newer samples are weighted more heavily | 
|  | // than older samples.  Samples at equal time points are weighted more or less | 
|  | // equally. | 
|  | // | 
|  | // One tricky problem is that the sample data may be poorly conditioned. | 
|  | // Sometimes samples arrive very close together in time which can cause us to | 
|  | // overestimate the velocity at that time point.  Most samples might be measured | 
|  | // 16ms apart but some consecutive samples could be only 0.5sm apart because | 
|  | // the hardware or driver reports them irregularly or in bursts. | 
|  | float accumVx = 0; | 
|  | float accumVy = 0; | 
|  | uint32_t index = oldestIndex; | 
|  | uint32_t samplesUsed = 0; | 
|  | const Movement& oldestMovement = mMovements[oldestIndex]; | 
|  | const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id); | 
|  | nsecs_t lastDuration = 0; | 
|  |  | 
|  | while (numTouches-- > 1) { | 
|  | if (++index == HISTORY_SIZE) { | 
|  | index = 0; | 
|  | } | 
|  | const Movement& movement = mMovements[index]; | 
|  | nsecs_t duration = movement.eventTime - oldestMovement.eventTime; | 
|  |  | 
|  | // If the duration between samples is small, we may significantly overestimate | 
|  | // the velocity.  Consequently, we impose a minimum duration constraint on the | 
|  | // samples that we include in the calculation. | 
|  | if (duration >= MIN_DURATION) { | 
|  | const VelocityTracker::Position& position = movement.getPosition(id); | 
|  | float scale = 1000000000.0f / duration; // one over time delta in seconds | 
|  | float vx = (position.x - oldestPosition.x) * scale; | 
|  | float vy = (position.y - oldestPosition.y) * scale; | 
|  | accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration); | 
|  | accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration); | 
|  | lastDuration = duration; | 
|  | samplesUsed += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Report velocity. | 
|  | const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id); | 
|  | outEstimator->time = newestMovement.eventTime; | 
|  | outEstimator->confidence = 1; | 
|  | outEstimator->xCoeff[0] = newestPosition.x; | 
|  | outEstimator->yCoeff[0] = newestPosition.y; | 
|  | if (samplesUsed) { | 
|  | outEstimator->xCoeff[1] = accumVx; | 
|  | outEstimator->yCoeff[1] = accumVy; | 
|  | outEstimator->degree = 1; | 
|  | } else { | 
|  | outEstimator->degree = 0; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // namespace android |