|  | /* | 
|  | * Copyright (C) 2007 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <stdint.h> | 
|  | #include <sys/types.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include <cutils/compiler.h> | 
|  | #include <cutils/native_handle.h> | 
|  | #include <cutils/properties.h> | 
|  |  | 
|  | #include <utils/Errors.h> | 
|  | #include <utils/Log.h> | 
|  | #include <utils/NativeHandle.h> | 
|  | #include <utils/StopWatch.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <ui/GraphicBuffer.h> | 
|  | #include <ui/PixelFormat.h> | 
|  |  | 
|  | #include <gui/Surface.h> | 
|  |  | 
|  | #include "clz.h" | 
|  | #include "Colorizer.h" | 
|  | #include "DisplayDevice.h" | 
|  | #include "Layer.h" | 
|  | #include "MonitoredProducer.h" | 
|  | #include "SurfaceFlinger.h" | 
|  |  | 
|  | #include "DisplayHardware/HWComposer.h" | 
|  |  | 
|  | #include "RenderEngine/RenderEngine.h" | 
|  |  | 
|  | #define DEBUG_RESIZE    0 | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | int32_t Layer::sSequence = 1; | 
|  |  | 
|  | Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client, | 
|  | const String8& name, uint32_t w, uint32_t h, uint32_t flags) | 
|  | :   contentDirty(false), | 
|  | sequence(uint32_t(android_atomic_inc(&sSequence))), | 
|  | mFlinger(flinger), | 
|  | mTextureName(-1U), | 
|  | mPremultipliedAlpha(true), | 
|  | mName("unnamed"), | 
|  | mDebug(false), | 
|  | mFormat(PIXEL_FORMAT_NONE), | 
|  | mTransactionFlags(0), | 
|  | mQueuedFrames(0), | 
|  | mSidebandStreamChanged(false), | 
|  | mCurrentTransform(0), | 
|  | mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), | 
|  | mCurrentOpacity(true), | 
|  | mRefreshPending(false), | 
|  | mFrameLatencyNeeded(false), | 
|  | mFiltering(false), | 
|  | mNeedsFiltering(false), | 
|  | mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2), | 
|  | mSecure(false), | 
|  | mProtectedByApp(false), | 
|  | mHasSurface(false), | 
|  | mClientRef(client) | 
|  | { | 
|  | mCurrentCrop.makeInvalid(); | 
|  | mFlinger->getRenderEngine().genTextures(1, &mTextureName); | 
|  | mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName); | 
|  |  | 
|  | uint32_t layerFlags = 0; | 
|  | if (flags & ISurfaceComposerClient::eHidden) | 
|  | layerFlags |= layer_state_t::eLayerHidden; | 
|  | if (flags & ISurfaceComposerClient::eOpaque) | 
|  | layerFlags |= layer_state_t::eLayerOpaque; | 
|  |  | 
|  | if (flags & ISurfaceComposerClient::eNonPremultiplied) | 
|  | mPremultipliedAlpha = false; | 
|  |  | 
|  | mName = name; | 
|  |  | 
|  | mCurrentState.active.w = w; | 
|  | mCurrentState.active.h = h; | 
|  | mCurrentState.active.crop.makeInvalid(); | 
|  | mCurrentState.z = 0; | 
|  | mCurrentState.alpha = 0xFF; | 
|  | mCurrentState.layerStack = 0; | 
|  | mCurrentState.flags = layerFlags; | 
|  | mCurrentState.sequence = 0; | 
|  | mCurrentState.transform.set(0, 0); | 
|  | mCurrentState.requested = mCurrentState.active; | 
|  |  | 
|  | // drawing state & current state are identical | 
|  | mDrawingState = mCurrentState; | 
|  |  | 
|  | nsecs_t displayPeriod = | 
|  | flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY); | 
|  | mFrameTracker.setDisplayRefreshPeriod(displayPeriod); | 
|  | } | 
|  |  | 
|  | void Layer::onFirstRef() { | 
|  | // Creates a custom BufferQueue for SurfaceFlingerConsumer to use | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  | mProducer = new MonitoredProducer(producer, mFlinger); | 
|  | mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName); | 
|  | mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0)); | 
|  | mSurfaceFlingerConsumer->setContentsChangedListener(this); | 
|  | mSurfaceFlingerConsumer->setName(mName); | 
|  |  | 
|  | #ifdef TARGET_DISABLE_TRIPLE_BUFFERING | 
|  | #warning "disabling triple buffering" | 
|  | mSurfaceFlingerConsumer->setDefaultMaxBufferCount(2); | 
|  | #else | 
|  | mSurfaceFlingerConsumer->setDefaultMaxBufferCount(3); | 
|  | #endif | 
|  |  | 
|  | const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice()); | 
|  | updateTransformHint(hw); | 
|  | } | 
|  |  | 
|  | Layer::~Layer() { | 
|  | sp<Client> c(mClientRef.promote()); | 
|  | if (c != 0) { | 
|  | c->detachLayer(this); | 
|  | } | 
|  | mFlinger->deleteTextureAsync(mTextureName); | 
|  | mFrameTracker.logAndResetStats(mName); | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // callbacks | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | void Layer::onLayerDisplayed(const sp<const DisplayDevice>& /* hw */, | 
|  | HWComposer::HWCLayerInterface* layer) { | 
|  | if (layer) { | 
|  | layer->onDisplayed(); | 
|  | mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Layer::onFrameAvailable() { | 
|  | android_atomic_inc(&mQueuedFrames); | 
|  | mFlinger->signalLayerUpdate(); | 
|  | } | 
|  |  | 
|  | void Layer::onSidebandStreamChanged() { | 
|  | if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) { | 
|  | // mSidebandStreamChanged was false | 
|  | mFlinger->signalLayerUpdate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // called with SurfaceFlinger::mStateLock from the drawing thread after | 
|  | // the layer has been remove from the current state list (and just before | 
|  | // it's removed from the drawing state list) | 
|  | void Layer::onRemoved() { | 
|  | mSurfaceFlingerConsumer->abandon(); | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // set-up | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | const String8& Layer::getName() const { | 
|  | return mName; | 
|  | } | 
|  |  | 
|  | status_t Layer::setBuffers( uint32_t w, uint32_t h, | 
|  | PixelFormat format, uint32_t flags) | 
|  | { | 
|  | uint32_t const maxSurfaceDims = min( | 
|  | mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims()); | 
|  |  | 
|  | // never allow a surface larger than what our underlying GL implementation | 
|  | // can handle. | 
|  | if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) { | 
|  | ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h)); | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | mFormat = format; | 
|  |  | 
|  | mSecure = (flags & ISurfaceComposerClient::eSecure) ? true : false; | 
|  | mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false; | 
|  | mCurrentOpacity = getOpacityForFormat(format); | 
|  |  | 
|  | mSurfaceFlingerConsumer->setDefaultBufferSize(w, h); | 
|  | mSurfaceFlingerConsumer->setDefaultBufferFormat(format); | 
|  | mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0)); | 
|  |  | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | sp<IBinder> Layer::getHandle() { | 
|  | Mutex::Autolock _l(mLock); | 
|  |  | 
|  | LOG_ALWAYS_FATAL_IF(mHasSurface, | 
|  | "Layer::getHandle() has already been called"); | 
|  |  | 
|  | mHasSurface = true; | 
|  |  | 
|  | /* | 
|  | * The layer handle is just a BBinder object passed to the client | 
|  | * (remote process) -- we don't keep any reference on our side such that | 
|  | * the dtor is called when the remote side let go of its reference. | 
|  | * | 
|  | * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for | 
|  | * this layer when the handle is destroyed. | 
|  | */ | 
|  |  | 
|  | class Handle : public BBinder, public LayerCleaner { | 
|  | wp<const Layer> mOwner; | 
|  | public: | 
|  | Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) | 
|  | : LayerCleaner(flinger, layer), mOwner(layer) { | 
|  | } | 
|  | }; | 
|  |  | 
|  | return new Handle(mFlinger, this); | 
|  | } | 
|  |  | 
|  | sp<IGraphicBufferProducer> Layer::getProducer() const { | 
|  | return mProducer; | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // h/w composer set-up | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | Rect Layer::getContentCrop() const { | 
|  | // this is the crop rectangle that applies to the buffer | 
|  | // itself (as opposed to the window) | 
|  | Rect crop; | 
|  | if (!mCurrentCrop.isEmpty()) { | 
|  | // if the buffer crop is defined, we use that | 
|  | crop = mCurrentCrop; | 
|  | } else if (mActiveBuffer != NULL) { | 
|  | // otherwise we use the whole buffer | 
|  | crop = mActiveBuffer->getBounds(); | 
|  | } else { | 
|  | // if we don't have a buffer yet, we use an empty/invalid crop | 
|  | crop.makeInvalid(); | 
|  | } | 
|  | return crop; | 
|  | } | 
|  |  | 
|  | static Rect reduce(const Rect& win, const Region& exclude) { | 
|  | if (CC_LIKELY(exclude.isEmpty())) { | 
|  | return win; | 
|  | } | 
|  | if (exclude.isRect()) { | 
|  | return win.reduce(exclude.getBounds()); | 
|  | } | 
|  | return Region(win).subtract(exclude).getBounds(); | 
|  | } | 
|  |  | 
|  | Rect Layer::computeBounds() const { | 
|  | const Layer::State& s(getDrawingState()); | 
|  | Rect win(s.active.w, s.active.h); | 
|  | if (!s.active.crop.isEmpty()) { | 
|  | win.intersect(s.active.crop, &win); | 
|  | } | 
|  | // subtract the transparent region and snap to the bounds | 
|  | return reduce(win, s.activeTransparentRegion); | 
|  | } | 
|  |  | 
|  | FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const { | 
|  | // the content crop is the area of the content that gets scaled to the | 
|  | // layer's size. | 
|  | FloatRect crop(getContentCrop()); | 
|  |  | 
|  | // the active.crop is the area of the window that gets cropped, but not | 
|  | // scaled in any ways. | 
|  | const State& s(getDrawingState()); | 
|  |  | 
|  | // apply the projection's clipping to the window crop in | 
|  | // layerstack space, and convert-back to layer space. | 
|  | // if there are no window scaling involved, this operation will map to full | 
|  | // pixels in the buffer. | 
|  | // FIXME: the 3 lines below can produce slightly incorrect clipping when we have | 
|  | // a viewport clipping and a window transform. we should use floating point to fix this. | 
|  |  | 
|  | Rect activeCrop(s.active.w, s.active.h); | 
|  | if (!s.active.crop.isEmpty()) { | 
|  | activeCrop = s.active.crop; | 
|  | } | 
|  |  | 
|  | activeCrop = s.transform.transform(activeCrop); | 
|  | activeCrop.intersect(hw->getViewport(), &activeCrop); | 
|  | activeCrop = s.transform.inverse().transform(activeCrop); | 
|  |  | 
|  | // paranoia: make sure the window-crop is constrained in the | 
|  | // window's bounds | 
|  | activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop); | 
|  |  | 
|  | // subtract the transparent region and snap to the bounds | 
|  | activeCrop = reduce(activeCrop, s.activeTransparentRegion); | 
|  |  | 
|  | if (!activeCrop.isEmpty()) { | 
|  | // Transform the window crop to match the buffer coordinate system, | 
|  | // which means using the inverse of the current transform set on the | 
|  | // SurfaceFlingerConsumer. | 
|  | uint32_t invTransform = mCurrentTransform; | 
|  | int winWidth = s.active.w; | 
|  | int winHeight = s.active.h; | 
|  | if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
|  | invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | | 
|  | NATIVE_WINDOW_TRANSFORM_FLIP_H; | 
|  | winWidth = s.active.h; | 
|  | winHeight = s.active.w; | 
|  | } | 
|  | const Rect winCrop = activeCrop.transform( | 
|  | invTransform, s.active.w, s.active.h); | 
|  |  | 
|  | // below, crop is intersected with winCrop expressed in crop's coordinate space | 
|  | float xScale = crop.getWidth()  / float(winWidth); | 
|  | float yScale = crop.getHeight() / float(winHeight); | 
|  |  | 
|  | float insetL = winCrop.left                 * xScale; | 
|  | float insetT = winCrop.top                  * yScale; | 
|  | float insetR = (winWidth  - winCrop.right ) * xScale; | 
|  | float insetB = (winHeight - winCrop.bottom) * yScale; | 
|  |  | 
|  | crop.left   += insetL; | 
|  | crop.top    += insetT; | 
|  | crop.right  -= insetR; | 
|  | crop.bottom -= insetB; | 
|  | } | 
|  | return crop; | 
|  | } | 
|  |  | 
|  | void Layer::setGeometry( | 
|  | const sp<const DisplayDevice>& hw, | 
|  | HWComposer::HWCLayerInterface& layer) | 
|  | { | 
|  | layer.setDefaultState(); | 
|  |  | 
|  | // enable this layer | 
|  | layer.setSkip(false); | 
|  |  | 
|  | if (isSecure() && !hw->isSecure()) { | 
|  | layer.setSkip(true); | 
|  | } | 
|  |  | 
|  | // this gives us only the "orientation" component of the transform | 
|  | const State& s(getDrawingState()); | 
|  | if (!isOpaque(s) || s.alpha != 0xFF) { | 
|  | layer.setBlending(mPremultipliedAlpha ? | 
|  | HWC_BLENDING_PREMULT : | 
|  | HWC_BLENDING_COVERAGE); | 
|  | } | 
|  |  | 
|  | // apply the layer's transform, followed by the display's global transform | 
|  | // here we're guaranteed that the layer's transform preserves rects | 
|  | Rect frame(s.transform.transform(computeBounds())); | 
|  | frame.intersect(hw->getViewport(), &frame); | 
|  | const Transform& tr(hw->getTransform()); | 
|  | layer.setFrame(tr.transform(frame)); | 
|  | layer.setCrop(computeCrop(hw)); | 
|  | layer.setPlaneAlpha(s.alpha); | 
|  |  | 
|  | /* | 
|  | * Transformations are applied in this order: | 
|  | * 1) buffer orientation/flip/mirror | 
|  | * 2) state transformation (window manager) | 
|  | * 3) layer orientation (screen orientation) | 
|  | * (NOTE: the matrices are multiplied in reverse order) | 
|  | */ | 
|  |  | 
|  | const Transform bufferOrientation(mCurrentTransform); | 
|  | Transform transform(tr * s.transform * bufferOrientation); | 
|  |  | 
|  | if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) { | 
|  | /* | 
|  | * the code below applies the display's inverse transform to the buffer | 
|  | */ | 
|  | uint32_t invTransform = hw->getOrientationTransform(); | 
|  | // calculate the inverse transform | 
|  | if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
|  | invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | | 
|  | NATIVE_WINDOW_TRANSFORM_FLIP_H; | 
|  | } | 
|  | // and apply to the current transform | 
|  | transform = transform * Transform(invTransform); | 
|  | } | 
|  |  | 
|  | // this gives us only the "orientation" component of the transform | 
|  | const uint32_t orientation = transform.getOrientation(); | 
|  | if (orientation & Transform::ROT_INVALID) { | 
|  | // we can only handle simple transformation | 
|  | layer.setSkip(true); | 
|  | } else { | 
|  | layer.setTransform(orientation); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Layer::setPerFrameData(const sp<const DisplayDevice>& hw, | 
|  | HWComposer::HWCLayerInterface& layer) { | 
|  | // we have to set the visible region on every frame because | 
|  | // we currently free it during onLayerDisplayed(), which is called | 
|  | // after HWComposer::commit() -- every frame. | 
|  | // Apply this display's projection's viewport to the visible region | 
|  | // before giving it to the HWC HAL. | 
|  | const Transform& tr = hw->getTransform(); | 
|  | Region visible = tr.transform(visibleRegion.intersect(hw->getViewport())); | 
|  | layer.setVisibleRegionScreen(visible); | 
|  |  | 
|  | if (mSidebandStream.get()) { | 
|  | layer.setSidebandStream(mSidebandStream); | 
|  | } else { | 
|  | // NOTE: buffer can be NULL if the client never drew into this | 
|  | // layer yet, or if we ran out of memory | 
|  | layer.setBuffer(mActiveBuffer); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Layer::setAcquireFence(const sp<const DisplayDevice>& /* hw */, | 
|  | HWComposer::HWCLayerInterface& layer) { | 
|  | int fenceFd = -1; | 
|  |  | 
|  | // TODO: there is a possible optimization here: we only need to set the | 
|  | // acquire fence the first time a new buffer is acquired on EACH display. | 
|  |  | 
|  | if (layer.getCompositionType() == HWC_OVERLAY) { | 
|  | sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence(); | 
|  | if (fence->isValid()) { | 
|  | fenceFd = fence->dup(); | 
|  | if (fenceFd == -1) { | 
|  | ALOGW("failed to dup layer fence, skipping sync: %d", errno); | 
|  | } | 
|  | } | 
|  | } | 
|  | layer.setAcquireFenceFd(fenceFd); | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // drawing... | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const { | 
|  | onDraw(hw, clip, false); | 
|  | } | 
|  |  | 
|  | void Layer::draw(const sp<const DisplayDevice>& hw, | 
|  | bool useIdentityTransform) const { | 
|  | onDraw(hw, Region(hw->bounds()), useIdentityTransform); | 
|  | } | 
|  |  | 
|  | void Layer::draw(const sp<const DisplayDevice>& hw) const { | 
|  | onDraw(hw, Region(hw->bounds()), false); | 
|  | } | 
|  |  | 
|  | void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip, | 
|  | bool useIdentityTransform) const | 
|  | { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | if (CC_UNLIKELY(mActiveBuffer == 0)) { | 
|  | // the texture has not been created yet, this Layer has | 
|  | // in fact never been drawn into. This happens frequently with | 
|  | // SurfaceView because the WindowManager can't know when the client | 
|  | // has drawn the first time. | 
|  |  | 
|  | // If there is nothing under us, we paint the screen in black, otherwise | 
|  | // we just skip this update. | 
|  |  | 
|  | // figure out if there is something below us | 
|  | Region under; | 
|  | const SurfaceFlinger::LayerVector& drawingLayers( | 
|  | mFlinger->mDrawingState.layersSortedByZ); | 
|  | const size_t count = drawingLayers.size(); | 
|  | for (size_t i=0 ; i<count ; ++i) { | 
|  | const sp<Layer>& layer(drawingLayers[i]); | 
|  | if (layer.get() == static_cast<Layer const*>(this)) | 
|  | break; | 
|  | under.orSelf( hw->getTransform().transform(layer->visibleRegion) ); | 
|  | } | 
|  | // if not everything below us is covered, we plug the holes! | 
|  | Region holes(clip.subtract(under)); | 
|  | if (!holes.isEmpty()) { | 
|  | clearWithOpenGL(hw, holes, 0, 0, 0, 1); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Bind the current buffer to the GL texture, and wait for it to be | 
|  | // ready for us to draw into. | 
|  | status_t err = mSurfaceFlingerConsumer->bindTextureImage(); | 
|  | if (err != NO_ERROR) { | 
|  | ALOGW("onDraw: bindTextureImage failed (err=%d)", err); | 
|  | // Go ahead and draw the buffer anyway; no matter what we do the screen | 
|  | // is probably going to have something visibly wrong. | 
|  | } | 
|  |  | 
|  | bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure()); | 
|  |  | 
|  | RenderEngine& engine(mFlinger->getRenderEngine()); | 
|  |  | 
|  | if (!blackOutLayer) { | 
|  | // TODO: we could be more subtle with isFixedSize() | 
|  | const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize(); | 
|  |  | 
|  | // Query the texture matrix given our current filtering mode. | 
|  | float textureMatrix[16]; | 
|  | mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering); | 
|  | mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix); | 
|  |  | 
|  | if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) { | 
|  |  | 
|  | /* | 
|  | * the code below applies the display's inverse transform to the texture transform | 
|  | */ | 
|  |  | 
|  | // create a 4x4 transform matrix from the display transform flags | 
|  | const mat4 flipH(-1,0,0,0,  0,1,0,0, 0,0,1,0, 1,0,0,1); | 
|  | const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1); | 
|  | const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1); | 
|  |  | 
|  | mat4 tr; | 
|  | uint32_t transform = hw->getOrientationTransform(); | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) | 
|  | tr = tr * rot90; | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) | 
|  | tr = tr * flipH; | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) | 
|  | tr = tr * flipV; | 
|  |  | 
|  | // calculate the inverse | 
|  | tr = inverse(tr); | 
|  |  | 
|  | // and finally apply it to the original texture matrix | 
|  | const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); | 
|  | memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); | 
|  | } | 
|  |  | 
|  | // Set things up for texturing. | 
|  | mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight()); | 
|  | mTexture.setFiltering(useFiltering); | 
|  | mTexture.setMatrix(textureMatrix); | 
|  |  | 
|  | engine.setupLayerTexturing(mTexture); | 
|  | } else { | 
|  | engine.setupLayerBlackedOut(); | 
|  | } | 
|  | drawWithOpenGL(hw, clip, useIdentityTransform); | 
|  | engine.disableTexturing(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw, | 
|  | const Region& /* clip */, float red, float green, float blue, | 
|  | float alpha) const | 
|  | { | 
|  | RenderEngine& engine(mFlinger->getRenderEngine()); | 
|  | computeGeometry(hw, mMesh, false); | 
|  | engine.setupFillWithColor(red, green, blue, alpha); | 
|  | engine.drawMesh(mMesh); | 
|  | } | 
|  |  | 
|  | void Layer::clearWithOpenGL( | 
|  | const sp<const DisplayDevice>& hw, const Region& clip) const { | 
|  | clearWithOpenGL(hw, clip, 0,0,0,0); | 
|  | } | 
|  |  | 
|  | void Layer::drawWithOpenGL(const sp<const DisplayDevice>& hw, | 
|  | const Region& /* clip */, bool useIdentityTransform) const { | 
|  | const uint32_t fbHeight = hw->getHeight(); | 
|  | const State& s(getDrawingState()); | 
|  |  | 
|  | computeGeometry(hw, mMesh, useIdentityTransform); | 
|  |  | 
|  | /* | 
|  | * NOTE: the way we compute the texture coordinates here produces | 
|  | * different results than when we take the HWC path -- in the later case | 
|  | * the "source crop" is rounded to texel boundaries. | 
|  | * This can produce significantly different results when the texture | 
|  | * is scaled by a large amount. | 
|  | * | 
|  | * The GL code below is more logical (imho), and the difference with | 
|  | * HWC is due to a limitation of the HWC API to integers -- a question | 
|  | * is suspend is whether we should ignore this problem or revert to | 
|  | * GL composition when a buffer scaling is applied (maybe with some | 
|  | * minimal value)? Or, we could make GL behave like HWC -- but this feel | 
|  | * like more of a hack. | 
|  | */ | 
|  | const Rect win(computeBounds()); | 
|  |  | 
|  | float left   = float(win.left)   / float(s.active.w); | 
|  | float top    = float(win.top)    / float(s.active.h); | 
|  | float right  = float(win.right)  / float(s.active.w); | 
|  | float bottom = float(win.bottom) / float(s.active.h); | 
|  |  | 
|  | // TODO: we probably want to generate the texture coords with the mesh | 
|  | // here we assume that we only have 4 vertices | 
|  | Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>()); | 
|  | texCoords[0] = vec2(left, 1.0f - top); | 
|  | texCoords[1] = vec2(left, 1.0f - bottom); | 
|  | texCoords[2] = vec2(right, 1.0f - bottom); | 
|  | texCoords[3] = vec2(right, 1.0f - top); | 
|  |  | 
|  | RenderEngine& engine(mFlinger->getRenderEngine()); | 
|  | engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), s.alpha); | 
|  | engine.drawMesh(mMesh); | 
|  | engine.disableBlending(); | 
|  | } | 
|  |  | 
|  | void Layer::setFiltering(bool filtering) { | 
|  | mFiltering = filtering; | 
|  | } | 
|  |  | 
|  | bool Layer::getFiltering() const { | 
|  | return mFiltering; | 
|  | } | 
|  |  | 
|  | // As documented in libhardware header, formats in the range | 
|  | // 0x100 - 0x1FF are specific to the HAL implementation, and | 
|  | // are known to have no alpha channel | 
|  | // TODO: move definition for device-specific range into | 
|  | // hardware.h, instead of using hard-coded values here. | 
|  | #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) | 
|  |  | 
|  | bool Layer::getOpacityForFormat(uint32_t format) { | 
|  | if (HARDWARE_IS_DEVICE_FORMAT(format)) { | 
|  | return true; | 
|  | } | 
|  | switch (format) { | 
|  | case HAL_PIXEL_FORMAT_RGBA_8888: | 
|  | case HAL_PIXEL_FORMAT_BGRA_8888: | 
|  | case HAL_PIXEL_FORMAT_sRGB_A_8888: | 
|  | return false; | 
|  | } | 
|  | // in all other case, we have no blending (also for unknown formats) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | // local state | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh, | 
|  | bool useIdentityTransform) const | 
|  | { | 
|  | const Layer::State& s(getDrawingState()); | 
|  | const Transform tr(useIdentityTransform ? | 
|  | hw->getTransform() : hw->getTransform() * s.transform); | 
|  | const uint32_t hw_h = hw->getHeight(); | 
|  | Rect win(s.active.w, s.active.h); | 
|  | if (!s.active.crop.isEmpty()) { | 
|  | win.intersect(s.active.crop, &win); | 
|  | } | 
|  | // subtract the transparent region and snap to the bounds | 
|  | win = reduce(win, s.activeTransparentRegion); | 
|  |  | 
|  | Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); | 
|  | position[0] = tr.transform(win.left,  win.top); | 
|  | position[1] = tr.transform(win.left,  win.bottom); | 
|  | position[2] = tr.transform(win.right, win.bottom); | 
|  | position[3] = tr.transform(win.right, win.top); | 
|  | for (size_t i=0 ; i<4 ; i++) { | 
|  | position[i].y = hw_h - position[i].y; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Layer::isOpaque(const Layer::State& s) const | 
|  | { | 
|  | // if we don't have a buffer yet, we're translucent regardless of the | 
|  | // layer's opaque flag. | 
|  | if (mActiveBuffer == 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the layer has the opaque flag, then we're always opaque, | 
|  | // otherwise we use the current buffer's format. | 
|  | return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity; | 
|  | } | 
|  |  | 
|  | bool Layer::isProtected() const | 
|  | { | 
|  | const sp<GraphicBuffer>& activeBuffer(mActiveBuffer); | 
|  | return (activeBuffer != 0) && | 
|  | (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED); | 
|  | } | 
|  |  | 
|  | bool Layer::isFixedSize() const { | 
|  | return mCurrentScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE; | 
|  | } | 
|  |  | 
|  | bool Layer::isCropped() const { | 
|  | return !mCurrentCrop.isEmpty(); | 
|  | } | 
|  |  | 
|  | bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const { | 
|  | return mNeedsFiltering || hw->needsFiltering(); | 
|  | } | 
|  |  | 
|  | void Layer::setVisibleRegion(const Region& visibleRegion) { | 
|  | // always called from main thread | 
|  | this->visibleRegion = visibleRegion; | 
|  | } | 
|  |  | 
|  | void Layer::setCoveredRegion(const Region& coveredRegion) { | 
|  | // always called from main thread | 
|  | this->coveredRegion = coveredRegion; | 
|  | } | 
|  |  | 
|  | void Layer::setVisibleNonTransparentRegion(const Region& | 
|  | setVisibleNonTransparentRegion) { | 
|  | // always called from main thread | 
|  | this->visibleNonTransparentRegion = setVisibleNonTransparentRegion; | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | // transaction | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | uint32_t Layer::doTransaction(uint32_t flags) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | const Layer::State& s(getDrawingState()); | 
|  | const Layer::State& c(getCurrentState()); | 
|  |  | 
|  | const bool sizeChanged = (c.requested.w != s.requested.w) || | 
|  | (c.requested.h != s.requested.h); | 
|  |  | 
|  | if (sizeChanged) { | 
|  | // the size changed, we need to ask our client to request a new buffer | 
|  | ALOGD_IF(DEBUG_RESIZE, | 
|  | "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n" | 
|  | "  current={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" | 
|  | "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n" | 
|  | "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" | 
|  | "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n", | 
|  | this, getName().string(), mCurrentTransform, mCurrentScalingMode, | 
|  | c.active.w, c.active.h, | 
|  | c.active.crop.left, | 
|  | c.active.crop.top, | 
|  | c.active.crop.right, | 
|  | c.active.crop.bottom, | 
|  | c.active.crop.getWidth(), | 
|  | c.active.crop.getHeight(), | 
|  | c.requested.w, c.requested.h, | 
|  | c.requested.crop.left, | 
|  | c.requested.crop.top, | 
|  | c.requested.crop.right, | 
|  | c.requested.crop.bottom, | 
|  | c.requested.crop.getWidth(), | 
|  | c.requested.crop.getHeight(), | 
|  | s.active.w, s.active.h, | 
|  | s.active.crop.left, | 
|  | s.active.crop.top, | 
|  | s.active.crop.right, | 
|  | s.active.crop.bottom, | 
|  | s.active.crop.getWidth(), | 
|  | s.active.crop.getHeight(), | 
|  | s.requested.w, s.requested.h, | 
|  | s.requested.crop.left, | 
|  | s.requested.crop.top, | 
|  | s.requested.crop.right, | 
|  | s.requested.crop.bottom, | 
|  | s.requested.crop.getWidth(), | 
|  | s.requested.crop.getHeight()); | 
|  |  | 
|  | // record the new size, form this point on, when the client request | 
|  | // a buffer, it'll get the new size. | 
|  | mSurfaceFlingerConsumer->setDefaultBufferSize( | 
|  | c.requested.w, c.requested.h); | 
|  | } | 
|  |  | 
|  | if (!isFixedSize()) { | 
|  |  | 
|  | const bool resizePending = (c.requested.w != c.active.w) || | 
|  | (c.requested.h != c.active.h); | 
|  |  | 
|  | if (resizePending) { | 
|  | // don't let Layer::doTransaction update the drawing state | 
|  | // if we have a pending resize, unless we are in fixed-size mode. | 
|  | // the drawing state will be updated only once we receive a buffer | 
|  | // with the correct size. | 
|  | // | 
|  | // in particular, we want to make sure the clip (which is part | 
|  | // of the geometry state) is latched together with the size but is | 
|  | // latched immediately when no resizing is involved. | 
|  |  | 
|  | flags |= eDontUpdateGeometryState; | 
|  | } | 
|  | } | 
|  |  | 
|  | // always set active to requested, unless we're asked not to | 
|  | // this is used by Layer, which special cases resizes. | 
|  | if (flags & eDontUpdateGeometryState)  { | 
|  | } else { | 
|  | Layer::State& editCurrentState(getCurrentState()); | 
|  | editCurrentState.active = c.requested; | 
|  | } | 
|  |  | 
|  | if (s.active != c.active) { | 
|  | // invalidate and recompute the visible regions if needed | 
|  | flags |= Layer::eVisibleRegion; | 
|  | } | 
|  |  | 
|  | if (c.sequence != s.sequence) { | 
|  | // invalidate and recompute the visible regions if needed | 
|  | flags |= eVisibleRegion; | 
|  | this->contentDirty = true; | 
|  |  | 
|  | // we may use linear filtering, if the matrix scales us | 
|  | const uint8_t type = c.transform.getType(); | 
|  | mNeedsFiltering = (!c.transform.preserveRects() || | 
|  | (type >= Transform::SCALE)); | 
|  | } | 
|  |  | 
|  | // Commit the transaction | 
|  | commitTransaction(); | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | void Layer::commitTransaction() { | 
|  | mDrawingState = mCurrentState; | 
|  | } | 
|  |  | 
|  | uint32_t Layer::getTransactionFlags(uint32_t flags) { | 
|  | return android_atomic_and(~flags, &mTransactionFlags) & flags; | 
|  | } | 
|  |  | 
|  | uint32_t Layer::setTransactionFlags(uint32_t flags) { | 
|  | return android_atomic_or(flags, &mTransactionFlags); | 
|  | } | 
|  |  | 
|  | bool Layer::setPosition(float x, float y) { | 
|  | if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.transform.set(x, y); | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setLayer(uint32_t z) { | 
|  | if (mCurrentState.z == z) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.z = z; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setSize(uint32_t w, uint32_t h) { | 
|  | if (mCurrentState.requested.w == w && mCurrentState.requested.h == h) | 
|  | return false; | 
|  | mCurrentState.requested.w = w; | 
|  | mCurrentState.requested.h = h; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setAlpha(uint8_t alpha) { | 
|  | if (mCurrentState.alpha == alpha) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.alpha = alpha; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) { | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.transform.set( | 
|  | matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy); | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setTransparentRegionHint(const Region& transparent) { | 
|  | mCurrentState.requestedTransparentRegion = transparent; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setFlags(uint8_t flags, uint8_t mask) { | 
|  | const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); | 
|  | if (mCurrentState.flags == newFlags) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.flags = newFlags; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setCrop(const Rect& crop) { | 
|  | if (mCurrentState.requested.crop == crop) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.requested.crop = crop; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Layer::setLayerStack(uint32_t layerStack) { | 
|  | if (mCurrentState.layerStack == layerStack) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.layerStack = layerStack; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | // pageflip handling... | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | bool Layer::onPreComposition() { | 
|  | mRefreshPending = false; | 
|  | return mQueuedFrames > 0 || mSidebandStreamChanged; | 
|  | } | 
|  |  | 
|  | void Layer::onPostComposition() { | 
|  | if (mFrameLatencyNeeded) { | 
|  | nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp(); | 
|  | mFrameTracker.setDesiredPresentTime(desiredPresentTime); | 
|  |  | 
|  | sp<Fence> frameReadyFence = mSurfaceFlingerConsumer->getCurrentFence(); | 
|  | if (frameReadyFence->isValid()) { | 
|  | mFrameTracker.setFrameReadyFence(frameReadyFence); | 
|  | } else { | 
|  | // There was no fence for this frame, so assume that it was ready | 
|  | // to be presented at the desired present time. | 
|  | mFrameTracker.setFrameReadyTime(desiredPresentTime); | 
|  | } | 
|  |  | 
|  | const HWComposer& hwc = mFlinger->getHwComposer(); | 
|  | sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY); | 
|  | if (presentFence->isValid()) { | 
|  | mFrameTracker.setActualPresentFence(presentFence); | 
|  | } else { | 
|  | // The HWC doesn't support present fences, so use the refresh | 
|  | // timestamp instead. | 
|  | nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY); | 
|  | mFrameTracker.setActualPresentTime(presentTime); | 
|  | } | 
|  |  | 
|  | mFrameTracker.advanceFrame(); | 
|  | mFrameLatencyNeeded = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Layer::isVisible() const { | 
|  | const Layer::State& s(mDrawingState); | 
|  | return !(s.flags & layer_state_t::eLayerHidden) && s.alpha | 
|  | && (mActiveBuffer != NULL || mSidebandStream != NULL); | 
|  | } | 
|  |  | 
|  | Region Layer::latchBuffer(bool& recomputeVisibleRegions) | 
|  | { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) { | 
|  | // mSidebandStreamChanged was true | 
|  | mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream(); | 
|  | } | 
|  |  | 
|  | Region outDirtyRegion; | 
|  | if (mQueuedFrames > 0) { | 
|  |  | 
|  | // if we've already called updateTexImage() without going through | 
|  | // a composition step, we have to skip this layer at this point | 
|  | // because we cannot call updateTeximage() without a corresponding | 
|  | // compositionComplete() call. | 
|  | // we'll trigger an update in onPreComposition(). | 
|  | if (mRefreshPending) { | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // Capture the old state of the layer for comparisons later | 
|  | const State& s(getDrawingState()); | 
|  | const bool oldOpacity = isOpaque(s); | 
|  | sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer; | 
|  |  | 
|  | struct Reject : public SurfaceFlingerConsumer::BufferRejecter { | 
|  | Layer::State& front; | 
|  | Layer::State& current; | 
|  | bool& recomputeVisibleRegions; | 
|  | Reject(Layer::State& front, Layer::State& current, | 
|  | bool& recomputeVisibleRegions) | 
|  | : front(front), current(current), | 
|  | recomputeVisibleRegions(recomputeVisibleRegions) { | 
|  | } | 
|  |  | 
|  | virtual bool reject(const sp<GraphicBuffer>& buf, | 
|  | const IGraphicBufferConsumer::BufferItem& item) { | 
|  | if (buf == NULL) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint32_t bufWidth  = buf->getWidth(); | 
|  | uint32_t bufHeight = buf->getHeight(); | 
|  |  | 
|  | // check that we received a buffer of the right size | 
|  | // (Take the buffer's orientation into account) | 
|  | if (item.mTransform & Transform::ROT_90) { | 
|  | swap(bufWidth, bufHeight); | 
|  | } | 
|  |  | 
|  | bool isFixedSize = item.mScalingMode != NATIVE_WINDOW_SCALING_MODE_FREEZE; | 
|  | if (front.active != front.requested) { | 
|  |  | 
|  | if (isFixedSize || | 
|  | (bufWidth == front.requested.w && | 
|  | bufHeight == front.requested.h)) | 
|  | { | 
|  | // Here we pretend the transaction happened by updating the | 
|  | // current and drawing states. Drawing state is only accessed | 
|  | // in this thread, no need to have it locked | 
|  | front.active = front.requested; | 
|  |  | 
|  | // We also need to update the current state so that | 
|  | // we don't end-up overwriting the drawing state with | 
|  | // this stale current state during the next transaction | 
|  | // | 
|  | // NOTE: We don't need to hold the transaction lock here | 
|  | // because State::active is only accessed from this thread. | 
|  | current.active = front.active; | 
|  |  | 
|  | // recompute visible region | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | ALOGD_IF(DEBUG_RESIZE, | 
|  | "latchBuffer/reject: buffer (%ux%u, tr=%02x), scalingMode=%d\n" | 
|  | "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" | 
|  | "            requested={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }}\n", | 
|  | bufWidth, bufHeight, item.mTransform, item.mScalingMode, | 
|  | front.active.w, front.active.h, | 
|  | front.active.crop.left, | 
|  | front.active.crop.top, | 
|  | front.active.crop.right, | 
|  | front.active.crop.bottom, | 
|  | front.active.crop.getWidth(), | 
|  | front.active.crop.getHeight(), | 
|  | front.requested.w, front.requested.h, | 
|  | front.requested.crop.left, | 
|  | front.requested.crop.top, | 
|  | front.requested.crop.right, | 
|  | front.requested.crop.bottom, | 
|  | front.requested.crop.getWidth(), | 
|  | front.requested.crop.getHeight()); | 
|  | } | 
|  |  | 
|  | if (!isFixedSize) { | 
|  | if (front.active.w != bufWidth || | 
|  | front.active.h != bufHeight) { | 
|  | // reject this buffer | 
|  | //ALOGD("rejecting buffer: bufWidth=%d, bufHeight=%d, front.active.{w=%d, h=%d}", | 
|  | //        bufWidth, bufHeight, front.active.w, front.active.h); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // if the transparent region has changed (this test is | 
|  | // conservative, but that's fine, worst case we're doing | 
|  | // a bit of extra work), we latch the new one and we | 
|  | // trigger a visible-region recompute. | 
|  | if (!front.activeTransparentRegion.isTriviallyEqual( | 
|  | front.requestedTransparentRegion)) { | 
|  | front.activeTransparentRegion = front.requestedTransparentRegion; | 
|  |  | 
|  | // We also need to update the current state so that | 
|  | // we don't end-up overwriting the drawing state with | 
|  | // this stale current state during the next transaction | 
|  | // | 
|  | // NOTE: We don't need to hold the transaction lock here | 
|  | // because State::active is only accessed from this thread. | 
|  | current.activeTransparentRegion = front.activeTransparentRegion; | 
|  |  | 
|  | // recompute visible region | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | Reject r(mDrawingState, getCurrentState(), recomputeVisibleRegions); | 
|  |  | 
|  | status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r, | 
|  | mFlinger->mPrimaryDispSync); | 
|  | if (updateResult == BufferQueue::PRESENT_LATER) { | 
|  | // Producer doesn't want buffer to be displayed yet.  Signal a | 
|  | // layer update so we check again at the next opportunity. | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // Decrement the queued-frames count.  Signal another event if we | 
|  | // have more frames pending. | 
|  | if (android_atomic_dec(&mQueuedFrames) > 1) { | 
|  | mFlinger->signalLayerUpdate(); | 
|  | } | 
|  |  | 
|  | if (updateResult != NO_ERROR) { | 
|  | // something happened! | 
|  | recomputeVisibleRegions = true; | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // update the active buffer | 
|  | mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer(); | 
|  | if (mActiveBuffer == NULL) { | 
|  | // this can only happen if the very first buffer was rejected. | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | mRefreshPending = true; | 
|  | mFrameLatencyNeeded = true; | 
|  | if (oldActiveBuffer == NULL) { | 
|  | // the first time we receive a buffer, we need to trigger a | 
|  | // geometry invalidation. | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | Rect crop(mSurfaceFlingerConsumer->getCurrentCrop()); | 
|  | const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform()); | 
|  | const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode()); | 
|  | if ((crop != mCurrentCrop) || | 
|  | (transform != mCurrentTransform) || | 
|  | (scalingMode != mCurrentScalingMode)) | 
|  | { | 
|  | mCurrentCrop = crop; | 
|  | mCurrentTransform = transform; | 
|  | mCurrentScalingMode = scalingMode; | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | if (oldActiveBuffer != NULL) { | 
|  | uint32_t bufWidth  = mActiveBuffer->getWidth(); | 
|  | uint32_t bufHeight = mActiveBuffer->getHeight(); | 
|  | if (bufWidth != uint32_t(oldActiveBuffer->width) || | 
|  | bufHeight != uint32_t(oldActiveBuffer->height)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format); | 
|  | if (oldOpacity != isOpaque(s)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | // FIXME: postedRegion should be dirty & bounds | 
|  | Region dirtyRegion(Rect(s.active.w, s.active.h)); | 
|  |  | 
|  | // transform the dirty region to window-manager space | 
|  | outDirtyRegion = (s.transform.transform(dirtyRegion)); | 
|  | } | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | uint32_t Layer::getEffectiveUsage(uint32_t usage) const | 
|  | { | 
|  | // TODO: should we do something special if mSecure is set? | 
|  | if (mProtectedByApp) { | 
|  | // need a hardware-protected path to external video sink | 
|  | usage |= GraphicBuffer::USAGE_PROTECTED; | 
|  | } | 
|  | usage |= GraphicBuffer::USAGE_HW_COMPOSER; | 
|  | return usage; | 
|  | } | 
|  |  | 
|  | void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const { | 
|  | uint32_t orientation = 0; | 
|  | if (!mFlinger->mDebugDisableTransformHint) { | 
|  | // The transform hint is used to improve performance, but we can | 
|  | // only have a single transform hint, it cannot | 
|  | // apply to all displays. | 
|  | const Transform& planeTransform(hw->getTransform()); | 
|  | orientation = planeTransform.getOrientation(); | 
|  | if (orientation & Transform::ROT_INVALID) { | 
|  | orientation = 0; | 
|  | } | 
|  | } | 
|  | mSurfaceFlingerConsumer->setTransformHint(orientation); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | // debugging | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | void Layer::dump(String8& result, Colorizer& colorizer) const | 
|  | { | 
|  | const Layer::State& s(getDrawingState()); | 
|  |  | 
|  | colorizer.colorize(result, Colorizer::GREEN); | 
|  | result.appendFormat( | 
|  | "+ %s %p (%s)\n", | 
|  | getTypeId(), this, getName().string()); | 
|  | colorizer.reset(result); | 
|  |  | 
|  | s.activeTransparentRegion.dump(result, "transparentRegion"); | 
|  | visibleRegion.dump(result, "visibleRegion"); | 
|  | sp<Client> client(mClientRef.promote()); | 
|  |  | 
|  | result.appendFormat(            "      " | 
|  | "layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), crop=(%4d,%4d,%4d,%4d), " | 
|  | "isOpaque=%1d, invalidate=%1d, " | 
|  | "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n" | 
|  | "      client=%p\n", | 
|  | s.layerStack, s.z, s.transform.tx(), s.transform.ty(), s.active.w, s.active.h, | 
|  | s.active.crop.left, s.active.crop.top, | 
|  | s.active.crop.right, s.active.crop.bottom, | 
|  | isOpaque(s), contentDirty, | 
|  | s.alpha, s.flags, | 
|  | s.transform[0][0], s.transform[0][1], | 
|  | s.transform[1][0], s.transform[1][1], | 
|  | client.get()); | 
|  |  | 
|  | sp<const GraphicBuffer> buf0(mActiveBuffer); | 
|  | uint32_t w0=0, h0=0, s0=0, f0=0; | 
|  | if (buf0 != 0) { | 
|  | w0 = buf0->getWidth(); | 
|  | h0 = buf0->getHeight(); | 
|  | s0 = buf0->getStride(); | 
|  | f0 = buf0->format; | 
|  | } | 
|  | result.appendFormat( | 
|  | "      " | 
|  | "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X]," | 
|  | " queued-frames=%d, mRefreshPending=%d\n", | 
|  | mFormat, w0, h0, s0,f0, | 
|  | mQueuedFrames, mRefreshPending); | 
|  |  | 
|  | if (mSurfaceFlingerConsumer != 0) { | 
|  | mSurfaceFlingerConsumer->dump(result, "            "); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Layer::dumpFrameStats(String8& result) const { | 
|  | mFrameTracker.dumpStats(result); | 
|  | } | 
|  |  | 
|  | void Layer::clearFrameStats() { | 
|  | mFrameTracker.clearStats(); | 
|  | } | 
|  |  | 
|  | void Layer::logFrameStats() { | 
|  | mFrameTracker.logAndResetStats(mName); | 
|  | } | 
|  |  | 
|  | void Layer::getFrameStats(FrameStats* outStats) const { | 
|  | mFrameTracker.getStats(outStats); | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | Layer::LayerCleaner::LayerCleaner(const sp<SurfaceFlinger>& flinger, | 
|  | const sp<Layer>& layer) | 
|  | : mFlinger(flinger), mLayer(layer) { | 
|  | } | 
|  |  | 
|  | Layer::LayerCleaner::~LayerCleaner() { | 
|  | // destroy client resources | 
|  | mFlinger->onLayerDestroyed(mLayer); | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | }; // namespace android | 
|  |  | 
|  | #if defined(__gl_h_) | 
|  | #error "don't include gl/gl.h in this file" | 
|  | #endif | 
|  |  | 
|  | #if defined(__gl2_h_) | 
|  | #error "don't include gl2/gl2.h in this file" | 
|  | #endif |