|  | /* | 
|  | * Copyright 2018 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "Scheduler" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include "Scheduler.h" | 
|  |  | 
|  | #include <android-base/properties.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> | 
|  | #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> | 
|  | #include <configstore/Utils.h> | 
|  | #include <ftl/enum.h> | 
|  | #include <ftl/fake_guard.h> | 
|  | #include <ftl/small_map.h> | 
|  | #include <gui/WindowInfo.h> | 
|  | #include <system/window.h> | 
|  | #include <utils/Timers.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <FrameTimeline/FrameTimeline.h> | 
|  | #include <algorithm> | 
|  | #include <cinttypes> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  |  | 
|  | #include "../Layer.h" | 
|  | #include "DispSyncSource.h" | 
|  | #include "Display/DisplayMap.h" | 
|  | #include "EventThread.h" | 
|  | #include "FrameRateOverrideMappings.h" | 
|  | #include "OneShotTimer.h" | 
|  | #include "SurfaceFlingerProperties.h" | 
|  | #include "VSyncPredictor.h" | 
|  | #include "VSyncReactor.h" | 
|  |  | 
|  | #define RETURN_IF_INVALID_HANDLE(handle, ...)                        \ | 
|  | do {                                                             \ | 
|  | if (mConnections.count(handle) == 0) {                       \ | 
|  | ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ | 
|  | return __VA_ARGS__;                                      \ | 
|  | }                                                            \ | 
|  | } while (false) | 
|  |  | 
|  | namespace android::scheduler { | 
|  |  | 
|  | Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features) | 
|  | : impl::MessageQueue(compositor), mFeatures(features), mSchedulerCallback(callback) {} | 
|  |  | 
|  | Scheduler::~Scheduler() { | 
|  | // Stop timers and wait for their threads to exit. | 
|  | mDisplayPowerTimer.reset(); | 
|  | mTouchTimer.reset(); | 
|  |  | 
|  | // Stop idle timer and clear callbacks, as the RefreshRateSelector may outlive the Scheduler. | 
|  | demoteLeaderDisplay(); | 
|  | } | 
|  |  | 
|  | void Scheduler::startTimers() { | 
|  | using namespace sysprop; | 
|  | using namespace std::string_literals; | 
|  |  | 
|  | if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { | 
|  | // Touch events are coming to SF every 100ms, so the timer needs to be higher than that | 
|  | mTouchTimer.emplace( | 
|  | "TouchTimer", std::chrono::milliseconds(millis), | 
|  | [this] { touchTimerCallback(TimerState::Reset); }, | 
|  | [this] { touchTimerCallback(TimerState::Expired); }); | 
|  | mTouchTimer->start(); | 
|  | } | 
|  |  | 
|  | if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { | 
|  | mDisplayPowerTimer.emplace( | 
|  | "DisplayPowerTimer", std::chrono::milliseconds(millis), | 
|  | [this] { displayPowerTimerCallback(TimerState::Reset); }, | 
|  | [this] { displayPowerTimerCallback(TimerState::Expired); }); | 
|  | mDisplayPowerTimer->start(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setLeaderDisplay(std::optional<PhysicalDisplayId> leaderIdOpt) { | 
|  | demoteLeaderDisplay(); | 
|  |  | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | promoteLeaderDisplay(leaderIdOpt); | 
|  | } | 
|  |  | 
|  | void Scheduler::registerDisplay(PhysicalDisplayId displayId, RefreshRateSelectorPtr selectorPtr) { | 
|  | demoteLeaderDisplay(); | 
|  |  | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | mRefreshRateSelectors.emplace_or_replace(displayId, std::move(selectorPtr)); | 
|  |  | 
|  | promoteLeaderDisplay(); | 
|  | } | 
|  |  | 
|  | void Scheduler::unregisterDisplay(PhysicalDisplayId displayId) { | 
|  | demoteLeaderDisplay(); | 
|  |  | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | mRefreshRateSelectors.erase(displayId); | 
|  |  | 
|  | promoteLeaderDisplay(); | 
|  | } | 
|  |  | 
|  | void Scheduler::run() { | 
|  | while (true) { | 
|  | waitMessage(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::onFrameSignal(ICompositor& compositor, VsyncId vsyncId, | 
|  | TimePoint expectedVsyncTime) { | 
|  | const TimePoint frameTime = SchedulerClock::now(); | 
|  |  | 
|  | if (!compositor.commit(frameTime, vsyncId, expectedVsyncTime)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | compositor.composite(frameTime, vsyncId); | 
|  | compositor.sample(); | 
|  | } | 
|  |  | 
|  | void Scheduler::createVsyncSchedule(FeatureFlags features) { | 
|  | mVsyncSchedule.emplace(features); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource( | 
|  | const char* name, std::chrono::nanoseconds workDuration, | 
|  | std::chrono::nanoseconds readyDuration, bool traceVsync) { | 
|  | return std::make_unique<scheduler::DispSyncSource>(mVsyncSchedule->getDispatch(), | 
|  | mVsyncSchedule->getTracker(), workDuration, | 
|  | readyDuration, traceVsync, name); | 
|  | } | 
|  |  | 
|  | std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const { | 
|  | const bool supportsFrameRateOverrideByContent = | 
|  | leaderSelectorPtr()->supportsAppFrameRateOverrideByContent(); | 
|  | return mFrameRateOverrideMappings | 
|  | .getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent); | 
|  | } | 
|  |  | 
|  | bool Scheduler::isVsyncValid(TimePoint expectedVsyncTimestamp, uid_t uid) const { | 
|  | const auto frameRate = getFrameRateOverride(uid); | 
|  | if (!frameRate.has_value()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return mVsyncSchedule->getTracker().isVSyncInPhase(expectedVsyncTimestamp.ns(), *frameRate); | 
|  | } | 
|  |  | 
|  | impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const { | 
|  | return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) { | 
|  | return !isVsyncValid(TimePoint::fromNs(expectedVsyncTimestamp), uid); | 
|  | }; | 
|  | } | 
|  |  | 
|  | impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const { | 
|  | return [this](uid_t uid) { | 
|  | const Fps refreshRate = leaderSelectorPtr()->getActiveMode().fps; | 
|  | const nsecs_t currentPeriod = mVsyncSchedule->period().ns() ?: refreshRate.getPeriodNsecs(); | 
|  |  | 
|  | const auto frameRate = getFrameRateOverride(uid); | 
|  | if (!frameRate.has_value()) { | 
|  | return currentPeriod; | 
|  | } | 
|  |  | 
|  | const auto divisor = RefreshRateSelector::getFrameRateDivisor(refreshRate, *frameRate); | 
|  | if (divisor <= 1) { | 
|  | return currentPeriod; | 
|  | } | 
|  | return currentPeriod * divisor; | 
|  | }; | 
|  | } | 
|  |  | 
|  | ConnectionHandle Scheduler::createConnection(const char* connectionName, | 
|  | frametimeline::TokenManager* tokenManager, | 
|  | std::chrono::nanoseconds workDuration, | 
|  | std::chrono::nanoseconds readyDuration) { | 
|  | auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration); | 
|  | auto throttleVsync = makeThrottleVsyncCallback(); | 
|  | auto getVsyncPeriod = makeGetVsyncPeriodFunction(); | 
|  | auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), tokenManager, | 
|  | std::move(throttleVsync), | 
|  | std::move(getVsyncPeriod)); | 
|  | return createConnection(std::move(eventThread)); | 
|  | } | 
|  |  | 
|  | ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) { | 
|  | const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; | 
|  | ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); | 
|  |  | 
|  | auto connection = createConnectionInternal(eventThread.get()); | 
|  |  | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | sp<EventThreadConnection> Scheduler::createConnectionInternal( | 
|  | EventThread* eventThread, EventRegistrationFlags eventRegistration) { | 
|  | return eventThread->createEventConnection([&] { resync(); }, eventRegistration); | 
|  | } | 
|  |  | 
|  | sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( | 
|  | ConnectionHandle handle, EventRegistrationFlags eventRegistration) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  | return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration); | 
|  | } | 
|  |  | 
|  | sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  | return mConnections[handle].connection; | 
|  | } | 
|  |  | 
|  | void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, | 
|  | bool connected) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  |  | 
|  | thread->onHotplugReceived(displayId, connected); | 
|  | } | 
|  |  | 
|  | void Scheduler::onScreenAcquired(ConnectionHandle handle) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onScreenAcquired(); | 
|  | mScreenAcquired = true; | 
|  | } | 
|  |  | 
|  | void Scheduler::onScreenReleased(ConnectionHandle handle) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onScreenReleased(); | 
|  | mScreenAcquired = false; | 
|  | } | 
|  |  | 
|  | void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) { | 
|  | const bool supportsFrameRateOverrideByContent = | 
|  | leaderSelectorPtr()->supportsAppFrameRateOverrideByContent(); | 
|  |  | 
|  | std::vector<FrameRateOverride> overrides = | 
|  | mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent); | 
|  |  | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onFrameRateOverridesChanged(displayId, std::move(overrides)); | 
|  | } | 
|  |  | 
|  | void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  | // Cache the last reported modes for primary display. | 
|  | mPolicy.cachedModeChangedParams = {handle, mode}; | 
|  |  | 
|  | // Invalidate content based refresh rate selection so it could be calculated | 
|  | // again for the new refresh rate. | 
|  | mPolicy.contentRequirements.clear(); | 
|  | } | 
|  | onNonPrimaryDisplayModeChanged(handle, mode); | 
|  | } | 
|  |  | 
|  | void Scheduler::dispatchCachedReportedMode() { | 
|  | // Check optional fields first. | 
|  | if (!mPolicy.modeOpt) { | 
|  | ALOGW("No mode ID found, not dispatching cached mode."); | 
|  | return; | 
|  | } | 
|  | if (!mPolicy.cachedModeChangedParams) { | 
|  | ALOGW("No mode changed params found, not dispatching cached mode."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the mode is not the current mode, this means that a | 
|  | // mode change is in progress. In that case we shouldn't dispatch an event | 
|  | // as it will be dispatched when the current mode changes. | 
|  | if (leaderSelectorPtr()->getActiveMode() != mPolicy.modeOpt) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If there is no change from cached mode, there is no need to dispatch an event | 
|  | if (*mPolicy.modeOpt == mPolicy.cachedModeChangedParams->mode) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mPolicy.cachedModeChangedParams->mode = *mPolicy.modeOpt; | 
|  | onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->handle, | 
|  | mPolicy.cachedModeChangedParams->mode); | 
|  | } | 
|  |  | 
|  | void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, const FrameRateMode& mode) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onModeChanged(mode); | 
|  | } | 
|  |  | 
|  | size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, 0); | 
|  | return mConnections[handle].thread->getEventThreadConnectionCount(); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(ConnectionHandle handle, std::string& result) const { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections.at(handle).thread.get(); | 
|  | } | 
|  | thread->dump(result); | 
|  | } | 
|  |  | 
|  | void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration, | 
|  | std::chrono::nanoseconds readyDuration) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->setDuration(workDuration, readyDuration); | 
|  | } | 
|  |  | 
|  | void Scheduler::enableHardwareVsync() { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { | 
|  | mVsyncSchedule->getTracker().resetModel(); | 
|  | mSchedulerCallback.setVsyncEnabled(true); | 
|  | mPrimaryHWVsyncEnabled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::disableHardwareVsync(bool makeUnavailable) { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (mPrimaryHWVsyncEnabled) { | 
|  | mSchedulerCallback.setVsyncEnabled(false); | 
|  | mPrimaryHWVsyncEnabled = false; | 
|  | } | 
|  | if (makeUnavailable) { | 
|  | mHWVsyncAvailable = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::resyncToHardwareVsync(bool makeAvailable, Fps refreshRate) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (makeAvailable) { | 
|  | mHWVsyncAvailable = makeAvailable; | 
|  | } else if (!mHWVsyncAvailable) { | 
|  | // Hardware vsync is not currently available, so abort the resync | 
|  | // attempt for now | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | setVsyncPeriod(refreshRate.getPeriodNsecs()); | 
|  | } | 
|  |  | 
|  | void Scheduler::setRenderRate(Fps renderFrameRate) { | 
|  | const auto mode = leaderSelectorPtr()->getActiveMode(); | 
|  |  | 
|  | using fps_approx_ops::operator!=; | 
|  | LOG_ALWAYS_FATAL_IF(renderFrameRate != mode.fps, | 
|  | "Mismatch in render frame rates. Selector: %s, Scheduler: %s", | 
|  | to_string(mode.fps).c_str(), to_string(renderFrameRate).c_str()); | 
|  |  | 
|  | ALOGV("%s %s (%s)", __func__, to_string(mode.fps).c_str(), | 
|  | to_string(mode.modePtr->getFps()).c_str()); | 
|  |  | 
|  | const auto divisor = RefreshRateSelector::getFrameRateDivisor(mode.modePtr->getFps(), mode.fps); | 
|  | LOG_ALWAYS_FATAL_IF(divisor == 0, "%s <> %s -- not divisors", to_string(mode.fps).c_str(), | 
|  | to_string(mode.fps).c_str()); | 
|  |  | 
|  | mVsyncSchedule->getTracker().setDivisor(static_cast<unsigned>(divisor)); | 
|  | } | 
|  |  | 
|  | void Scheduler::resync() { | 
|  | static constexpr nsecs_t kIgnoreDelay = ms2ns(750); | 
|  |  | 
|  | const nsecs_t now = systemTime(); | 
|  | const nsecs_t last = mLastResyncTime.exchange(now); | 
|  |  | 
|  | if (now - last > kIgnoreDelay) { | 
|  | const auto refreshRate = leaderSelectorPtr()->getActiveMode().modePtr->getFps(); | 
|  | resyncToHardwareVsync(false, refreshRate); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setVsyncPeriod(nsecs_t period) { | 
|  | if (period <= 0) return; | 
|  |  | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | mVsyncSchedule->getController().startPeriodTransition(period); | 
|  |  | 
|  | if (!mPrimaryHWVsyncEnabled) { | 
|  | mVsyncSchedule->getTracker().resetModel(); | 
|  | mSchedulerCallback.setVsyncEnabled(true); | 
|  | mPrimaryHWVsyncEnabled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod, | 
|  | bool* periodFlushed) { | 
|  | bool needsHwVsync = false; | 
|  | *periodFlushed = false; | 
|  | { // Scope for the lock | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (mPrimaryHWVsyncEnabled) { | 
|  | needsHwVsync = | 
|  | mVsyncSchedule->getController().addHwVsyncTimestamp(timestamp, hwcVsyncPeriod, | 
|  | periodFlushed); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (needsHwVsync) { | 
|  | enableHardwareVsync(); | 
|  | } else { | 
|  | disableHardwareVsync(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::addPresentFence(std::shared_ptr<FenceTime> fence) { | 
|  | if (mVsyncSchedule->getController().addPresentFence(std::move(fence))) { | 
|  | enableHardwareVsync(); | 
|  | } else { | 
|  | disableHardwareVsync(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::registerLayer(Layer* layer) { | 
|  | // If the content detection feature is off, we still keep the layer history, | 
|  | // since we use it for other features (like Frame Rate API), so layers | 
|  | // still need to be registered. | 
|  | mLayerHistory.registerLayer(layer, mFeatures.test(Feature::kContentDetection)); | 
|  | } | 
|  |  | 
|  | void Scheduler::deregisterLayer(Layer* layer) { | 
|  | mLayerHistory.deregisterLayer(layer); | 
|  | } | 
|  |  | 
|  | void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime, | 
|  | LayerHistory::LayerUpdateType updateType) { | 
|  | if (leaderSelectorPtr()->canSwitch()) { | 
|  | mLayerHistory.record(layer, presentTime, systemTime(), updateType); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setModeChangePending(bool pending) { | 
|  | mLayerHistory.setModeChangePending(pending); | 
|  | } | 
|  |  | 
|  | void Scheduler::setDefaultFrameRateCompatibility(Layer* layer) { | 
|  | mLayerHistory.setDefaultFrameRateCompatibility(layer, | 
|  | mFeatures.test(Feature::kContentDetection)); | 
|  | } | 
|  |  | 
|  | void Scheduler::chooseRefreshRateForContent() { | 
|  | const auto selectorPtr = leaderSelectorPtr(); | 
|  | if (!selectorPtr->canSwitch()) return; | 
|  |  | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | LayerHistory::Summary summary = mLayerHistory.summarize(*selectorPtr, systemTime()); | 
|  | applyPolicy(&Policy::contentRequirements, std::move(summary)); | 
|  | } | 
|  |  | 
|  | void Scheduler::resetIdleTimer() { | 
|  | leaderSelectorPtr()->resetIdleTimer(); | 
|  | } | 
|  |  | 
|  | void Scheduler::onTouchHint() { | 
|  | if (mTouchTimer) { | 
|  | mTouchTimer->reset(); | 
|  | leaderSelectorPtr()->resetKernelIdleTimer(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setDisplayPowerMode(hal::PowerMode powerMode) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  | mPolicy.displayPowerMode = powerMode; | 
|  | } | 
|  | mVsyncSchedule->getController().setDisplayPowerMode(powerMode); | 
|  |  | 
|  | if (mDisplayPowerTimer) { | 
|  | mDisplayPowerTimer->reset(); | 
|  | } | 
|  |  | 
|  | // Display Power event will boost the refresh rate to performance. | 
|  | // Clear Layer History to get fresh FPS detection | 
|  | mLayerHistory.clear(); | 
|  | } | 
|  |  | 
|  | void Scheduler::kernelIdleTimerCallback(TimerState state) { | 
|  | ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state)); | 
|  |  | 
|  | // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate | 
|  | // magic number | 
|  | const Fps refreshRate = leaderSelectorPtr()->getActiveMode().modePtr->getFps(); | 
|  |  | 
|  | constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz; | 
|  | using namespace fps_approx_ops; | 
|  |  | 
|  | if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
|  | // If we're not in performance mode then the kernel timer shouldn't do | 
|  | // anything, as the refresh rate during DPU power collapse will be the | 
|  | // same. | 
|  | resyncToHardwareVsync(true /* makeAvailable */, refreshRate); | 
|  | } else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) { | 
|  | // Disable HW VSYNC if the timer expired, as we don't need it enabled if | 
|  | // we're not pushing frames, and if we're in PERFORMANCE mode then we'll | 
|  | // need to update the VsyncController model anyway. | 
|  | disableHardwareVsync(false /* makeUnavailable */); | 
|  | } | 
|  |  | 
|  | mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); | 
|  | } | 
|  |  | 
|  | void Scheduler::idleTimerCallback(TimerState state) { | 
|  | applyPolicy(&Policy::idleTimer, state); | 
|  | ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::touchTimerCallback(TimerState state) { | 
|  | const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; | 
|  | // Touch event will boost the refresh rate to performance. | 
|  | // Clear layer history to get fresh FPS detection. | 
|  | // NOTE: Instead of checking all the layers, we should be checking the layer | 
|  | // that is currently on top. b/142507166 will give us this capability. | 
|  | if (applyPolicy(&Policy::touch, touch).touch) { | 
|  | mLayerHistory.clear(); | 
|  | } | 
|  | ATRACE_INT("TouchState", static_cast<int>(touch)); | 
|  | } | 
|  |  | 
|  | void Scheduler::displayPowerTimerCallback(TimerState state) { | 
|  | applyPolicy(&Policy::displayPowerTimer, state); | 
|  | ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(utils::Dumper& dumper) const { | 
|  | using namespace std::string_view_literals; | 
|  |  | 
|  | { | 
|  | utils::Dumper::Section section(dumper, "Features"sv); | 
|  |  | 
|  | for (Feature feature : ftl::enum_range<Feature>()) { | 
|  | if (const auto flagOpt = ftl::flag_name(feature)) { | 
|  | dumper.dump(flagOpt->substr(1), mFeatures.test(feature)); | 
|  | } | 
|  | } | 
|  | } | 
|  | { | 
|  | utils::Dumper::Section section(dumper, "Policy"sv); | 
|  | { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  | dumper.dump("leaderDisplayId"sv, mLeaderDisplayId); | 
|  | } | 
|  | dumper.dump("layerHistory"sv, mLayerHistory.dump()); | 
|  | dumper.dump("touchTimer"sv, mTouchTimer.transform(&OneShotTimer::interval)); | 
|  | dumper.dump("displayPowerTimer"sv, mDisplayPowerTimer.transform(&OneShotTimer::interval)); | 
|  | } | 
|  |  | 
|  | mFrameRateOverrideMappings.dump(dumper); | 
|  | dumper.eol(); | 
|  |  | 
|  | { | 
|  | utils::Dumper::Section section(dumper, "Hardware VSYNC"sv); | 
|  |  | 
|  | std::lock_guard lock(mHWVsyncLock); | 
|  | dumper.dump("screenAcquired"sv, mScreenAcquired.load()); | 
|  | dumper.dump("hwVsyncAvailable"sv, mHWVsyncAvailable); | 
|  | dumper.dump("hwVsyncEnabled"sv, mPrimaryHWVsyncEnabled); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::dumpVsync(std::string& out) const { | 
|  | mVsyncSchedule->dump(out); | 
|  | } | 
|  |  | 
|  | bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) { | 
|  | if (consideredSignals.idle) return false; | 
|  |  | 
|  | const auto frameRateOverrides = | 
|  | leaderSelectorPtr()->getFrameRateOverrides(mPolicy.contentRequirements, | 
|  | displayRefreshRate, consideredSignals); | 
|  |  | 
|  | // Note that RefreshRateSelector::supportsFrameRateOverrideByContent is checked when querying | 
|  | // the FrameRateOverrideMappings rather than here. | 
|  | return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides); | 
|  | } | 
|  |  | 
|  | void Scheduler::promoteLeaderDisplay(std::optional<PhysicalDisplayId> leaderIdOpt) { | 
|  | // TODO(b/241286431): Choose the leader display. | 
|  | mLeaderDisplayId = leaderIdOpt.value_or(mRefreshRateSelectors.begin()->first); | 
|  | ALOGI("Display %s is the leader", to_string(*mLeaderDisplayId).c_str()); | 
|  |  | 
|  | if (const auto leaderPtr = leaderSelectorPtrLocked()) { | 
|  | leaderPtr->setIdleTimerCallbacks( | 
|  | {.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); }, | 
|  | .onExpired = [this] { idleTimerCallback(TimerState::Expired); }}, | 
|  | .kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); }, | 
|  | .onExpired = | 
|  | [this] { kernelIdleTimerCallback(TimerState::Expired); }}}); | 
|  |  | 
|  | leaderPtr->startIdleTimer(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::demoteLeaderDisplay() { | 
|  | // No need to lock for reads on kMainThreadContext. | 
|  | if (const auto leaderPtr = FTL_FAKE_GUARD(mDisplayLock, leaderSelectorPtrLocked())) { | 
|  | leaderPtr->stopIdleTimer(); | 
|  | leaderPtr->clearIdleTimerCallbacks(); | 
|  | } | 
|  |  | 
|  | // Clear state that depends on the leader's RefreshRateSelector. | 
|  | std::scoped_lock lock(mPolicyLock); | 
|  | mPolicy = {}; | 
|  | } | 
|  |  | 
|  | template <typename S, typename T> | 
|  | auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals { | 
|  | ATRACE_CALL(); | 
|  | std::vector<display::DisplayModeRequest> modeRequests; | 
|  | GlobalSignals consideredSignals; | 
|  |  | 
|  | bool refreshRateChanged = false; | 
|  | bool frameRateOverridesChanged; | 
|  |  | 
|  | { | 
|  | std::scoped_lock lock(mPolicyLock); | 
|  |  | 
|  | auto& currentState = mPolicy.*statePtr; | 
|  | if (currentState == newState) return {}; | 
|  | currentState = std::forward<T>(newState); | 
|  |  | 
|  | DisplayModeChoiceMap modeChoices; | 
|  | ftl::Optional<FrameRateMode> modeOpt; | 
|  | { | 
|  | std::scoped_lock lock(mDisplayLock); | 
|  | ftl::FakeGuard guard(kMainThreadContext); | 
|  |  | 
|  | modeChoices = chooseDisplayModes(); | 
|  |  | 
|  | // TODO(b/240743786): The leader display's mode must change for any DisplayModeRequest | 
|  | // to go through. Fix this by tracking per-display Scheduler::Policy and timers. | 
|  | std::tie(modeOpt, consideredSignals) = | 
|  | modeChoices.get(*mLeaderDisplayId) | 
|  | .transform([](const DisplayModeChoice& choice) { | 
|  | return std::make_pair(choice.mode, choice.consideredSignals); | 
|  | }) | 
|  | .value(); | 
|  | } | 
|  |  | 
|  | modeRequests.reserve(modeChoices.size()); | 
|  | for (auto& [id, choice] : modeChoices) { | 
|  | modeRequests.emplace_back( | 
|  | display::DisplayModeRequest{.mode = std::move(choice.mode), | 
|  | .emitEvent = !choice.consideredSignals.idle}); | 
|  | } | 
|  |  | 
|  | frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, modeOpt->fps); | 
|  |  | 
|  | if (mPolicy.modeOpt != modeOpt) { | 
|  | mPolicy.modeOpt = modeOpt; | 
|  | refreshRateChanged = true; | 
|  | } else { | 
|  | // We don't need to change the display mode, but we might need to send an event | 
|  | // about a mode change, since it was suppressed if previously considered idle. | 
|  | if (!consideredSignals.idle) { | 
|  | dispatchCachedReportedMode(); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (refreshRateChanged) { | 
|  | mSchedulerCallback.requestDisplayModes(std::move(modeRequests)); | 
|  | } | 
|  | if (frameRateOverridesChanged) { | 
|  | mSchedulerCallback.triggerOnFrameRateOverridesChanged(); | 
|  | } | 
|  | return consideredSignals; | 
|  | } | 
|  |  | 
|  | auto Scheduler::chooseDisplayModes() const -> DisplayModeChoiceMap { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | using RankedRefreshRates = RefreshRateSelector::RankedFrameRates; | 
|  | display::PhysicalDisplayVector<RankedRefreshRates> perDisplayRanking; | 
|  |  | 
|  | // Tallies the score of a refresh rate across `displayCount` displays. | 
|  | struct RefreshRateTally { | 
|  | explicit RefreshRateTally(float score) : score(score) {} | 
|  |  | 
|  | float score; | 
|  | size_t displayCount = 1; | 
|  | }; | 
|  |  | 
|  | // Chosen to exceed a typical number of refresh rates across displays. | 
|  | constexpr size_t kStaticCapacity = 8; | 
|  | ftl::SmallMap<Fps, RefreshRateTally, kStaticCapacity, FpsApproxEqual> refreshRateTallies; | 
|  |  | 
|  | const auto globalSignals = makeGlobalSignals(); | 
|  |  | 
|  | for (const auto& [id, selectorPtr] : mRefreshRateSelectors) { | 
|  | auto rankedFrameRates = | 
|  | selectorPtr->getRankedFrameRates(mPolicy.contentRequirements, globalSignals); | 
|  |  | 
|  | for (const auto& [frameRateMode, score] : rankedFrameRates.ranking) { | 
|  | const auto [it, inserted] = refreshRateTallies.try_emplace(frameRateMode.fps, score); | 
|  |  | 
|  | if (!inserted) { | 
|  | auto& tally = it->second; | 
|  | tally.score += score; | 
|  | tally.displayCount++; | 
|  | } | 
|  | } | 
|  |  | 
|  | perDisplayRanking.push_back(std::move(rankedFrameRates)); | 
|  | } | 
|  |  | 
|  | auto maxScoreIt = refreshRateTallies.cbegin(); | 
|  |  | 
|  | // Find the first refresh rate common to all displays. | 
|  | while (maxScoreIt != refreshRateTallies.cend() && | 
|  | maxScoreIt->second.displayCount != mRefreshRateSelectors.size()) { | 
|  | ++maxScoreIt; | 
|  | } | 
|  |  | 
|  | if (maxScoreIt != refreshRateTallies.cend()) { | 
|  | // Choose the highest refresh rate common to all displays, if any. | 
|  | for (auto it = maxScoreIt + 1; it != refreshRateTallies.cend(); ++it) { | 
|  | const auto [fps, tally] = *it; | 
|  |  | 
|  | if (tally.displayCount == mRefreshRateSelectors.size() && | 
|  | tally.score > maxScoreIt->second.score) { | 
|  | maxScoreIt = it; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const std::optional<Fps> chosenFps = maxScoreIt != refreshRateTallies.cend() | 
|  | ? std::make_optional(maxScoreIt->first) | 
|  | : std::nullopt; | 
|  |  | 
|  | DisplayModeChoiceMap modeChoices; | 
|  |  | 
|  | using fps_approx_ops::operator==; | 
|  |  | 
|  | for (auto& [ranking, signals] : perDisplayRanking) { | 
|  | if (!chosenFps) { | 
|  | const auto& [frameRateMode, _] = ranking.front(); | 
|  | modeChoices.try_emplace(frameRateMode.modePtr->getPhysicalDisplayId(), | 
|  | DisplayModeChoice{frameRateMode, signals}); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (auto& [frameRateMode, _] : ranking) { | 
|  | if (frameRateMode.fps == *chosenFps) { | 
|  | modeChoices.try_emplace(frameRateMode.modePtr->getPhysicalDisplayId(), | 
|  | DisplayModeChoice{frameRateMode, signals}); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return modeChoices; | 
|  | } | 
|  |  | 
|  | GlobalSignals Scheduler::makeGlobalSignals() const { | 
|  | const bool powerOnImminent = mDisplayPowerTimer && | 
|  | (mPolicy.displayPowerMode != hal::PowerMode::ON || | 
|  | mPolicy.displayPowerTimer == TimerState::Reset); | 
|  |  | 
|  | return {.touch = mTouchTimer && mPolicy.touch == TouchState::Active, | 
|  | .idle = mPolicy.idleTimer == TimerState::Expired, | 
|  | .powerOnImminent = powerOnImminent}; | 
|  | } | 
|  |  | 
|  | FrameRateMode Scheduler::getPreferredDisplayMode() { | 
|  | std::lock_guard<std::mutex> lock(mPolicyLock); | 
|  | const auto frameRateMode = | 
|  | leaderSelectorPtr() | 
|  | ->getRankedFrameRates(mPolicy.contentRequirements, makeGlobalSignals()) | 
|  | .ranking.front() | 
|  | .frameRateMode; | 
|  |  | 
|  | // Make sure the stored mode is up to date. | 
|  | mPolicy.modeOpt = frameRateMode; | 
|  |  | 
|  | return frameRateMode; | 
|  | } | 
|  |  | 
|  | void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); | 
|  |  | 
|  | const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); | 
|  | if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { | 
|  | mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Scheduler::onPostComposition(nsecs_t presentTime) { | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { | 
|  | if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) { | 
|  | // We need to composite again as refreshTimeNanos is still in the future. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | mLastVsyncPeriodChangeTimeline->refreshRequired = false; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) { | 
|  | mLayerHistory.setDisplayArea(displayArea); | 
|  | } | 
|  |  | 
|  | void Scheduler::setGameModeRefreshRateForUid(FrameRateOverride frameRateOverride) { | 
|  | if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride); | 
|  | } | 
|  |  | 
|  | void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) { | 
|  | if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride); | 
|  | } | 
|  |  | 
|  | } // namespace android::scheduler |