|  | /* | 
|  | * Copyright 2019 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <SurfaceFlingerProperties.sysprop.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <compositionengine/CompositionEngine.h> | 
|  | #include <compositionengine/CompositionRefreshArgs.h> | 
|  | #include <compositionengine/DisplayColorProfile.h> | 
|  | #include <compositionengine/LayerFE.h> | 
|  | #include <compositionengine/LayerFECompositionState.h> | 
|  | #include <compositionengine/RenderSurface.h> | 
|  | #include <compositionengine/impl/HwcAsyncWorker.h> | 
|  | #include <compositionengine/impl/Output.h> | 
|  | #include <compositionengine/impl/OutputCompositionState.h> | 
|  | #include <compositionengine/impl/OutputLayer.h> | 
|  | #include <compositionengine/impl/OutputLayerCompositionState.h> | 
|  | #include <compositionengine/impl/planner/Planner.h> | 
|  | #include <ftl/future.h> | 
|  | #include <gui/TraceUtils.h> | 
|  |  | 
|  | #include <thread> | 
|  |  | 
|  | #include "renderengine/ExternalTexture.h" | 
|  |  | 
|  | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
|  | #pragma clang diagnostic push | 
|  | #pragma clang diagnostic ignored "-Wconversion" | 
|  |  | 
|  | #include <renderengine/DisplaySettings.h> | 
|  | #include <renderengine/RenderEngine.h> | 
|  |  | 
|  | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
|  | #pragma clang diagnostic pop // ignored "-Wconversion" | 
|  |  | 
|  | #include <android-base/properties.h> | 
|  | #include <ui/DebugUtils.h> | 
|  | #include <ui/HdrCapabilities.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include "TracedOrdinal.h" | 
|  |  | 
|  | using aidl::android::hardware::graphics::composer3::Composition; | 
|  |  | 
|  | namespace android::compositionengine { | 
|  |  | 
|  | Output::~Output() = default; | 
|  |  | 
|  | namespace impl { | 
|  | using CompositionStrategyPredictionState = | 
|  | OutputCompositionState::CompositionStrategyPredictionState; | 
|  | namespace { | 
|  |  | 
|  | template <typename T> | 
|  | class Reversed { | 
|  | public: | 
|  | explicit Reversed(const T& container) : mContainer(container) {} | 
|  | auto begin() { return mContainer.rbegin(); } | 
|  | auto end() { return mContainer.rend(); } | 
|  |  | 
|  | private: | 
|  | const T& mContainer; | 
|  | }; | 
|  |  | 
|  | // Helper for enumerating over a container in reverse order | 
|  | template <typename T> | 
|  | Reversed<T> reversed(const T& c) { | 
|  | return Reversed<T>(c); | 
|  | } | 
|  |  | 
|  | struct ScaleVector { | 
|  | float x; | 
|  | float y; | 
|  | }; | 
|  |  | 
|  | // Returns a ScaleVector (x, y) such that from.scale(x, y) = to', | 
|  | // where to' will have the same size as "to". In the case where "from" and "to" | 
|  | // start at the origin to'=to. | 
|  | ScaleVector getScale(const Rect& from, const Rect& to) { | 
|  | return {.x = static_cast<float>(to.width()) / from.width(), | 
|  | .y = static_cast<float>(to.height()) / from.height()}; | 
|  | } | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | std::shared_ptr<Output> createOutput( | 
|  | const compositionengine::CompositionEngine& compositionEngine) { | 
|  | return createOutputTemplated<Output>(compositionEngine); | 
|  | } | 
|  |  | 
|  | Output::~Output() = default; | 
|  |  | 
|  | bool Output::isValid() const { | 
|  | return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface && | 
|  | mRenderSurface->isValid(); | 
|  | } | 
|  |  | 
|  | std::optional<DisplayId> Output::getDisplayId() const { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | const std::string& Output::getName() const { | 
|  | return mName; | 
|  | } | 
|  |  | 
|  | void Output::setName(const std::string& name) { | 
|  | mName = name; | 
|  | auto displayIdOpt = getDisplayId(); | 
|  | mNamePlusId = displayIdOpt ? base::StringPrintf("%s (%s)", mName.c_str(), | 
|  | to_string(*displayIdOpt).c_str()) | 
|  | : mName; | 
|  | } | 
|  |  | 
|  | void Output::setCompositionEnabled(bool enabled) { | 
|  | auto& outputState = editState(); | 
|  | if (outputState.isEnabled == enabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | outputState.isEnabled = enabled; | 
|  | dirtyEntireOutput(); | 
|  | } | 
|  |  | 
|  | void Output::setLayerCachingEnabled(bool enabled) { | 
|  | if (enabled == (mPlanner != nullptr)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (enabled) { | 
|  | mPlanner = std::make_unique<planner::Planner>(getCompositionEngine().getRenderEngine()); | 
|  | if (mRenderSurface) { | 
|  | mPlanner->setDisplaySize(mRenderSurface->getSize()); | 
|  | } | 
|  | } else { | 
|  | mPlanner.reset(); | 
|  | } | 
|  |  | 
|  | for (auto* outputLayer : getOutputLayersOrderedByZ()) { | 
|  | if (!outputLayer) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | outputLayer->editState().overrideInfo = {}; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Output::setLayerCachingTexturePoolEnabled(bool enabled) { | 
|  | if (mPlanner) { | 
|  | mPlanner->setTexturePoolEnabled(enabled); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Output::setProjection(ui::Rotation orientation, const Rect& layerStackSpaceRect, | 
|  | const Rect& orientedDisplaySpaceRect) { | 
|  | auto& outputState = editState(); | 
|  |  | 
|  | outputState.displaySpace.setOrientation(orientation); | 
|  | LOG_FATAL_IF(outputState.displaySpace.getBoundsAsRect() == Rect::INVALID_RECT, | 
|  | "The display bounds are unknown."); | 
|  |  | 
|  | // Compute orientedDisplaySpace | 
|  | ui::Size orientedSize = outputState.displaySpace.getBounds(); | 
|  | if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) { | 
|  | std::swap(orientedSize.width, orientedSize.height); | 
|  | } | 
|  | outputState.orientedDisplaySpace.setBounds(orientedSize); | 
|  | outputState.orientedDisplaySpace.setContent(orientedDisplaySpaceRect); | 
|  |  | 
|  | // Compute displaySpace.content | 
|  | const uint32_t transformOrientationFlags = ui::Transform::toRotationFlags(orientation); | 
|  | ui::Transform rotation; | 
|  | if (transformOrientationFlags != ui::Transform::ROT_INVALID) { | 
|  | const auto displaySize = outputState.displaySpace.getBoundsAsRect(); | 
|  | rotation.set(transformOrientationFlags, displaySize.width(), displaySize.height()); | 
|  | } | 
|  | outputState.displaySpace.setContent(rotation.transform(orientedDisplaySpaceRect)); | 
|  |  | 
|  | // Compute framebufferSpace | 
|  | outputState.framebufferSpace.setOrientation(orientation); | 
|  | LOG_FATAL_IF(outputState.framebufferSpace.getBoundsAsRect() == Rect::INVALID_RECT, | 
|  | "The framebuffer bounds are unknown."); | 
|  | const auto scale = getScale(outputState.displaySpace.getBoundsAsRect(), | 
|  | outputState.framebufferSpace.getBoundsAsRect()); | 
|  | outputState.framebufferSpace.setContent( | 
|  | outputState.displaySpace.getContent().scale(scale.x, scale.y)); | 
|  |  | 
|  | // Compute layerStackSpace | 
|  | outputState.layerStackSpace.setContent(layerStackSpaceRect); | 
|  | outputState.layerStackSpace.setBounds( | 
|  | ui::Size(layerStackSpaceRect.getWidth(), layerStackSpaceRect.getHeight())); | 
|  |  | 
|  | outputState.transform = outputState.layerStackSpace.getTransform(outputState.displaySpace); | 
|  | outputState.needsFiltering = outputState.transform.needsBilinearFiltering(); | 
|  | dirtyEntireOutput(); | 
|  | } | 
|  |  | 
|  | void Output::setNextBrightness(float brightness) { | 
|  | editState().displayBrightness = brightness; | 
|  | } | 
|  |  | 
|  | void Output::setDisplaySize(const ui::Size& size) { | 
|  | mRenderSurface->setDisplaySize(size); | 
|  |  | 
|  | auto& state = editState(); | 
|  |  | 
|  | // Update framebuffer space | 
|  | const ui::Size newBounds(size); | 
|  | state.framebufferSpace.setBounds(newBounds); | 
|  |  | 
|  | // Update display space | 
|  | state.displaySpace.setBounds(newBounds); | 
|  | state.transform = state.layerStackSpace.getTransform(state.displaySpace); | 
|  |  | 
|  | // Update oriented display space | 
|  | const auto orientation = state.displaySpace.getOrientation(); | 
|  | ui::Size orientedSize = size; | 
|  | if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) { | 
|  | std::swap(orientedSize.width, orientedSize.height); | 
|  | } | 
|  | const ui::Size newOrientedBounds(orientedSize); | 
|  | state.orientedDisplaySpace.setBounds(newOrientedBounds); | 
|  |  | 
|  | if (mPlanner) { | 
|  | mPlanner->setDisplaySize(size); | 
|  | } | 
|  |  | 
|  | dirtyEntireOutput(); | 
|  | } | 
|  |  | 
|  | ui::Transform::RotationFlags Output::getTransformHint() const { | 
|  | return static_cast<ui::Transform::RotationFlags>(getState().transform.getOrientation()); | 
|  | } | 
|  |  | 
|  | void Output::setLayerFilter(ui::LayerFilter filter) { | 
|  | editState().layerFilter = filter; | 
|  | dirtyEntireOutput(); | 
|  | } | 
|  |  | 
|  | void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) { | 
|  | auto& colorTransformMatrix = editState().colorTransformMatrix; | 
|  | if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | colorTransformMatrix = *args.colorTransformMatrix; | 
|  |  | 
|  | dirtyEntireOutput(); | 
|  | } | 
|  |  | 
|  | void Output::setColorProfile(const ColorProfile& colorProfile) { | 
|  | ui::Dataspace targetDataspace = | 
|  | getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace, | 
|  | colorProfile.colorSpaceAgnosticDataspace); | 
|  |  | 
|  | auto& outputState = editState(); | 
|  | if (outputState.colorMode == colorProfile.mode && | 
|  | outputState.dataspace == colorProfile.dataspace && | 
|  | outputState.renderIntent == colorProfile.renderIntent && | 
|  | outputState.targetDataspace == targetDataspace) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | outputState.colorMode = colorProfile.mode; | 
|  | outputState.dataspace = colorProfile.dataspace; | 
|  | outputState.renderIntent = colorProfile.renderIntent; | 
|  | outputState.targetDataspace = targetDataspace; | 
|  |  | 
|  | mRenderSurface->setBufferDataspace(colorProfile.dataspace); | 
|  |  | 
|  | ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)", | 
|  | decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode, | 
|  | decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent); | 
|  |  | 
|  | dirtyEntireOutput(); | 
|  | } | 
|  |  | 
|  | void Output::setDisplayBrightness(float sdrWhitePointNits, float displayBrightnessNits) { | 
|  | auto& outputState = editState(); | 
|  | if (outputState.sdrWhitePointNits == sdrWhitePointNits && | 
|  | outputState.displayBrightnessNits == displayBrightnessNits) { | 
|  | // Nothing changed | 
|  | return; | 
|  | } | 
|  | outputState.sdrWhitePointNits = sdrWhitePointNits; | 
|  | outputState.displayBrightnessNits = displayBrightnessNits; | 
|  | dirtyEntireOutput(); | 
|  | } | 
|  |  | 
|  | void Output::dump(std::string& out) const { | 
|  | base::StringAppendF(&out, "Output \"%s\"", mName.c_str()); | 
|  | out.append("\n   Composition Output State:\n"); | 
|  |  | 
|  | dumpBase(out); | 
|  | } | 
|  |  | 
|  | void Output::dumpBase(std::string& out) const { | 
|  | dumpState(out); | 
|  | out += '\n'; | 
|  |  | 
|  | if (mDisplayColorProfile) { | 
|  | mDisplayColorProfile->dump(out); | 
|  | } else { | 
|  | out.append("    No display color profile!\n"); | 
|  | } | 
|  |  | 
|  | out += '\n'; | 
|  |  | 
|  | if (mRenderSurface) { | 
|  | mRenderSurface->dump(out); | 
|  | } else { | 
|  | out.append("    No render surface!\n"); | 
|  | } | 
|  |  | 
|  | base::StringAppendF(&out, "\n   %zu Layers\n", getOutputLayerCount()); | 
|  | for (const auto* outputLayer : getOutputLayersOrderedByZ()) { | 
|  | if (!outputLayer) { | 
|  | continue; | 
|  | } | 
|  | outputLayer->dump(out); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Output::dumpPlannerInfo(const Vector<String16>& args, std::string& out) const { | 
|  | if (!mPlanner) { | 
|  | out.append("Planner is disabled\n"); | 
|  | return; | 
|  | } | 
|  | base::StringAppendF(&out, "Planner info for display [%s]\n", mName.c_str()); | 
|  | mPlanner->dump(args, out); | 
|  | } | 
|  |  | 
|  | compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const { | 
|  | return mDisplayColorProfile.get(); | 
|  | } | 
|  |  | 
|  | void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) { | 
|  | mDisplayColorProfile = std::move(mode); | 
|  | } | 
|  |  | 
|  | const Output::ReleasedLayers& Output::getReleasedLayersForTest() const { | 
|  | return mReleasedLayers; | 
|  | } | 
|  |  | 
|  | void Output::setDisplayColorProfileForTest( | 
|  | std::unique_ptr<compositionengine::DisplayColorProfile> mode) { | 
|  | mDisplayColorProfile = std::move(mode); | 
|  | } | 
|  |  | 
|  | compositionengine::RenderSurface* Output::getRenderSurface() const { | 
|  | return mRenderSurface.get(); | 
|  | } | 
|  |  | 
|  | void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) { | 
|  | mRenderSurface = std::move(surface); | 
|  | const auto size = mRenderSurface->getSize(); | 
|  | editState().framebufferSpace.setBounds(size); | 
|  | if (mPlanner) { | 
|  | mPlanner->setDisplaySize(size); | 
|  | } | 
|  | dirtyEntireOutput(); | 
|  | } | 
|  |  | 
|  | void Output::cacheClientCompositionRequests(uint32_t cacheSize) { | 
|  | if (cacheSize == 0) { | 
|  | mClientCompositionRequestCache.reset(); | 
|  | } else { | 
|  | mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize); | 
|  | } | 
|  | }; | 
|  |  | 
|  | void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) { | 
|  | mRenderSurface = std::move(surface); | 
|  | } | 
|  |  | 
|  | Region Output::getDirtyRegion() const { | 
|  | const auto& outputState = getState(); | 
|  | return outputState.dirtyRegion.intersect(outputState.layerStackSpace.getContent()); | 
|  | } | 
|  |  | 
|  | bool Output::includesLayer(ui::LayerFilter filter) const { | 
|  | return getState().layerFilter.includes(filter); | 
|  | } | 
|  |  | 
|  | bool Output::includesLayer(const sp<LayerFE>& layerFE) const { | 
|  | const auto* layerFEState = layerFE->getCompositionState(); | 
|  | return layerFEState && includesLayer(layerFEState->outputFilter); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer( | 
|  | const sp<LayerFE>& layerFE) const { | 
|  | return impl::createOutputLayer(*this, layerFE); | 
|  | } | 
|  |  | 
|  | compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const { | 
|  | auto index = findCurrentOutputLayerForLayer(layerFE); | 
|  | return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr; | 
|  | } | 
|  |  | 
|  | std::optional<size_t> Output::findCurrentOutputLayerForLayer( | 
|  | const sp<compositionengine::LayerFE>& layer) const { | 
|  | for (size_t i = 0; i < getOutputLayerCount(); i++) { | 
|  | auto outputLayer = getOutputLayerOrderedByZByIndex(i); | 
|  | if (outputLayer && &outputLayer->getLayerFE() == layer.get()) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | void Output::setReleasedLayers(Output::ReleasedLayers&& layers) { | 
|  | mReleasedLayers = std::move(layers); | 
|  | } | 
|  |  | 
|  | void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs, | 
|  | LayerFESet& geomSnapshots) { | 
|  | ATRACE_CALL(); | 
|  | ALOGV(__FUNCTION__); | 
|  |  | 
|  | rebuildLayerStacks(refreshArgs, geomSnapshots); | 
|  | uncacheBuffers(refreshArgs.bufferIdsToUncache); | 
|  | } | 
|  |  | 
|  | void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
|  | ATRACE_FORMAT("%s for %s", __func__, mNamePlusId.c_str()); | 
|  | ALOGV(__FUNCTION__); | 
|  |  | 
|  | updateColorProfile(refreshArgs); | 
|  | updateCompositionState(refreshArgs); | 
|  | planComposition(); | 
|  | writeCompositionState(refreshArgs); | 
|  | setColorTransform(refreshArgs); | 
|  | beginFrame(); | 
|  |  | 
|  | GpuCompositionResult result; | 
|  | const bool predictCompositionStrategy = canPredictCompositionStrategy(refreshArgs); | 
|  | if (predictCompositionStrategy) { | 
|  | result = prepareFrameAsync(); | 
|  | } else { | 
|  | prepareFrame(); | 
|  | } | 
|  |  | 
|  | devOptRepaintFlash(refreshArgs); | 
|  | finishFrame(std::move(result)); | 
|  | postFramebuffer(); | 
|  | renderCachedSets(refreshArgs); | 
|  | } | 
|  |  | 
|  | void Output::uncacheBuffers(std::vector<uint64_t> const& bufferIdsToUncache) { | 
|  | if (bufferIdsToUncache.empty()) { | 
|  | return; | 
|  | } | 
|  | for (auto outputLayer : getOutputLayersOrderedByZ()) { | 
|  | outputLayer->uncacheBuffers(bufferIdsToUncache); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs, | 
|  | LayerFESet& layerFESet) { | 
|  | ATRACE_CALL(); | 
|  | ALOGV(__FUNCTION__); | 
|  |  | 
|  | auto& outputState = editState(); | 
|  |  | 
|  | // Do nothing if this output is not enabled or there is no need to perform this update | 
|  | if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Process the layers to determine visibility and coverage | 
|  | compositionengine::Output::CoverageState coverage{layerFESet}; | 
|  | collectVisibleLayers(refreshArgs, coverage); | 
|  |  | 
|  | // Compute the resulting coverage for this output, and store it for later | 
|  | const ui::Transform& tr = outputState.transform; | 
|  | Region undefinedRegion{outputState.displaySpace.getBoundsAsRect()}; | 
|  | undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers)); | 
|  |  | 
|  | outputState.undefinedRegion = undefinedRegion; | 
|  | outputState.dirtyRegion.orSelf(coverage.dirtyRegion); | 
|  | } | 
|  |  | 
|  | void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs, | 
|  | compositionengine::Output::CoverageState& coverage) { | 
|  | // Evaluate the layers from front to back to determine what is visible. This | 
|  | // also incrementally calculates the coverage information for each layer as | 
|  | // well as the entire output. | 
|  | for (auto layer : reversed(refreshArgs.layers)) { | 
|  | // Incrementally process the coverage for each layer | 
|  | ensureOutputLayerIfVisible(layer, coverage); | 
|  |  | 
|  | // TODO(b/121291683): Stop early if the output is completely covered and | 
|  | // no more layers could even be visible underneath the ones on top. | 
|  | } | 
|  |  | 
|  | setReleasedLayers(refreshArgs); | 
|  |  | 
|  | finalizePendingOutputLayers(); | 
|  | } | 
|  |  | 
|  | void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE, | 
|  | compositionengine::Output::CoverageState& coverage) { | 
|  | // Ensure we have a snapshot of the basic geometry layer state. Limit the | 
|  | // snapshots to once per frame for each candidate layer, as layers may | 
|  | // appear on multiple outputs. | 
|  | if (!coverage.latchedLayers.count(layerFE)) { | 
|  | coverage.latchedLayers.insert(layerFE); | 
|  | } | 
|  |  | 
|  | // Only consider the layers on this output | 
|  | if (!includesLayer(layerFE)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Obtain a read-only pointer to the front-end layer state | 
|  | const auto* layerFEState = layerFE->getCompositionState(); | 
|  | if (CC_UNLIKELY(!layerFEState)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // handle hidden surfaces by setting the visible region to empty | 
|  | if (CC_UNLIKELY(!layerFEState->isVisible)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * opaqueRegion: area of a surface that is fully opaque. | 
|  | */ | 
|  | Region opaqueRegion; | 
|  |  | 
|  | /* | 
|  | * visibleRegion: area of a surface that is visible on screen and not fully | 
|  | * transparent. This is essentially the layer's footprint minus the opaque | 
|  | * regions above it. Areas covered by a translucent surface are considered | 
|  | * visible. | 
|  | */ | 
|  | Region visibleRegion; | 
|  |  | 
|  | /* | 
|  | * coveredRegion: area of a surface that is covered by all visible regions | 
|  | * above it (which includes the translucent areas). | 
|  | */ | 
|  | Region coveredRegion; | 
|  |  | 
|  | /* | 
|  | * transparentRegion: area of a surface that is hinted to be completely | 
|  | * transparent. | 
|  | * This is used to tell when the layer has no visible non-transparent | 
|  | * regions and can be removed from the layer list. It does not affect the | 
|  | * visibleRegion of this layer or any layers beneath it. The hint may not | 
|  | * be correct if apps don't respect the SurfaceView restrictions (which, | 
|  | * sadly, some don't). | 
|  | * | 
|  | * In addition, it is used on DISPLAY_DECORATION layers to specify the | 
|  | * blockingRegion, allowing the DPU to skip it to save power. Once we have | 
|  | * hardware that supports a blockingRegion on frames with AFBC, it may be | 
|  | * useful to use this for other layers, too, so long as we can prevent | 
|  | * regressions on b/7179570. | 
|  | */ | 
|  | Region transparentRegion; | 
|  |  | 
|  | /* | 
|  | * shadowRegion: Region cast by the layer's shadow. | 
|  | */ | 
|  | Region shadowRegion; | 
|  |  | 
|  | const ui::Transform& tr = layerFEState->geomLayerTransform; | 
|  |  | 
|  | // Get the visible region | 
|  | // TODO(b/121291683): Is it worth creating helper methods on LayerFEState | 
|  | // for computations like this? | 
|  | const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds)); | 
|  | visibleRegion.set(visibleRect); | 
|  |  | 
|  | if (layerFEState->shadowRadius > 0.0f) { | 
|  | // if the layer casts a shadow, offset the layers visible region and | 
|  | // calculate the shadow region. | 
|  | const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f); | 
|  | Rect visibleRectWithShadows(visibleRect); | 
|  | visibleRectWithShadows.inset(inset, inset, inset, inset); | 
|  | visibleRegion.set(visibleRectWithShadows); | 
|  | shadowRegion = visibleRegion.subtract(visibleRect); | 
|  | } | 
|  |  | 
|  | if (visibleRegion.isEmpty()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Remove the transparent area from the visible region | 
|  | if (!layerFEState->isOpaque) { | 
|  | if (tr.preserveRects()) { | 
|  | // Clip the transparent region to geomLayerBounds first | 
|  | // The transparent region may be influenced by applications, for | 
|  | // instance, by overriding ViewGroup#gatherTransparentRegion with a | 
|  | // custom view. Once the layer stack -> display mapping is known, we | 
|  | // must guard against very wrong inputs to prevent underflow or | 
|  | // overflow errors. We do this here by constraining the transparent | 
|  | // region to be within the pre-transform layer bounds, since the | 
|  | // layer bounds are expected to play nicely with the full | 
|  | // transform. | 
|  | const Region clippedTransparentRegionHint = | 
|  | layerFEState->transparentRegionHint.intersect( | 
|  | Rect(layerFEState->geomLayerBounds)); | 
|  |  | 
|  | if (clippedTransparentRegionHint.isEmpty()) { | 
|  | if (!layerFEState->transparentRegionHint.isEmpty()) { | 
|  | ALOGD("Layer: %s had an out of bounds transparent region", | 
|  | layerFE->getDebugName()); | 
|  | layerFEState->transparentRegionHint.dump("transparentRegionHint"); | 
|  | } | 
|  | transparentRegion.clear(); | 
|  | } else { | 
|  | transparentRegion = tr.transform(clippedTransparentRegionHint); | 
|  | } | 
|  | } else { | 
|  | // transformation too complex, can't do the | 
|  | // transparent region optimization. | 
|  | transparentRegion.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // compute the opaque region | 
|  | const auto layerOrientation = tr.getOrientation(); | 
|  | if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) { | 
|  | // If we one of the simple category of transforms (0/90/180/270 rotation | 
|  | // + any flip), then the opaque region is the layer's footprint. | 
|  | // Otherwise we don't try and compute the opaque region since there may | 
|  | // be errors at the edges, and we treat the entire layer as | 
|  | // translucent. | 
|  | opaqueRegion.set(visibleRect); | 
|  | } | 
|  |  | 
|  | // Clip the covered region to the visible region | 
|  | coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion); | 
|  |  | 
|  | // Update accumAboveCoveredLayers for next (lower) layer | 
|  | coverage.aboveCoveredLayers.orSelf(visibleRegion); | 
|  |  | 
|  | // subtract the opaque region covered by the layers above us | 
|  | visibleRegion.subtractSelf(coverage.aboveOpaqueLayers); | 
|  |  | 
|  | if (visibleRegion.isEmpty()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Get coverage information for the layer as previously displayed, | 
|  | // also taking over ownership from mOutputLayersorderedByZ. | 
|  | auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE); | 
|  | auto prevOutputLayer = | 
|  | prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr; | 
|  |  | 
|  | //  Get coverage information for the layer as previously displayed | 
|  | // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h | 
|  | const Region kEmptyRegion; | 
|  | const Region& oldVisibleRegion = | 
|  | prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion; | 
|  | const Region& oldCoveredRegion = | 
|  | prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion; | 
|  |  | 
|  | // compute this layer's dirty region | 
|  | Region dirty; | 
|  | if (layerFEState->contentDirty) { | 
|  | // we need to invalidate the whole region | 
|  | dirty = visibleRegion; | 
|  | // as well, as the old visible region | 
|  | dirty.orSelf(oldVisibleRegion); | 
|  | } else { | 
|  | /* compute the exposed region: | 
|  | *   the exposed region consists of two components: | 
|  | *   1) what's VISIBLE now and was COVERED before | 
|  | *   2) what's EXPOSED now less what was EXPOSED before | 
|  | * | 
|  | * note that (1) is conservative, we start with the whole visible region | 
|  | * but only keep what used to be covered by something -- which mean it | 
|  | * may have been exposed. | 
|  | * | 
|  | * (2) handles areas that were not covered by anything but got exposed | 
|  | * because of a resize. | 
|  | * | 
|  | */ | 
|  | const Region newExposed = visibleRegion - coveredRegion; | 
|  | const Region oldExposed = oldVisibleRegion - oldCoveredRegion; | 
|  | dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed); | 
|  | } | 
|  | dirty.subtractSelf(coverage.aboveOpaqueLayers); | 
|  |  | 
|  | // accumulate to the screen dirty region | 
|  | coverage.dirtyRegion.orSelf(dirty); | 
|  |  | 
|  | // Update accumAboveOpaqueLayers for next (lower) layer | 
|  | coverage.aboveOpaqueLayers.orSelf(opaqueRegion); | 
|  |  | 
|  | // Compute the visible non-transparent region | 
|  | Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion); | 
|  |  | 
|  | // Perform the final check to see if this layer is visible on this output | 
|  | // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below) | 
|  | const auto& outputState = getState(); | 
|  | Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion)); | 
|  | drawRegion.andSelf(outputState.displaySpace.getBoundsAsRect()); | 
|  | if (drawRegion.isEmpty()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion); | 
|  |  | 
|  | // The layer is visible. Either reuse the existing outputLayer if we have | 
|  | // one, or create a new one if we do not. | 
|  | auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE); | 
|  |  | 
|  | // Store the layer coverage information into the layer state as some of it | 
|  | // is useful later. | 
|  | auto& outputLayerState = result->editState(); | 
|  | outputLayerState.visibleRegion = visibleRegion; | 
|  | outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion; | 
|  | outputLayerState.coveredRegion = coveredRegion; | 
|  | outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform( | 
|  | visibleNonShadowRegion.intersect(outputState.layerStackSpace.getContent())); | 
|  | outputLayerState.shadowRegion = shadowRegion; | 
|  | outputLayerState.outputSpaceBlockingRegionHint = | 
|  | layerFEState->compositionType == Composition::DISPLAY_DECORATION | 
|  | ? outputState.transform.transform( | 
|  | transparentRegion.intersect(outputState.layerStackSpace.getContent())) | 
|  | : Region(); | 
|  | } | 
|  |  | 
|  | void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) { | 
|  | // The base class does nothing with this call. | 
|  | } | 
|  |  | 
|  | void Output::updateCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
|  | ATRACE_CALL(); | 
|  | ALOGV(__FUNCTION__); | 
|  |  | 
|  | if (!getState().isEnabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition(); | 
|  | bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr; | 
|  |  | 
|  | for (auto* layer : getOutputLayersOrderedByZ()) { | 
|  | layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame, | 
|  | refreshArgs.devOptForceClientComposition || | 
|  | forceClientComposition, | 
|  | refreshArgs.internalDisplayRotationFlags); | 
|  |  | 
|  | if (mLayerRequestingBackgroundBlur == layer) { | 
|  | forceClientComposition = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | updateCompositionStateForBorder(refreshArgs); | 
|  | } | 
|  |  | 
|  | void Output::updateCompositionStateForBorder( | 
|  | const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
|  | std::unordered_map<int32_t, const Region*> layerVisibleRegionMap; | 
|  | // Store a map of layerId to their computed visible region. | 
|  | for (auto* layer : getOutputLayersOrderedByZ()) { | 
|  | int layerId = (layer->getLayerFE()).getSequence(); | 
|  | layerVisibleRegionMap[layerId] = &((layer->getState()).visibleRegion); | 
|  | } | 
|  | OutputCompositionState& outputCompositionState = editState(); | 
|  | outputCompositionState.borderInfoList.clear(); | 
|  | bool clientComposeTopLayer = false; | 
|  | for (const auto& borderInfo : refreshArgs.borderInfoList) { | 
|  | renderengine::BorderRenderInfo info; | 
|  | for (const auto& id : borderInfo.layerIds) { | 
|  | info.combinedRegion.orSelf(*(layerVisibleRegionMap[id])); | 
|  | } | 
|  |  | 
|  | if (!info.combinedRegion.isEmpty()) { | 
|  | info.width = borderInfo.width; | 
|  | info.color = borderInfo.color; | 
|  | outputCompositionState.borderInfoList.emplace_back(std::move(info)); | 
|  | clientComposeTopLayer = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // In this situation we must client compose the top layer instead of using hwc | 
|  | // because we want to draw the border above all else. | 
|  | // This could potentially cause a bit of a performance regression if the top | 
|  | // layer would have been rendered using hwc originally. | 
|  | // TODO(b/227656283): Measure system's performance before enabling the border feature | 
|  | if (clientComposeTopLayer) { | 
|  | auto topLayer = getOutputLayerOrderedByZByIndex(getOutputLayerCount() - 1); | 
|  | (topLayer->editState()).forceClientComposition = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Output::planComposition() { | 
|  | if (!mPlanner || !getState().isEnabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ATRACE_CALL(); | 
|  | ALOGV(__FUNCTION__); | 
|  |  | 
|  | mPlanner->plan(getOutputLayersOrderedByZ()); | 
|  | } | 
|  |  | 
|  | void Output::writeCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
|  | ATRACE_CALL(); | 
|  | ALOGV(__FUNCTION__); | 
|  |  | 
|  | if (!getState().isEnabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | editState().earliestPresentTime = refreshArgs.earliestPresentTime; | 
|  | editState().previousPresentFence = refreshArgs.previousPresentFence; | 
|  | editState().expectedPresentTime = refreshArgs.expectedPresentTime; | 
|  |  | 
|  | compositionengine::OutputLayer* peekThroughLayer = nullptr; | 
|  | sp<GraphicBuffer> previousOverride = nullptr; | 
|  | bool includeGeometry = refreshArgs.updatingGeometryThisFrame; | 
|  | uint32_t z = 0; | 
|  | bool overrideZ = false; | 
|  | uint64_t outputLayerHash = 0; | 
|  | for (auto* layer : getOutputLayersOrderedByZ()) { | 
|  | if (layer == peekThroughLayer) { | 
|  | // No longer needed, although it should not show up again, so | 
|  | // resetting it is not truly needed either. | 
|  | peekThroughLayer = nullptr; | 
|  |  | 
|  | // peekThroughLayer was already drawn ahead of its z order. | 
|  | continue; | 
|  | } | 
|  | bool skipLayer = false; | 
|  | const auto& overrideInfo = layer->getState().overrideInfo; | 
|  | if (overrideInfo.buffer != nullptr) { | 
|  | if (previousOverride && overrideInfo.buffer->getBuffer() == previousOverride) { | 
|  | ALOGV("Skipping redundant buffer"); | 
|  | skipLayer = true; | 
|  | } else { | 
|  | // First layer with the override buffer. | 
|  | if (overrideInfo.peekThroughLayer) { | 
|  | peekThroughLayer = overrideInfo.peekThroughLayer; | 
|  |  | 
|  | // Draw peekThroughLayer first. | 
|  | overrideZ = true; | 
|  | includeGeometry = true; | 
|  | constexpr bool isPeekingThrough = true; | 
|  | peekThroughLayer->writeStateToHWC(includeGeometry, false, z++, overrideZ, | 
|  | isPeekingThrough); | 
|  | outputLayerHash ^= android::hashCombine( | 
|  | reinterpret_cast<uint64_t>(&peekThroughLayer->getLayerFE()), | 
|  | z, includeGeometry, overrideZ, isPeekingThrough, | 
|  | peekThroughLayer->requiresClientComposition()); | 
|  | } | 
|  |  | 
|  | previousOverride = overrideInfo.buffer->getBuffer(); | 
|  | } | 
|  | } | 
|  |  | 
|  | constexpr bool isPeekingThrough = false; | 
|  | layer->writeStateToHWC(includeGeometry, skipLayer, z++, overrideZ, isPeekingThrough); | 
|  | if (!skipLayer) { | 
|  | outputLayerHash ^= android::hashCombine( | 
|  | reinterpret_cast<uint64_t>(&layer->getLayerFE()), | 
|  | z, includeGeometry, overrideZ, isPeekingThrough, | 
|  | layer->requiresClientComposition()); | 
|  | } | 
|  | } | 
|  | editState().outputLayerHash = outputLayerHash; | 
|  | } | 
|  |  | 
|  | compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const { | 
|  | compositionengine::OutputLayer* layerRequestingBgComposition = nullptr; | 
|  | for (auto* layer : getOutputLayersOrderedByZ()) { | 
|  | auto* compState = layer->getLayerFE().getCompositionState(); | 
|  |  | 
|  | // If any layer has a sideband stream, we will disable blurs. In that case, we don't | 
|  | // want to force client composition because of the blur. | 
|  | if (compState->sidebandStream != nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | if (compState->isOpaque) { | 
|  | continue; | 
|  | } | 
|  | if (compState->backgroundBlurRadius > 0 || compState->blurRegions.size() > 0) { | 
|  | layerRequestingBgComposition = layer; | 
|  | } | 
|  | } | 
|  | return layerRequestingBgComposition; | 
|  | } | 
|  |  | 
|  | void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
|  | setColorProfile(pickColorProfile(refreshArgs)); | 
|  | } | 
|  |  | 
|  | // Returns a data space that fits all visible layers.  The returned data space | 
|  | // can only be one of | 
|  | //  - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced) | 
|  | //  - Dataspace::DISPLAY_P3 | 
|  | //  - Dataspace::DISPLAY_BT2020 | 
|  | // The returned HDR data space is one of | 
|  | //  - Dataspace::UNKNOWN | 
|  | //  - Dataspace::BT2020_HLG | 
|  | //  - Dataspace::BT2020_PQ | 
|  | ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace, | 
|  | bool* outIsHdrClientComposition) const { | 
|  | ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB; | 
|  | *outHdrDataSpace = ui::Dataspace::UNKNOWN; | 
|  |  | 
|  | // An Output's layers may be stale when it is disabled. As a consequence, the layers returned by | 
|  | // getOutputLayersOrderedByZ may not be in a valid state and it is not safe to access their | 
|  | // properties. Return a default dataspace value in this case. | 
|  | if (!getState().isEnabled) { | 
|  | return ui::Dataspace::V0_SRGB; | 
|  | } | 
|  |  | 
|  | for (const auto* layer : getOutputLayersOrderedByZ()) { | 
|  | switch (layer->getLayerFE().getCompositionState()->dataspace) { | 
|  | case ui::Dataspace::V0_SCRGB: | 
|  | case ui::Dataspace::V0_SCRGB_LINEAR: | 
|  | case ui::Dataspace::BT2020: | 
|  | case ui::Dataspace::BT2020_ITU: | 
|  | case ui::Dataspace::BT2020_LINEAR: | 
|  | case ui::Dataspace::DISPLAY_BT2020: | 
|  | bestDataSpace = ui::Dataspace::DISPLAY_BT2020; | 
|  | break; | 
|  | case ui::Dataspace::DISPLAY_P3: | 
|  | bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
|  | break; | 
|  | case ui::Dataspace::BT2020_PQ: | 
|  | case ui::Dataspace::BT2020_ITU_PQ: | 
|  | bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
|  | *outHdrDataSpace = ui::Dataspace::BT2020_PQ; | 
|  | *outIsHdrClientComposition = | 
|  | layer->getLayerFE().getCompositionState()->forceClientComposition; | 
|  | break; | 
|  | case ui::Dataspace::BT2020_HLG: | 
|  | case ui::Dataspace::BT2020_ITU_HLG: | 
|  | bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
|  | // When there's mixed PQ content and HLG content, we set the HDR | 
|  | // data space to be BT2020_PQ and convert HLG to PQ. | 
|  | if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) { | 
|  | *outHdrDataSpace = ui::Dataspace::BT2020_HLG; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return bestDataSpace; | 
|  | } | 
|  |  | 
|  | compositionengine::Output::ColorProfile Output::pickColorProfile( | 
|  | const compositionengine::CompositionRefreshArgs& refreshArgs) const { | 
|  | if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) { | 
|  | return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN, | 
|  | ui::RenderIntent::COLORIMETRIC, | 
|  | refreshArgs.colorSpaceAgnosticDataspace}; | 
|  | } | 
|  |  | 
|  | ui::Dataspace hdrDataSpace; | 
|  | bool isHdrClientComposition = false; | 
|  | ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition); | 
|  |  | 
|  | switch (refreshArgs.forceOutputColorMode) { | 
|  | case ui::ColorMode::SRGB: | 
|  | bestDataSpace = ui::Dataspace::V0_SRGB; | 
|  | break; | 
|  | case ui::ColorMode::DISPLAY_P3: | 
|  | bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // respect hdrDataSpace only when there is no legacy HDR support | 
|  | const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN && | 
|  | !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition; | 
|  | if (isHdr) { | 
|  | bestDataSpace = hdrDataSpace; | 
|  | } | 
|  |  | 
|  | ui::RenderIntent intent; | 
|  | switch (refreshArgs.outputColorSetting) { | 
|  | case OutputColorSetting::kManaged: | 
|  | case OutputColorSetting::kUnmanaged: | 
|  | intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC | 
|  | : ui::RenderIntent::COLORIMETRIC; | 
|  | break; | 
|  | case OutputColorSetting::kEnhanced: | 
|  | intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE; | 
|  | break; | 
|  | default: // vendor display color setting | 
|  | intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ui::ColorMode outMode; | 
|  | ui::Dataspace outDataSpace; | 
|  | ui::RenderIntent outRenderIntent; | 
|  | mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode, | 
|  | &outRenderIntent); | 
|  |  | 
|  | return ColorProfile{outMode, outDataSpace, outRenderIntent, | 
|  | refreshArgs.colorSpaceAgnosticDataspace}; | 
|  | } | 
|  |  | 
|  | void Output::beginFrame() { | 
|  | auto& outputState = editState(); | 
|  | const bool dirty = !getDirtyRegion().isEmpty(); | 
|  | const bool empty = getOutputLayerCount() == 0; | 
|  | const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers; | 
|  |  | 
|  | // If nothing has changed (!dirty), don't recompose. | 
|  | // If something changed, but we don't currently have any visible layers, | 
|  | //   and didn't when we last did a composition, then skip it this time. | 
|  | // The second rule does two things: | 
|  | // - When all layers are removed from a display, we'll emit one black | 
|  | //   frame, then nothing more until we get new layers. | 
|  | // - When a display is created with a private layer stack, we won't | 
|  | //   emit any black frames until a layer is added to the layer stack. | 
|  | mMustRecompose = dirty && !(empty && wasEmpty); | 
|  |  | 
|  | const char flagPrefix[] = {'-', '+'}; | 
|  | static_cast<void>(flagPrefix); | 
|  | ALOGV("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __func__, | 
|  | mMustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty], | 
|  | flagPrefix[empty], flagPrefix[wasEmpty]); | 
|  |  | 
|  | mRenderSurface->beginFrame(mMustRecompose); | 
|  |  | 
|  | if (mMustRecompose) { | 
|  | outputState.lastCompositionHadVisibleLayers = !empty; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Output::prepareFrame() { | 
|  | ATRACE_CALL(); | 
|  | ALOGV(__FUNCTION__); | 
|  |  | 
|  | auto& outputState = editState(); | 
|  | if (!outputState.isEnabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::optional<android::HWComposer::DeviceRequestedChanges> changes; | 
|  | bool success = chooseCompositionStrategy(&changes); | 
|  | resetCompositionStrategy(); | 
|  | outputState.strategyPrediction = CompositionStrategyPredictionState::DISABLED; | 
|  | outputState.previousDeviceRequestedChanges = changes; | 
|  | outputState.previousDeviceRequestedSuccess = success; | 
|  | if (success) { | 
|  | applyCompositionStrategy(changes); | 
|  | } | 
|  | finishPrepareFrame(); | 
|  | } | 
|  |  | 
|  | std::future<bool> Output::chooseCompositionStrategyAsync( | 
|  | std::optional<android::HWComposer::DeviceRequestedChanges>* changes) { | 
|  | return mHwComposerAsyncWorker->send( | 
|  | [&, changes]() { return chooseCompositionStrategy(changes); }); | 
|  | } | 
|  |  | 
|  | GpuCompositionResult Output::prepareFrameAsync() { | 
|  | ATRACE_CALL(); | 
|  | ALOGV(__FUNCTION__); | 
|  | auto& state = editState(); | 
|  | const auto& previousChanges = state.previousDeviceRequestedChanges; | 
|  | std::optional<android::HWComposer::DeviceRequestedChanges> changes; | 
|  | resetCompositionStrategy(); | 
|  | auto hwcResult = chooseCompositionStrategyAsync(&changes); | 
|  | if (state.previousDeviceRequestedSuccess) { | 
|  | applyCompositionStrategy(previousChanges); | 
|  | } | 
|  | finishPrepareFrame(); | 
|  |  | 
|  | base::unique_fd bufferFence; | 
|  | std::shared_ptr<renderengine::ExternalTexture> buffer; | 
|  | updateProtectedContentState(); | 
|  | const bool dequeueSucceeded = dequeueRenderBuffer(&bufferFence, &buffer); | 
|  | GpuCompositionResult compositionResult; | 
|  | if (dequeueSucceeded) { | 
|  | std::optional<base::unique_fd> optFd = | 
|  | composeSurfaces(Region::INVALID_REGION, buffer, bufferFence); | 
|  | if (optFd) { | 
|  | compositionResult.fence = std::move(*optFd); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto chooseCompositionSuccess = hwcResult.get(); | 
|  | const bool predictionSucceeded = dequeueSucceeded && changes == previousChanges; | 
|  | state.strategyPrediction = predictionSucceeded ? CompositionStrategyPredictionState::SUCCESS | 
|  | : CompositionStrategyPredictionState::FAIL; | 
|  | if (!predictionSucceeded) { | 
|  | ATRACE_NAME("CompositionStrategyPredictionMiss"); | 
|  | resetCompositionStrategy(); | 
|  | if (chooseCompositionSuccess) { | 
|  | applyCompositionStrategy(changes); | 
|  | } | 
|  | finishPrepareFrame(); | 
|  | // Track the dequeued buffer to reuse so we don't need to dequeue another one. | 
|  | compositionResult.buffer = buffer; | 
|  | } else { | 
|  | ATRACE_NAME("CompositionStrategyPredictionHit"); | 
|  | } | 
|  | state.previousDeviceRequestedChanges = std::move(changes); | 
|  | state.previousDeviceRequestedSuccess = chooseCompositionSuccess; | 
|  | return compositionResult; | 
|  | } | 
|  |  | 
|  | void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
|  | if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (getState().isEnabled) { | 
|  | if (const auto dirtyRegion = getDirtyRegion(); !dirtyRegion.isEmpty()) { | 
|  | base::unique_fd bufferFence; | 
|  | std::shared_ptr<renderengine::ExternalTexture> buffer; | 
|  | updateProtectedContentState(); | 
|  | dequeueRenderBuffer(&bufferFence, &buffer); | 
|  | static_cast<void>(composeSurfaces(dirtyRegion, buffer, bufferFence)); | 
|  | mRenderSurface->queueBuffer(base::unique_fd()); | 
|  | } | 
|  | } | 
|  |  | 
|  | postFramebuffer(); | 
|  |  | 
|  | std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay); | 
|  |  | 
|  | prepareFrame(); | 
|  | } | 
|  |  | 
|  | void Output::finishFrame(GpuCompositionResult&& result) { | 
|  | ATRACE_CALL(); | 
|  | ALOGV(__FUNCTION__); | 
|  | const auto& outputState = getState(); | 
|  | if (!outputState.isEnabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::optional<base::unique_fd> optReadyFence; | 
|  | std::shared_ptr<renderengine::ExternalTexture> buffer; | 
|  | base::unique_fd bufferFence; | 
|  | if (outputState.strategyPrediction == CompositionStrategyPredictionState::SUCCESS) { | 
|  | optReadyFence = std::move(result.fence); | 
|  | } else { | 
|  | if (result.bufferAvailable()) { | 
|  | buffer = std::move(result.buffer); | 
|  | bufferFence = std::move(result.fence); | 
|  | } else { | 
|  | updateProtectedContentState(); | 
|  | if (!dequeueRenderBuffer(&bufferFence, &buffer)) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | // Repaint the framebuffer (if needed), getting the optional fence for when | 
|  | // the composition completes. | 
|  | optReadyFence = composeSurfaces(Region::INVALID_REGION, buffer, bufferFence); | 
|  | } | 
|  | if (!optReadyFence) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isPowerHintSessionEnabled()) { | 
|  | // get fence end time to know when gpu is complete in display | 
|  | setHintSessionGpuFence( | 
|  | std::make_unique<FenceTime>(sp<Fence>::make(dup(optReadyFence->get())))); | 
|  | } | 
|  | // swap buffers (presentation) | 
|  | mRenderSurface->queueBuffer(std::move(*optReadyFence)); | 
|  | } | 
|  |  | 
|  | void Output::updateProtectedContentState() { | 
|  | const auto& outputState = getState(); | 
|  | auto& renderEngine = getCompositionEngine().getRenderEngine(); | 
|  | const bool supportsProtectedContent = renderEngine.supportsProtectedContent(); | 
|  |  | 
|  | // If we the display is secure, protected content support is enabled, and at | 
|  | // least one layer has protected content, we need to use a secure back | 
|  | // buffer. | 
|  | if (outputState.isSecure && supportsProtectedContent) { | 
|  | auto layers = getOutputLayersOrderedByZ(); | 
|  | bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) { | 
|  | return layer->getLayerFE().getCompositionState()->hasProtectedContent; | 
|  | }); | 
|  | if (needsProtected != mRenderSurface->isProtected()) { | 
|  | mRenderSurface->setProtected(needsProtected); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Output::dequeueRenderBuffer(base::unique_fd* bufferFence, | 
|  | std::shared_ptr<renderengine::ExternalTexture>* tex) { | 
|  | const auto& outputState = getState(); | 
|  |  | 
|  | // If we aren't doing client composition on this output, but do have a | 
|  | // flipClientTarget request for this frame on this output, we still need to | 
|  | // dequeue a buffer. | 
|  | if (outputState.usesClientComposition || outputState.flipClientTarget) { | 
|  | *tex = mRenderSurface->dequeueBuffer(bufferFence); | 
|  | if (*tex == nullptr) { | 
|  | ALOGW("Dequeuing buffer for display [%s] failed, bailing out of " | 
|  | "client composition for this frame", | 
|  | mName.c_str()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::optional<base::unique_fd> Output::composeSurfaces( | 
|  | const Region& debugRegion, std::shared_ptr<renderengine::ExternalTexture> tex, | 
|  | base::unique_fd& fd) { | 
|  | ATRACE_CALL(); | 
|  | ALOGV(__FUNCTION__); | 
|  |  | 
|  | const auto& outputState = getState(); | 
|  | const TracedOrdinal<bool> hasClientComposition = { | 
|  | base::StringPrintf("hasClientComposition %s", mNamePlusId.c_str()), | 
|  | outputState.usesClientComposition}; | 
|  | if (!hasClientComposition) { | 
|  | setExpensiveRenderingExpected(false); | 
|  | return base::unique_fd(); | 
|  | } | 
|  |  | 
|  | if (tex == nullptr) { | 
|  | ALOGW("Buffer not valid for display [%s], bailing out of " | 
|  | "client composition for this frame", | 
|  | mName.c_str()); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | ALOGV("hasClientComposition"); | 
|  |  | 
|  | renderengine::DisplaySettings clientCompositionDisplay = | 
|  | generateClientCompositionDisplaySettings(); | 
|  |  | 
|  | // Generate the client composition requests for the layers on this output. | 
|  | auto& renderEngine = getCompositionEngine().getRenderEngine(); | 
|  | const bool supportsProtectedContent = renderEngine.supportsProtectedContent(); | 
|  | std::vector<LayerFE*> clientCompositionLayersFE; | 
|  | std::vector<LayerFE::LayerSettings> clientCompositionLayers = | 
|  | generateClientCompositionRequests(supportsProtectedContent, | 
|  | clientCompositionDisplay.outputDataspace, | 
|  | clientCompositionLayersFE); | 
|  | appendRegionFlashRequests(debugRegion, clientCompositionLayers); | 
|  |  | 
|  | OutputCompositionState& outputCompositionState = editState(); | 
|  | // Check if the client composition requests were rendered into the provided graphic buffer. If | 
|  | // so, we can reuse the buffer and avoid client composition. | 
|  | if (mClientCompositionRequestCache) { | 
|  | if (mClientCompositionRequestCache->exists(tex->getBuffer()->getId(), | 
|  | clientCompositionDisplay, | 
|  | clientCompositionLayers)) { | 
|  | ATRACE_NAME("ClientCompositionCacheHit"); | 
|  | outputCompositionState.reusedClientComposition = true; | 
|  | setExpensiveRenderingExpected(false); | 
|  | // b/239944175 pass the fence associated with the buffer. | 
|  | return base::unique_fd(std::move(fd)); | 
|  | } | 
|  | ATRACE_NAME("ClientCompositionCacheMiss"); | 
|  | mClientCompositionRequestCache->add(tex->getBuffer()->getId(), clientCompositionDisplay, | 
|  | clientCompositionLayers); | 
|  | } | 
|  |  | 
|  | // We boost GPU frequency here because there will be color spaces conversion | 
|  | // or complex GPU shaders and it's expensive. We boost the GPU frequency so that | 
|  | // GPU composition can finish in time. We must reset GPU frequency afterwards, | 
|  | // because high frequency consumes extra battery. | 
|  | const bool expensiveRenderingExpected = | 
|  | std::any_of(clientCompositionLayers.begin(), clientCompositionLayers.end(), | 
|  | [outputDataspace = | 
|  | clientCompositionDisplay.outputDataspace](const auto& layer) { | 
|  | return layer.sourceDataspace != outputDataspace; | 
|  | }); | 
|  | if (expensiveRenderingExpected) { | 
|  | setExpensiveRenderingExpected(true); | 
|  | } | 
|  |  | 
|  | std::vector<renderengine::LayerSettings> clientRenderEngineLayers; | 
|  | clientRenderEngineLayers.reserve(clientCompositionLayers.size()); | 
|  | std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(), | 
|  | std::back_inserter(clientRenderEngineLayers), | 
|  | [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings { | 
|  | return settings; | 
|  | }); | 
|  |  | 
|  | const nsecs_t renderEngineStart = systemTime(); | 
|  | // Only use the framebuffer cache when rendering to an internal display | 
|  | // TODO(b/173560331): This is only to help mitigate memory leaks from virtual displays because | 
|  | // right now we don't have a concrete eviction policy for output buffers: GLESRenderEngine | 
|  | // bounds its framebuffer cache but Skia RenderEngine has no current policy. The best fix is | 
|  | // probably to encapsulate the output buffer into a structure that dispatches resource cleanup | 
|  | // over to RenderEngine, in which case this flag can be removed from the drawLayers interface. | 
|  | const bool useFramebufferCache = outputState.layerFilter.toInternalDisplay; | 
|  |  | 
|  | auto fenceResult = renderEngine | 
|  | .drawLayers(clientCompositionDisplay, clientRenderEngineLayers, tex, | 
|  | useFramebufferCache, std::move(fd)) | 
|  | .get(); | 
|  |  | 
|  | if (mClientCompositionRequestCache && fenceStatus(fenceResult) != NO_ERROR) { | 
|  | // If rendering was not successful, remove the request from the cache. | 
|  | mClientCompositionRequestCache->remove(tex->getBuffer()->getId()); | 
|  | } | 
|  |  | 
|  | const auto fence = std::move(fenceResult).value_or(Fence::NO_FENCE); | 
|  |  | 
|  | if (auto timeStats = getCompositionEngine().getTimeStats()) { | 
|  | if (fence->isValid()) { | 
|  | timeStats->recordRenderEngineDuration(renderEngineStart, | 
|  | std::make_shared<FenceTime>(fence)); | 
|  | } else { | 
|  | timeStats->recordRenderEngineDuration(renderEngineStart, systemTime()); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto* clientComposedLayer : clientCompositionLayersFE) { | 
|  | clientComposedLayer->setWasClientComposed(fence); | 
|  | } | 
|  |  | 
|  | return base::unique_fd(fence->dup()); | 
|  | } | 
|  |  | 
|  | renderengine::DisplaySettings Output::generateClientCompositionDisplaySettings() const { | 
|  | const auto& outputState = getState(); | 
|  |  | 
|  | renderengine::DisplaySettings clientCompositionDisplay; | 
|  | clientCompositionDisplay.namePlusId = mNamePlusId; | 
|  | clientCompositionDisplay.physicalDisplay = outputState.framebufferSpace.getContent(); | 
|  | clientCompositionDisplay.clip = outputState.layerStackSpace.getContent(); | 
|  | clientCompositionDisplay.orientation = | 
|  | ui::Transform::toRotationFlags(outputState.displaySpace.getOrientation()); | 
|  | clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut() | 
|  | ? outputState.dataspace | 
|  | : ui::Dataspace::UNKNOWN; | 
|  |  | 
|  | // If we have a valid current display brightness use that, otherwise fall back to the | 
|  | // display's max desired | 
|  | clientCompositionDisplay.currentLuminanceNits = outputState.displayBrightnessNits > 0.f | 
|  | ? outputState.displayBrightnessNits | 
|  | : mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance(); | 
|  | clientCompositionDisplay.maxLuminance = | 
|  | mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance(); | 
|  | clientCompositionDisplay.targetLuminanceNits = | 
|  | outputState.clientTargetBrightness * outputState.displayBrightnessNits; | 
|  | clientCompositionDisplay.dimmingStage = outputState.clientTargetDimmingStage; | 
|  | clientCompositionDisplay.renderIntent = | 
|  | static_cast<aidl::android::hardware::graphics::composer3::RenderIntent>( | 
|  | outputState.renderIntent); | 
|  |  | 
|  | // Compute the global color transform matrix. | 
|  | clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix; | 
|  | for (auto& info : outputState.borderInfoList) { | 
|  | renderengine::BorderRenderInfo borderInfo; | 
|  | borderInfo.width = info.width; | 
|  | borderInfo.color = info.color; | 
|  | borderInfo.combinedRegion = info.combinedRegion; | 
|  | clientCompositionDisplay.borderInfoList.emplace_back(std::move(borderInfo)); | 
|  | } | 
|  | clientCompositionDisplay.deviceHandlesColorTransform = | 
|  | outputState.usesDeviceComposition || getSkipColorTransform(); | 
|  | return clientCompositionDisplay; | 
|  | } | 
|  |  | 
|  | std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests( | 
|  | bool supportsProtectedContent, ui::Dataspace outputDataspace, std::vector<LayerFE*>& outLayerFEs) { | 
|  | std::vector<LayerFE::LayerSettings> clientCompositionLayers; | 
|  | ALOGV("Rendering client layers"); | 
|  |  | 
|  | const auto& outputState = getState(); | 
|  | const Region viewportRegion(outputState.layerStackSpace.getContent()); | 
|  | bool firstLayer = true; | 
|  |  | 
|  | bool disableBlurs = false; | 
|  | uint64_t previousOverrideBufferId = 0; | 
|  |  | 
|  | for (auto* layer : getOutputLayersOrderedByZ()) { | 
|  | const auto& layerState = layer->getState(); | 
|  | const auto* layerFEState = layer->getLayerFE().getCompositionState(); | 
|  | auto& layerFE = layer->getLayerFE(); | 
|  | layerFE.setWasClientComposed(nullptr); | 
|  |  | 
|  | const Region clip(viewportRegion.intersect(layerState.visibleRegion)); | 
|  | ALOGV("Layer: %s", layerFE.getDebugName()); | 
|  | if (clip.isEmpty()) { | 
|  | ALOGV("  Skipping for empty clip"); | 
|  | firstLayer = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | disableBlurs |= layerFEState->sidebandStream != nullptr; | 
|  |  | 
|  | const bool clientComposition = layer->requiresClientComposition(); | 
|  |  | 
|  | // We clear the client target for non-client composed layers if | 
|  | // requested by the HWC. We skip this if the layer is not an opaque | 
|  | // rectangle, as by definition the layer must blend with whatever is | 
|  | // underneath. We also skip the first layer as the buffer target is | 
|  | // guaranteed to start out cleared. | 
|  | const bool clearClientComposition = | 
|  | layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer; | 
|  |  | 
|  | ALOGV("  Composition type: client %d clear %d", clientComposition, clearClientComposition); | 
|  |  | 
|  | // If the layer casts a shadow but the content casting the shadow is occluded, skip | 
|  | // composing the non-shadow content and only draw the shadows. | 
|  | const bool realContentIsVisible = clientComposition && | 
|  | !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty(); | 
|  |  | 
|  | if (clientComposition || clearClientComposition) { | 
|  | if (auto overrideSettings = layer->getOverrideCompositionSettings()) { | 
|  | if (overrideSettings->bufferId != previousOverrideBufferId) { | 
|  | previousOverrideBufferId = overrideSettings->bufferId; | 
|  | clientCompositionLayers.push_back(std::move(*overrideSettings)); | 
|  | ALOGV("Replacing [%s] with override in RE", layer->getLayerFE().getDebugName()); | 
|  | } else { | 
|  | ALOGV("Skipping redundant override buffer for [%s] in RE", | 
|  | layer->getLayerFE().getDebugName()); | 
|  | } | 
|  | } else { | 
|  | LayerFE::ClientCompositionTargetSettings::BlurSetting blurSetting = disableBlurs | 
|  | ? LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled | 
|  | : (layer->getState().overrideInfo.disableBackgroundBlur | 
|  | ? LayerFE::ClientCompositionTargetSettings::BlurSetting:: | 
|  | BlurRegionsOnly | 
|  | : LayerFE::ClientCompositionTargetSettings::BlurSetting:: | 
|  | Enabled); | 
|  | compositionengine::LayerFE::ClientCompositionTargetSettings | 
|  | targetSettings{.clip = clip, | 
|  | .needsFiltering = layerNeedsFiltering(layer) || | 
|  | outputState.needsFiltering, | 
|  | .isSecure = outputState.isSecure, | 
|  | .supportsProtectedContent = supportsProtectedContent, | 
|  | .viewport = outputState.layerStackSpace.getContent(), | 
|  | .dataspace = outputDataspace, | 
|  | .realContentIsVisible = realContentIsVisible, | 
|  | .clearContent = !clientComposition, | 
|  | .blurSetting = blurSetting, | 
|  | .whitePointNits = layerState.whitePointNits, | 
|  | .treat170mAsSrgb = outputState.treat170mAsSrgb}; | 
|  | if (auto clientCompositionSettings = | 
|  | layerFE.prepareClientComposition(targetSettings)) { | 
|  | clientCompositionLayers.push_back(std::move(*clientCompositionSettings)); | 
|  | if (realContentIsVisible) { | 
|  | layer->editState().clientCompositionTimestamp = systemTime(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (clientComposition) { | 
|  | outLayerFEs.push_back(&layerFE); | 
|  | } | 
|  | } | 
|  |  | 
|  | firstLayer = false; | 
|  | } | 
|  |  | 
|  | return clientCompositionLayers; | 
|  | } | 
|  |  | 
|  | bool Output::layerNeedsFiltering(const compositionengine::OutputLayer* layer) const { | 
|  | return layer->needsFiltering(); | 
|  | } | 
|  |  | 
|  | void Output::appendRegionFlashRequests( | 
|  | const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) { | 
|  | if (flashRegion.isEmpty()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | LayerFE::LayerSettings layerSettings; | 
|  | layerSettings.source.buffer.buffer = nullptr; | 
|  | layerSettings.source.solidColor = half3(1.0, 0.0, 1.0); | 
|  | layerSettings.alpha = half(1.0); | 
|  |  | 
|  | for (const auto& rect : flashRegion) { | 
|  | layerSettings.geometry.boundaries = rect.toFloatRect(); | 
|  | clientCompositionLayers.push_back(layerSettings); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Output::setExpensiveRenderingExpected(bool) { | 
|  | // The base class does nothing with this call. | 
|  | } | 
|  |  | 
|  | void Output::setHintSessionGpuFence(std::unique_ptr<FenceTime>&&) { | 
|  | // The base class does nothing with this call. | 
|  | } | 
|  |  | 
|  | bool Output::isPowerHintSessionEnabled() { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Output::postFramebuffer() { | 
|  | ATRACE_FORMAT("%s for %s", __func__, mNamePlusId.c_str()); | 
|  | ALOGV(__FUNCTION__); | 
|  |  | 
|  | if (!getState().isEnabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto& outputState = editState(); | 
|  | outputState.dirtyRegion.clear(); | 
|  |  | 
|  | auto frame = presentAndGetFrameFences(); | 
|  |  | 
|  | mRenderSurface->onPresentDisplayCompleted(); | 
|  |  | 
|  | for (auto* layer : getOutputLayersOrderedByZ()) { | 
|  | // The layer buffer from the previous frame (if any) is released | 
|  | // by HWC only when the release fence from this frame (if any) is | 
|  | // signaled.  Always get the release fence from HWC first. | 
|  | sp<Fence> releaseFence = Fence::NO_FENCE; | 
|  |  | 
|  | if (auto hwcLayer = layer->getHwcLayer()) { | 
|  | if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) { | 
|  | releaseFence = f->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the layer was client composited in the previous frame, we | 
|  | // need to merge with the previous client target acquire fence. | 
|  | // Since we do not track that, always merge with the current | 
|  | // client target acquire fence when it is available, even though | 
|  | // this is suboptimal. | 
|  | // TODO(b/121291683): Track previous frame client target acquire fence. | 
|  | if (outputState.usesClientComposition) { | 
|  | releaseFence = | 
|  | Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence); | 
|  | } | 
|  | layer->getLayerFE().onLayerDisplayed( | 
|  | ftl::yield<FenceResult>(std::move(releaseFence)).share()); | 
|  | } | 
|  |  | 
|  | // We've got a list of layers needing fences, that are disjoint with | 
|  | // OutputLayersOrderedByZ.  The best we can do is to | 
|  | // supply them with the present fence. | 
|  | for (auto& weakLayer : mReleasedLayers) { | 
|  | if (const auto layer = weakLayer.promote()) { | 
|  | layer->onLayerDisplayed(ftl::yield<FenceResult>(frame.presentFence).share()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Clear out the released layers now that we're done with them. | 
|  | mReleasedLayers.clear(); | 
|  | } | 
|  |  | 
|  | void Output::renderCachedSets(const CompositionRefreshArgs& refreshArgs) { | 
|  | if (mPlanner) { | 
|  | mPlanner->renderCachedSets(getState(), refreshArgs.scheduledFrameTime, | 
|  | getState().usesDeviceComposition || getSkipColorTransform()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Output::dirtyEntireOutput() { | 
|  | auto& outputState = editState(); | 
|  | outputState.dirtyRegion.set(outputState.displaySpace.getBoundsAsRect()); | 
|  | } | 
|  |  | 
|  | void Output::resetCompositionStrategy() { | 
|  | // The base output implementation can only do client composition | 
|  | auto& outputState = editState(); | 
|  | outputState.usesClientComposition = true; | 
|  | outputState.usesDeviceComposition = false; | 
|  | outputState.reusedClientComposition = false; | 
|  | } | 
|  |  | 
|  | bool Output::getSkipColorTransform() const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | compositionengine::Output::FrameFences Output::presentAndGetFrameFences() { | 
|  | compositionengine::Output::FrameFences result; | 
|  | if (getState().usesClientComposition) { | 
|  | result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence(); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void Output::setPredictCompositionStrategy(bool predict) { | 
|  | if (predict) { | 
|  | mHwComposerAsyncWorker = std::make_unique<HwcAsyncWorker>(); | 
|  | } else { | 
|  | mHwComposerAsyncWorker.reset(nullptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Output::setTreat170mAsSrgb(bool enable) { | 
|  | editState().treat170mAsSrgb = enable; | 
|  | } | 
|  |  | 
|  | bool Output::canPredictCompositionStrategy(const CompositionRefreshArgs& refreshArgs) { | 
|  | uint64_t lastOutputLayerHash = getState().lastOutputLayerHash; | 
|  | uint64_t outputLayerHash = getState().outputLayerHash; | 
|  | editState().lastOutputLayerHash = outputLayerHash; | 
|  |  | 
|  | if (!getState().isEnabled || !mHwComposerAsyncWorker) { | 
|  | ALOGV("canPredictCompositionStrategy disabled"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!getState().previousDeviceRequestedChanges) { | 
|  | ALOGV("canPredictCompositionStrategy previous changes not available"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!mRenderSurface->supportsCompositionStrategyPrediction()) { | 
|  | ALOGV("canPredictCompositionStrategy surface does not support"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (refreshArgs.devOptFlashDirtyRegionsDelay) { | 
|  | ALOGV("canPredictCompositionStrategy devOptFlashDirtyRegionsDelay"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (lastOutputLayerHash != outputLayerHash) { | 
|  | ALOGV("canPredictCompositionStrategy output layers changed"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If no layer uses clientComposition, then don't predict composition strategy | 
|  | // because we have less work to do in parallel. | 
|  | if (!anyLayersRequireClientComposition()) { | 
|  | ALOGV("canPredictCompositionStrategy no layer uses clientComposition"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Output::anyLayersRequireClientComposition() const { | 
|  | const auto layers = getOutputLayersOrderedByZ(); | 
|  | return std::any_of(layers.begin(), layers.end(), | 
|  | [](const auto& layer) { return layer->requiresClientComposition(); }); | 
|  | } | 
|  |  | 
|  | void Output::finishPrepareFrame() { | 
|  | const auto& state = getState(); | 
|  | if (mPlanner) { | 
|  | mPlanner->reportFinalPlan(getOutputLayersOrderedByZ()); | 
|  | } | 
|  | mRenderSurface->prepareFrame(state.usesClientComposition, state.usesDeviceComposition); | 
|  | } | 
|  |  | 
|  | bool Output::mustRecompose() const { | 
|  | return mMustRecompose; | 
|  | } | 
|  |  | 
|  | } // namespace impl | 
|  | } // namespace android::compositionengine |