|  | /* | 
|  | * Copyright (C) 2022 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "TestHelpers.h" | 
|  |  | 
|  | #include <chrono> | 
|  | #include <vector> | 
|  |  | 
|  | #include <attestation/HmacKeyManager.h> | 
|  | #include <gtest/gtest.h> | 
|  | #include <input/InputTransport.h> | 
|  |  | 
|  | using namespace std::chrono_literals; | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | struct Pointer { | 
|  | int32_t id; | 
|  | float x; | 
|  | float y; | 
|  | bool isResampled = false; | 
|  | }; | 
|  |  | 
|  | struct InputEventEntry { | 
|  | std::chrono::nanoseconds eventTime; | 
|  | std::vector<Pointer> pointers; | 
|  | int32_t action; | 
|  | }; | 
|  |  | 
|  | class TouchResamplingTest : public testing::Test { | 
|  | protected: | 
|  | std::unique_ptr<InputPublisher> mPublisher; | 
|  | std::unique_ptr<InputConsumer> mConsumer; | 
|  | PreallocatedInputEventFactory mEventFactory; | 
|  |  | 
|  | uint32_t mSeq = 1; | 
|  |  | 
|  | void SetUp() override { | 
|  | std::unique_ptr<InputChannel> serverChannel, clientChannel; | 
|  | status_t result = | 
|  | InputChannel::openInputChannelPair("channel name", serverChannel, clientChannel); | 
|  | ASSERT_EQ(OK, result); | 
|  |  | 
|  | mPublisher = std::make_unique<InputPublisher>(std::move(serverChannel)); | 
|  | mConsumer = std::make_unique<InputConsumer>(std::move(clientChannel), | 
|  | true /* enableTouchResampling */); | 
|  | } | 
|  |  | 
|  | status_t publishSimpleMotionEventWithCoords(int32_t action, nsecs_t eventTime, | 
|  | const std::vector<PointerProperties>& properties, | 
|  | const std::vector<PointerCoords>& coords); | 
|  | void publishSimpleMotionEvent(int32_t action, nsecs_t eventTime, | 
|  | const std::vector<Pointer>& pointers); | 
|  | void publishInputEventEntries(const std::vector<InputEventEntry>& entries); | 
|  | void consumeInputEventEntries(const std::vector<InputEventEntry>& entries, | 
|  | std::chrono::nanoseconds frameTime); | 
|  | void receiveResponseUntilSequence(uint32_t seq); | 
|  | }; | 
|  |  | 
|  | status_t TouchResamplingTest::publishSimpleMotionEventWithCoords( | 
|  | int32_t action, nsecs_t eventTime, const std::vector<PointerProperties>& properties, | 
|  | const std::vector<PointerCoords>& coords) { | 
|  | const ui::Transform identityTransform; | 
|  | const nsecs_t downTime = 0; | 
|  |  | 
|  | if (action == AMOTION_EVENT_ACTION_DOWN && eventTime != 0) { | 
|  | ADD_FAILURE() << "Downtime should be equal to 0 (hardcoded for convenience)"; | 
|  | } | 
|  | return mPublisher->publishMotionEvent(mSeq++, InputEvent::nextId(), 1 /*deviceId*/, | 
|  | AINPUT_SOURCE_TOUCHSCREEN, 0 /*displayId*/, INVALID_HMAC, | 
|  | action, 0 /*actionButton*/, 0 /*flags*/, 0 /*edgeFlags*/, | 
|  | AMETA_NONE, 0 /*buttonState*/, MotionClassification::NONE, | 
|  | identityTransform, 0 /*xPrecision*/, 0 /*yPrecision*/, | 
|  | AMOTION_EVENT_INVALID_CURSOR_POSITION, | 
|  | AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, | 
|  | downTime, eventTime, properties.size(), properties.data(), | 
|  | coords.data()); | 
|  | } | 
|  |  | 
|  | void TouchResamplingTest::publishSimpleMotionEvent(int32_t action, nsecs_t eventTime, | 
|  | const std::vector<Pointer>& pointers) { | 
|  | std::vector<PointerProperties> properties; | 
|  | std::vector<PointerCoords> coords; | 
|  |  | 
|  | for (const Pointer& pointer : pointers) { | 
|  | properties.push_back({}); | 
|  | properties.back().clear(); | 
|  | properties.back().id = pointer.id; | 
|  | properties.back().toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; | 
|  |  | 
|  | coords.push_back({}); | 
|  | coords.back().clear(); | 
|  | coords.back().setAxisValue(AMOTION_EVENT_AXIS_X, pointer.x); | 
|  | coords.back().setAxisValue(AMOTION_EVENT_AXIS_Y, pointer.y); | 
|  | } | 
|  |  | 
|  | status_t result = publishSimpleMotionEventWithCoords(action, eventTime, properties, coords); | 
|  | ASSERT_EQ(OK, result); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Each entry is published separately, one entry at a time. As a result, action is used here | 
|  | * on a per-entry basis. | 
|  | */ | 
|  | void TouchResamplingTest::publishInputEventEntries(const std::vector<InputEventEntry>& entries) { | 
|  | for (const InputEventEntry& entry : entries) { | 
|  | publishSimpleMotionEvent(entry.action, entry.eventTime.count(), entry.pointers); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Inside the publisher, read responses repeatedly until the desired sequence number is returned. | 
|  | * | 
|  | * Sometimes, when you call 'sendFinishedSignal', you would be finishing a batch which is comprised | 
|  | * of several input events. As a result, consumer will generate multiple 'finish' signals on your | 
|  | * behalf. | 
|  | * | 
|  | * In this function, we call 'receiveConsumerResponse' in a loop until the desired sequence number | 
|  | * is returned. | 
|  | */ | 
|  | void TouchResamplingTest::receiveResponseUntilSequence(uint32_t seq) { | 
|  | size_t consumedEvents = 0; | 
|  | while (consumedEvents < 100) { | 
|  | android::base::Result<InputPublisher::ConsumerResponse> response = | 
|  | mPublisher->receiveConsumerResponse(); | 
|  | ASSERT_TRUE(response.ok()); | 
|  | ASSERT_TRUE(std::holds_alternative<InputPublisher::Finished>(*response)); | 
|  | const InputPublisher::Finished& finish = std::get<InputPublisher::Finished>(*response); | 
|  | ASSERT_TRUE(finish.handled) | 
|  | << "publisher receiveFinishedSignal should have set handled to consumer's reply"; | 
|  | if (finish.seq == seq) { | 
|  | return; | 
|  | } | 
|  | consumedEvents++; | 
|  | } | 
|  | FAIL() << "Got " << consumedEvents << "events, but still no event with seq=" << seq; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * All entries are compared against a single MotionEvent, but the same data structure | 
|  | * InputEventEntry is used here for simpler code. As a result, the entire array of InputEventEntry | 
|  | * must contain identical values for the action field. | 
|  | */ | 
|  | void TouchResamplingTest::consumeInputEventEntries(const std::vector<InputEventEntry>& entries, | 
|  | std::chrono::nanoseconds frameTime) { | 
|  | ASSERT_GE(entries.size(), 1U) << "Must have at least 1 InputEventEntry to compare against"; | 
|  |  | 
|  | uint32_t consumeSeq; | 
|  | InputEvent* event; | 
|  |  | 
|  | status_t status = mConsumer->consume(&mEventFactory, true /*consumeBatches*/, frameTime.count(), | 
|  | &consumeSeq, &event); | 
|  | ASSERT_EQ(OK, status); | 
|  | MotionEvent* motionEvent = static_cast<MotionEvent*>(event); | 
|  |  | 
|  | ASSERT_EQ(entries.size() - 1, motionEvent->getHistorySize()); | 
|  | for (size_t i = 0; i < entries.size(); i++) { // most recent sample is last | 
|  | SCOPED_TRACE(i); | 
|  | const InputEventEntry& entry = entries[i]; | 
|  | ASSERT_EQ(entry.action, motionEvent->getAction()); | 
|  | ASSERT_EQ(entry.eventTime.count(), motionEvent->getHistoricalEventTime(i)); | 
|  | ASSERT_EQ(entry.pointers.size(), motionEvent->getPointerCount()); | 
|  |  | 
|  | for (size_t p = 0; p < motionEvent->getPointerCount(); p++) { | 
|  | SCOPED_TRACE(p); | 
|  | // The pointers can be in any order, both in MotionEvent as well as InputEventEntry | 
|  | ssize_t motionEventPointerIndex = motionEvent->findPointerIndex(entry.pointers[p].id); | 
|  | ASSERT_GE(motionEventPointerIndex, 0) << "Pointer must be present in MotionEvent"; | 
|  | ASSERT_EQ(entry.pointers[p].x, | 
|  | motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_X, | 
|  | motionEventPointerIndex, i)); | 
|  | ASSERT_EQ(entry.pointers[p].x, | 
|  | motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_X, | 
|  | motionEventPointerIndex, i)); | 
|  | ASSERT_EQ(entry.pointers[p].y, | 
|  | motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_Y, | 
|  | motionEventPointerIndex, i)); | 
|  | ASSERT_EQ(entry.pointers[p].y, | 
|  | motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, | 
|  | motionEventPointerIndex, i)); | 
|  | ASSERT_EQ(entry.pointers[p].isResampled, | 
|  | motionEvent->isResampled(motionEventPointerIndex, i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | status = mConsumer->sendFinishedSignal(consumeSeq, true); | 
|  | ASSERT_EQ(OK, status); | 
|  |  | 
|  | receiveResponseUntilSequence(consumeSeq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Timeline | 
|  | * ---------+------------------+------------------+--------+-----------------+---------------------- | 
|  | *          0 ms               10 ms              20 ms    25 ms            35 ms | 
|  | *          ACTION_DOWN       ACTION_MOVE      ACTION_MOVE  ^                ^ | 
|  | *                                                          |                | | 
|  | *                                                         resampled value   | | 
|  | *                                                                          frameTime | 
|  | * Typically, the prediction is made for time frameTime - RESAMPLE_LATENCY, or 30 ms in this case | 
|  | * However, that would be 10 ms later than the last real sample (which came in at 20 ms). | 
|  | * Therefore, the resampling should happen at 20 ms + RESAMPLE_MAX_PREDICTION = 28 ms. | 
|  | * In this situation, though, resample time is further limited by taking half of the difference | 
|  | * between the last two real events, which would put this time at: | 
|  | * 20 ms + (20 ms - 10 ms) / 2 = 25 ms. | 
|  | */ | 
|  | TEST_F(TouchResamplingTest, EventIsResampled) { | 
|  | std::chrono::nanoseconds frameTime; | 
|  | std::vector<InputEventEntry> entries, expectedEntries; | 
|  |  | 
|  | // Initial ACTION_DOWN should be separate, because the first consume event will only return | 
|  | // InputEvent with a single action. | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 5ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 35ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Same as above test, but use pointer id=1 instead of 0 to make sure that system does not | 
|  | * have these hardcoded. | 
|  | */ | 
|  | TEST_F(TouchResamplingTest, EventIsResampledWithDifferentId) { | 
|  | std::chrono::nanoseconds frameTime; | 
|  | std::vector<InputEventEntry> entries, expectedEntries; | 
|  |  | 
|  | // Initial ACTION_DOWN should be separate, because the first consume event will only return | 
|  | // InputEvent with a single action. | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 5ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 35ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {25ms, {{1, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Event should not be resampled when sample time is equal to event time. | 
|  | */ | 
|  | TEST_F(TouchResamplingTest, SampleTimeEqualsEventTime) { | 
|  | std::chrono::nanoseconds frameTime; | 
|  | std::vector<InputEventEntry> entries, expectedEntries; | 
|  |  | 
|  | // Initial ACTION_DOWN should be separate, because the first consume event will only return | 
|  | // InputEvent with a single action. | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 5ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | // no resampled event because the time of resample falls exactly on the existing event | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Once we send a resampled value to the app, we should continue to "lie" if the pointer | 
|  | * does not move. So, if the pointer keeps the same coordinates, resampled value should continue | 
|  | * to be used. | 
|  | */ | 
|  | TEST_F(TouchResamplingTest, ResampledValueIsUsedForIdenticalCoordinates) { | 
|  | std::chrono::nanoseconds frameTime; | 
|  | std::vector<InputEventEntry> entries, expectedEntries; | 
|  |  | 
|  | // Initial ACTION_DOWN should be separate, because the first consume event will only return | 
|  | // InputEvent with a single action. | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 5ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 35ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Coordinate value 30 has been resampled to 35. When a new event comes in with value 30 again, | 
|  | // the system should still report 35. | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {40ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {40ms, | 
|  | {{0, 35, 30, .isResampled = true}}, | 
|  | AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten | 
|  | {45ms, | 
|  | {{0, 35, 30, .isResampled = true}}, | 
|  | AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  | } | 
|  |  | 
|  | TEST_F(TouchResamplingTest, OldEventReceivedAfterResampleOccurs) { | 
|  | std::chrono::nanoseconds frameTime; | 
|  | std::vector<InputEventEntry> entries, expectedEntries; | 
|  |  | 
|  | // Initial ACTION_DOWN should be separate, because the first consume event will only return | 
|  | // InputEvent with a single action. | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 5ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 35ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  | // Above, the resampled event is at 25ms rather than at 30 ms = 35ms - RESAMPLE_LATENCY | 
|  | // because we are further bound by how far we can extrapolate by the "last time delta". | 
|  | // That's 50% of (20 ms - 10ms) => 5ms. So we can't predict more than 5 ms into the future | 
|  | // from the event at 20ms, which is why the resampled event is at t = 25 ms. | 
|  |  | 
|  | // We resampled the event to 25 ms. Now, an older 'real' event comes in. | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {24ms, {{0, 40, 30}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 50ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {24ms, | 
|  | {{0, 35, 30, .isResampled = true}}, | 
|  | AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten | 
|  | {26ms, | 
|  | {{0, 45, 30, .isResampled = true}}, | 
|  | AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  | } | 
|  |  | 
|  | TEST_F(TouchResamplingTest, TwoPointersAreResampledIndependently) { | 
|  | std::chrono::nanoseconds frameTime; | 
|  | std::vector<InputEventEntry> entries, expectedEntries; | 
|  |  | 
|  | // full action for when a pointer with id=1 appears (some other pointer must already be present) | 
|  | constexpr int32_t actionPointer1Down = | 
|  | AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); | 
|  |  | 
|  | // full action for when a pointer with id=0 disappears (some other pointer must still remain) | 
|  | constexpr int32_t actionPointer0Up = | 
|  | AMOTION_EVENT_ACTION_POINTER_UP + (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); | 
|  |  | 
|  | // Initial ACTION_DOWN should be separate, because the first consume event will only return | 
|  | // InputEvent with a single action. | 
|  | entries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 5ms; | 
|  | expectedEntries = { | 
|  | //      id  x   y | 
|  | {0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | entries = { | 
|  | //       id  x   y | 
|  | {10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 10ms + 5ms /*RESAMPLE_LATENCY*/; | 
|  | expectedEntries = { | 
|  | //       id  x   y | 
|  | {10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | // no resampled value because frameTime - RESAMPLE_LATENCY == eventTime | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Second pointer id=1 appears | 
|  | entries = { | 
|  | //      id  x    y | 
|  | {15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/; | 
|  | expectedEntries = { | 
|  | //      id  x    y | 
|  | {15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down}, | 
|  | // no resampled value because frameTime - RESAMPLE_LATENCY == eventTime | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Both pointers move | 
|  | entries = { | 
|  | //      id  x    y | 
|  | {30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/; | 
|  | expectedEntries = { | 
|  | //      id  x    y | 
|  | {30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {45ms, | 
|  | {{0, 130, 130, .isResampled = true}, {1, 650, 650, .isResampled = true}}, | 
|  | AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Both pointers move again | 
|  | entries = { | 
|  | //      id  x    y | 
|  | {60ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 75ms + 5ms /*RESAMPLE_LATENCY*/; | 
|  | /** | 
|  | * The sample at t = 60, pointer id 0 is not equal to 120, because this value of 120 was | 
|  | * received twice, and resampled to 130. So if we already reported it as "130", we continue | 
|  | * to report it as such. Similar with pointer id 1. | 
|  | */ | 
|  | expectedEntries = { | 
|  | {60ms, | 
|  | {{0, 130, 130, .isResampled = true}, // not 120! because it matches previous real event | 
|  | {1, 650, 650, .isResampled = true}}, | 
|  | AMOTION_EVENT_ACTION_MOVE}, | 
|  | {70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | {75ms, | 
|  | {{0, 135, 135, .isResampled = true}, {1, 750, 750, .isResampled = true}}, | 
|  | AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // First pointer id=0 leaves the screen | 
|  | entries = { | 
|  | //      id  x    y | 
|  | {80ms, {{1, 600, 600}}, actionPointer0Up}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 90ms; | 
|  | expectedEntries = { | 
|  | //      id  x    y | 
|  | {80ms, {{1, 600, 600}}, actionPointer0Up}, | 
|  | // no resampled event for ACTION_POINTER_UP | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  |  | 
|  | // Remaining pointer id=1 is still present, but doesn't move | 
|  | entries = { | 
|  | //      id  x    y | 
|  | {90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | publishInputEventEntries(entries); | 
|  | frameTime = 100ms; | 
|  | expectedEntries = { | 
|  | //      id  x    y | 
|  | {90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | /** | 
|  | * The latest event with ACTION_MOVE was at t = 70, coord = 700. | 
|  | * Use that value for resampling here: (600 - 700) / (90 - 70) * 5 + 600 | 
|  | */ | 
|  | {95ms, {{1, 575, 575, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, | 
|  | }; | 
|  | consumeInputEventEntries(expectedEntries, frameTime); | 
|  | } | 
|  |  | 
|  | } // namespace android |