| /* |
| * Copyright (C) 2019 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "EventHub.h" |
| |
| #include <android-base/stringprintf.h> |
| #include <gtest/gtest.h> |
| #include <inttypes.h> |
| #include <linux/uinput.h> |
| #include <log/log.h> |
| #include <chrono> |
| |
| #define TAG "EventHub_test" |
| |
| using android::EventHub; |
| using android::EventHubInterface; |
| using android::InputDeviceIdentifier; |
| using android::RawEvent; |
| using android::sp; |
| using android::base::StringPrintf; |
| using std::chrono_literals::operator""ms; |
| |
| static constexpr bool DEBUG = false; |
| static const char* DEVICE_NAME = "EventHub Test Device"; |
| |
| static void dumpEvents(const std::vector<RawEvent>& events) { |
| for (const RawEvent& event : events) { |
| if (event.type >= EventHubInterface::FIRST_SYNTHETIC_EVENT) { |
| switch (event.type) { |
| case EventHubInterface::DEVICE_ADDED: |
| ALOGI("Device added: %i", event.deviceId); |
| break; |
| case EventHubInterface::DEVICE_REMOVED: |
| ALOGI("Device removed: %i", event.deviceId); |
| break; |
| case EventHubInterface::FINISHED_DEVICE_SCAN: |
| ALOGI("Finished device scan."); |
| break; |
| } |
| } else { |
| ALOGI("Device %" PRId32 " : time = %" PRId64 ", type %i, code %i, value %i", |
| event.deviceId, event.when, event.type, event.code, event.value); |
| } |
| } |
| } |
| |
| // --- EventHubTest --- |
| class EventHubTest : public testing::Test { |
| protected: |
| std::unique_ptr<EventHubInterface> mEventHub; |
| // We are only going to emulate a single input device currently. |
| android::base::unique_fd mDeviceFd; |
| int32_t mDeviceId; |
| virtual void SetUp() override { |
| mEventHub = std::make_unique<EventHub>(); |
| consumeInitialDeviceAddedEvents(); |
| createDevice(); |
| mDeviceId = waitForDeviceCreation(); |
| } |
| virtual void TearDown() override { |
| mDeviceFd.reset(); |
| waitForDeviceClose(mDeviceId); |
| } |
| |
| void createDevice(); |
| /** |
| * Return the device id of the created device. |
| */ |
| int32_t waitForDeviceCreation(); |
| void waitForDeviceClose(int32_t deviceId); |
| void consumeInitialDeviceAddedEvents(); |
| void sendEvent(uint16_t type, uint16_t code, int32_t value); |
| std::vector<RawEvent> getEvents(std::chrono::milliseconds timeout = 5ms); |
| }; |
| |
| std::vector<RawEvent> EventHubTest::getEvents(std::chrono::milliseconds timeout) { |
| static constexpr size_t EVENT_BUFFER_SIZE = 256; |
| std::array<RawEvent, EVENT_BUFFER_SIZE> eventBuffer; |
| std::vector<RawEvent> events; |
| |
| while (true) { |
| size_t count = |
| mEventHub->getEvents(timeout.count(), eventBuffer.data(), eventBuffer.size()); |
| if (count == 0) { |
| break; |
| } |
| events.insert(events.end(), eventBuffer.begin(), eventBuffer.begin() + count); |
| } |
| if (DEBUG) { |
| dumpEvents(events); |
| } |
| return events; |
| } |
| |
| void EventHubTest::createDevice() { |
| mDeviceFd = android::base::unique_fd(open("/dev/uinput", O_WRONLY | O_NONBLOCK)); |
| if (mDeviceFd < 0) { |
| FAIL() << "Can't open /dev/uinput :" << strerror(errno); |
| } |
| |
| /** |
| * Signal which type of events this input device supports. |
| * We will emulate a keyboard here. |
| */ |
| // enable key press/release event |
| if (ioctl(mDeviceFd, UI_SET_EVBIT, EV_KEY)) { |
| ADD_FAILURE() << "Error in ioctl : UI_SET_EVBIT : EV_KEY: " << strerror(errno); |
| } |
| |
| // enable set of KEY events |
| if (ioctl(mDeviceFd, UI_SET_KEYBIT, KEY_HOME)) { |
| ADD_FAILURE() << "Error in ioctl : UI_SET_KEYBIT : KEY_HOME: " << strerror(errno); |
| } |
| |
| // enable synchronization event |
| if (ioctl(mDeviceFd, UI_SET_EVBIT, EV_SYN)) { |
| ADD_FAILURE() << "Error in ioctl : UI_SET_EVBIT : EV_SYN: " << strerror(errno); |
| } |
| |
| struct uinput_user_dev keyboard = {}; |
| strlcpy(keyboard.name, DEVICE_NAME, UINPUT_MAX_NAME_SIZE); |
| keyboard.id.bustype = BUS_USB; |
| keyboard.id.vendor = 0x01; |
| keyboard.id.product = 0x01; |
| keyboard.id.version = 1; |
| |
| if (write(mDeviceFd, &keyboard, sizeof(keyboard)) < 0) { |
| FAIL() << "Could not write uinput_user_dev struct into uinput file descriptor: " |
| << strerror(errno); |
| } |
| |
| if (ioctl(mDeviceFd, UI_DEV_CREATE)) { |
| FAIL() << "Error in ioctl : UI_DEV_CREATE: " << strerror(errno); |
| } |
| } |
| |
| /** |
| * Since the test runs on a real platform, there will be existing devices |
| * in addition to the test devices being added. Therefore, when EventHub is first created, |
| * it will return a lot of "device added" type of events. |
| */ |
| void EventHubTest::consumeInitialDeviceAddedEvents() { |
| std::vector<RawEvent> events = getEvents(0ms); |
| std::set<int32_t /*deviceId*/> existingDevices; |
| // All of the events should be DEVICE_ADDED type, except the last one. |
| for (size_t i = 0; i < events.size() - 1; i++) { |
| const RawEvent& event = events[i]; |
| EXPECT_EQ(EventHubInterface::DEVICE_ADDED, event.type); |
| existingDevices.insert(event.deviceId); |
| } |
| // None of the existing system devices should be changing while this test is run. |
| // Check that the returned device ids are unique for all of the existing devices. |
| EXPECT_EQ(existingDevices.size(), events.size() - 1); |
| // The last event should be "finished device scan" |
| EXPECT_EQ(EventHubInterface::FINISHED_DEVICE_SCAN, events[events.size() - 1].type); |
| } |
| |
| int32_t EventHubTest::waitForDeviceCreation() { |
| // Wait a little longer than usual, to ensure input device has time to be created |
| std::vector<RawEvent> events = getEvents(20ms); |
| EXPECT_EQ(2U, events.size()); // Using "expect" because the function is non-void. |
| const RawEvent& deviceAddedEvent = events[0]; |
| EXPECT_EQ(static_cast<int32_t>(EventHubInterface::DEVICE_ADDED), deviceAddedEvent.type); |
| InputDeviceIdentifier identifier = mEventHub->getDeviceIdentifier(deviceAddedEvent.deviceId); |
| const int32_t deviceId = deviceAddedEvent.deviceId; |
| EXPECT_EQ(identifier.name, DEVICE_NAME); |
| const RawEvent& finishedDeviceScanEvent = events[1]; |
| EXPECT_EQ(static_cast<int32_t>(EventHubInterface::FINISHED_DEVICE_SCAN), |
| finishedDeviceScanEvent.type); |
| return deviceId; |
| } |
| |
| void EventHubTest::waitForDeviceClose(int32_t deviceId) { |
| std::vector<RawEvent> events = getEvents(20ms); |
| ASSERT_EQ(2U, events.size()); |
| const RawEvent& deviceRemovedEvent = events[0]; |
| EXPECT_EQ(static_cast<int32_t>(EventHubInterface::DEVICE_REMOVED), deviceRemovedEvent.type); |
| EXPECT_EQ(deviceId, deviceRemovedEvent.deviceId); |
| const RawEvent& finishedDeviceScanEvent = events[1]; |
| EXPECT_EQ(static_cast<int32_t>(EventHubInterface::FINISHED_DEVICE_SCAN), |
| finishedDeviceScanEvent.type); |
| } |
| |
| void EventHubTest::sendEvent(uint16_t type, uint16_t code, int32_t value) { |
| struct input_event event = {}; |
| event.type = type; |
| event.code = code; |
| event.value = value; |
| event.time = {}; // uinput ignores the timestamp |
| |
| if (write(mDeviceFd, &event, sizeof(input_event)) < 0) { |
| std::string msg = StringPrintf("Could not write event %" PRIu16 " %" PRIu16 |
| " with value %" PRId32 " : %s", |
| type, code, value, strerror(errno)); |
| ALOGE("%s", msg.c_str()); |
| ADD_FAILURE() << msg.c_str(); |
| } |
| } |
| |
| /** |
| * Ensure that input_events are generated with monotonic clock. |
| * That means input_event should receive a timestamp that is in the future of the time |
| * before the event was sent. |
| * Input system uses CLOCK_MONOTONIC everywhere in the code base. |
| */ |
| TEST_F(EventHubTest, InputEvent_TimestampIsMonotonic) { |
| nsecs_t lastEventTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| // key press |
| sendEvent(EV_KEY, KEY_HOME, 1); |
| sendEvent(EV_SYN, SYN_REPORT, 0); |
| |
| // key release |
| sendEvent(EV_KEY, KEY_HOME, 0); |
| sendEvent(EV_SYN, SYN_REPORT, 0); |
| |
| std::vector<RawEvent> events = getEvents(); |
| ASSERT_EQ(4U, events.size()) << "Expected to receive 2 keys and 2 syncs, total of 4 events"; |
| for (const RawEvent& event : events) { |
| // Cannot use strict comparison because the events may happen too quickly |
| ASSERT_LE(lastEventTime, event.when) << "Event must have occurred after the key was sent"; |
| ASSERT_LT(std::chrono::nanoseconds(event.when - lastEventTime), 100ms) |
| << "Event times are too far apart"; |
| lastEventTime = event.when; // Ensure all returned events are monotonic |
| } |
| } |