|  | /* | 
|  | * Copyright (C) 2018 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include <bpf_timeinstate.h> | 
|  |  | 
|  | #include <sys/sysinfo.h> | 
|  |  | 
|  | #include <pthread.h> | 
|  | #include <semaphore.h> | 
|  | #include <numeric> | 
|  | #include <unordered_map> | 
|  | #include <vector> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <android-base/properties.h> | 
|  | #include <android-base/unique_fd.h> | 
|  | #include <bpf/BpfMap.h> | 
|  | #include <cputimeinstate.h> | 
|  | #include <cutils/android_filesystem_config.h> | 
|  | #include <libbpf.h> | 
|  |  | 
|  | namespace android { | 
|  | namespace bpf { | 
|  |  | 
|  | static constexpr uint64_t NSEC_PER_SEC = 1000000000; | 
|  | static constexpr uint64_t NSEC_PER_YEAR = NSEC_PER_SEC * 60 * 60 * 24 * 365; | 
|  |  | 
|  | using std::vector; | 
|  |  | 
|  | class TimeInStateTest : public testing::Test { | 
|  | protected: | 
|  | TimeInStateTest() {}; | 
|  |  | 
|  | void SetUp() { | 
|  | if (!isTrackingUidTimesSupported() || | 
|  | !android::base::GetBoolProperty("sys.init.perf_lsm_hooks", false)) { | 
|  | GTEST_SKIP(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | TEST_F(TimeInStateTest, TotalTimeInState) { | 
|  | auto times = getTotalCpuFreqTimes(); | 
|  | ASSERT_TRUE(times.has_value()); | 
|  | EXPECT_FALSE(times->empty()); | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, SingleUidTimeInState) { | 
|  | auto times = getUidCpuFreqTimes(0); | 
|  | ASSERT_TRUE(times.has_value()); | 
|  | EXPECT_FALSE(times->empty()); | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, SingleUidConcurrentTimes) { | 
|  | auto concurrentTimes = getUidConcurrentTimes(0); | 
|  | ASSERT_TRUE(concurrentTimes.has_value()); | 
|  | ASSERT_FALSE(concurrentTimes->active.empty()); | 
|  | ASSERT_FALSE(concurrentTimes->policy.empty()); | 
|  |  | 
|  | uint64_t policyEntries = 0; | 
|  | for (const auto &policyTimeVec : concurrentTimes->policy) policyEntries += policyTimeVec.size(); | 
|  | ASSERT_EQ(concurrentTimes->active.size(), policyEntries); | 
|  | } | 
|  |  | 
|  | static void TestConcurrentTimesConsistent(const struct concurrent_time_t &concurrentTime) { | 
|  | size_t maxPolicyCpus = 0; | 
|  | for (const auto &vec : concurrentTime.policy) { | 
|  | maxPolicyCpus = std::max(maxPolicyCpus, vec.size()); | 
|  | } | 
|  | uint64_t policySum = 0; | 
|  | for (size_t i = 0; i < maxPolicyCpus; ++i) { | 
|  | for (const auto &vec : concurrentTime.policy) { | 
|  | if (i < vec.size()) policySum += vec[i]; | 
|  | } | 
|  | ASSERT_LE(concurrentTime.active[i], policySum); | 
|  | policySum -= concurrentTime.active[i]; | 
|  | } | 
|  | policySum = 0; | 
|  | for (size_t i = 0; i < concurrentTime.active.size(); ++i) { | 
|  | for (const auto &vec : concurrentTime.policy) { | 
|  | if (i < vec.size()) policySum += vec[vec.size() - 1 - i]; | 
|  | } | 
|  | auto activeSum = concurrentTime.active[concurrentTime.active.size() - 1 - i]; | 
|  | // This check is slightly flaky because we may read a map entry in the middle of an update | 
|  | // when active times have been updated but policy times have not. This happens infrequently | 
|  | // and can be distinguished from more serious bugs by re-running the test: if the underlying | 
|  | // data itself is inconsistent, the test will fail every time. | 
|  | ASSERT_LE(activeSum, policySum); | 
|  | policySum -= activeSum; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void TestUidTimesConsistent(const std::vector<std::vector<uint64_t>> &timeInState, | 
|  | const struct concurrent_time_t &concurrentTime) { | 
|  | ASSERT_NO_FATAL_FAILURE(TestConcurrentTimesConsistent(concurrentTime)); | 
|  | ASSERT_EQ(timeInState.size(), concurrentTime.policy.size()); | 
|  | uint64_t policySum = 0; | 
|  | for (uint32_t i = 0; i < timeInState.size(); ++i) { | 
|  | uint64_t tisSum = | 
|  | std::accumulate(timeInState[i].begin(), timeInState[i].end(), (uint64_t)0); | 
|  | uint64_t concurrentSum = std::accumulate(concurrentTime.policy[i].begin(), | 
|  | concurrentTime.policy[i].end(), (uint64_t)0); | 
|  | if (tisSum < concurrentSum) | 
|  | ASSERT_LE(concurrentSum - tisSum, NSEC_PER_SEC); | 
|  | else | 
|  | ASSERT_LE(tisSum - concurrentSum, NSEC_PER_SEC); | 
|  | policySum += concurrentSum; | 
|  | } | 
|  | uint64_t activeSum = std::accumulate(concurrentTime.active.begin(), concurrentTime.active.end(), | 
|  | (uint64_t)0); | 
|  | EXPECT_EQ(activeSum, policySum); | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, SingleUidTimesConsistent) { | 
|  | auto times = getUidCpuFreqTimes(0); | 
|  | ASSERT_TRUE(times.has_value()); | 
|  |  | 
|  | auto concurrentTimes = getUidConcurrentTimes(0); | 
|  | ASSERT_TRUE(concurrentTimes.has_value()); | 
|  |  | 
|  | ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(*times, *concurrentTimes)); | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidTimeInState) { | 
|  | uint64_t zero = 0; | 
|  | auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; | 
|  | for (const auto &map : maps) { | 
|  | ASSERT_TRUE(map.has_value()); | 
|  |  | 
|  | ASSERT_FALSE(map->empty()); | 
|  |  | 
|  | vector<size_t> sizes; | 
|  | auto firstEntry = map->begin()->second; | 
|  | for (const auto &subEntry : firstEntry) sizes.emplace_back(subEntry.size()); | 
|  |  | 
|  | for (const auto &vec : *map) { | 
|  | ASSERT_EQ(vec.second.size(), sizes.size()); | 
|  | for (size_t i = 0; i < vec.second.size(); ++i) ASSERT_EQ(vec.second[i].size(), sizes[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void TestCheckUpdate(const std::vector<std::vector<uint64_t>> &before, | 
|  | const std::vector<std::vector<uint64_t>> &after) { | 
|  | ASSERT_EQ(before.size(), after.size()); | 
|  | uint64_t sumBefore = 0, sumAfter = 0; | 
|  | for (size_t i = 0; i < before.size(); ++i) { | 
|  | ASSERT_EQ(before[i].size(), after[i].size()); | 
|  | for (size_t j = 0; j < before[i].size(); ++j) { | 
|  | // Times should never decrease | 
|  | ASSERT_LE(before[i][j], after[i][j]); | 
|  | } | 
|  | sumBefore += std::accumulate(before[i].begin(), before[i].end(), (uint64_t)0); | 
|  | sumAfter += std::accumulate(after[i].begin(), after[i].end(), (uint64_t)0); | 
|  | } | 
|  | ASSERT_LE(sumBefore, sumAfter); | 
|  | ASSERT_LE(sumAfter - sumBefore, NSEC_PER_SEC); | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidUpdatedTimeInState) { | 
|  | uint64_t lastUpdate = 0; | 
|  | auto map1 = getUidsUpdatedCpuFreqTimes(&lastUpdate); | 
|  | ASSERT_TRUE(map1.has_value()); | 
|  | ASSERT_FALSE(map1->empty()); | 
|  | ASSERT_NE(lastUpdate, (uint64_t)0); | 
|  | uint64_t oldLastUpdate = lastUpdate; | 
|  |  | 
|  | // Sleep briefly to trigger a context switch, ensuring we see at least one update. | 
|  | struct timespec ts; | 
|  | ts.tv_sec = 0; | 
|  | ts.tv_nsec = 1000000; | 
|  | nanosleep (&ts, NULL); | 
|  |  | 
|  | auto map2 = getUidsUpdatedCpuFreqTimes(&lastUpdate); | 
|  | ASSERT_TRUE(map2.has_value()); | 
|  | ASSERT_FALSE(map2->empty()); | 
|  | ASSERT_NE(lastUpdate, oldLastUpdate); | 
|  |  | 
|  | bool someUidsExcluded = false; | 
|  | for (const auto &[uid, v] : *map1) { | 
|  | if (map2->find(uid) == map2->end()) { | 
|  | someUidsExcluded = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ASSERT_TRUE(someUidsExcluded); | 
|  |  | 
|  | for (const auto &[uid, newTimes] : *map2) { | 
|  | ASSERT_NE(map1->find(uid), map1->end()); | 
|  | ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid], newTimes)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, TotalAndAllUidTimeInStateConsistent) { | 
|  | auto allUid = getUidsCpuFreqTimes(); | 
|  | auto total = getTotalCpuFreqTimes(); | 
|  |  | 
|  | ASSERT_TRUE(allUid.has_value() && total.has_value()); | 
|  |  | 
|  | // Check the number of policies. | 
|  | ASSERT_EQ(allUid->at(0).size(), total->size()); | 
|  |  | 
|  | for (uint32_t policyIdx = 0; policyIdx < total->size(); ++policyIdx) { | 
|  | std::vector<uint64_t> totalTimes = total->at(policyIdx); | 
|  | uint32_t totalFreqsCount = totalTimes.size(); | 
|  | std::vector<uint64_t> allUidTimes(totalFreqsCount, 0); | 
|  | for (auto const &[uid, uidTimes]: *allUid) { | 
|  | if (uid == AID_SDK_SANDBOX) continue; | 
|  | for (uint32_t freqIdx = 0; freqIdx < uidTimes[policyIdx].size(); ++freqIdx) { | 
|  | allUidTimes[std::min(freqIdx, totalFreqsCount - 1)] += uidTimes[policyIdx][freqIdx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (uint32_t freqIdx = 0; freqIdx < totalFreqsCount; ++freqIdx) { | 
|  | ASSERT_LE(allUidTimes[freqIdx], totalTimes[freqIdx]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, SingleAndAllUidTimeInStateConsistent) { | 
|  | uint64_t zero = 0; | 
|  | auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; | 
|  | for (const auto &map : maps) { | 
|  | ASSERT_TRUE(map.has_value()); | 
|  | ASSERT_FALSE(map->empty()); | 
|  |  | 
|  | for (const auto &kv : *map) { | 
|  | uint32_t uid = kv.first; | 
|  | auto times1 = kv.second; | 
|  | auto times2 = getUidCpuFreqTimes(uid); | 
|  | ASSERT_TRUE(times2.has_value()); | 
|  |  | 
|  | ASSERT_EQ(times1.size(), times2->size()); | 
|  | for (uint32_t i = 0; i < times1.size(); ++i) { | 
|  | ASSERT_EQ(times1[i].size(), (*times2)[i].size()); | 
|  | for (uint32_t j = 0; j < times1[i].size(); ++j) { | 
|  | ASSERT_LE((*times2)[i][j] - times1[i][j], NSEC_PER_SEC); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidConcurrentTimes) { | 
|  | uint64_t zero = 0; | 
|  | auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; | 
|  | for (const auto &map : maps) { | 
|  | ASSERT_TRUE(map.has_value()); | 
|  | ASSERT_FALSE(map->empty()); | 
|  |  | 
|  | auto firstEntry = map->begin()->second; | 
|  | for (const auto &kv : *map) { | 
|  | ASSERT_EQ(kv.second.active.size(), firstEntry.active.size()); | 
|  | ASSERT_EQ(kv.second.policy.size(), firstEntry.policy.size()); | 
|  | for (size_t i = 0; i < kv.second.policy.size(); ++i) { | 
|  | ASSERT_EQ(kv.second.policy[i].size(), firstEntry.policy[i].size()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidUpdatedConcurrentTimes) { | 
|  | uint64_t lastUpdate = 0; | 
|  | auto map1 = getUidsUpdatedConcurrentTimes(&lastUpdate); | 
|  | ASSERT_TRUE(map1.has_value()); | 
|  | ASSERT_FALSE(map1->empty()); | 
|  | ASSERT_NE(lastUpdate, (uint64_t)0); | 
|  |  | 
|  | // Sleep briefly to trigger a context switch, ensuring we see at least one update. | 
|  | struct timespec ts; | 
|  | ts.tv_sec = 0; | 
|  | ts.tv_nsec = 1000000; | 
|  | nanosleep (&ts, NULL); | 
|  |  | 
|  | uint64_t oldLastUpdate = lastUpdate; | 
|  | auto map2 = getUidsUpdatedConcurrentTimes(&lastUpdate); | 
|  | ASSERT_TRUE(map2.has_value()); | 
|  | ASSERT_FALSE(map2->empty()); | 
|  | ASSERT_NE(lastUpdate, oldLastUpdate); | 
|  |  | 
|  | bool someUidsExcluded = false; | 
|  | for (const auto &[uid, v] : *map1) { | 
|  | if (map2->find(uid) == map2->end()) { | 
|  | someUidsExcluded = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ASSERT_TRUE(someUidsExcluded); | 
|  |  | 
|  | for (const auto &[uid, newTimes] : *map2) { | 
|  | ASSERT_NE(map1->find(uid), map1->end()); | 
|  | ASSERT_NO_FATAL_FAILURE(TestCheckUpdate({(*map1)[uid].active},{newTimes.active})); | 
|  | ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid].policy, newTimes.policy)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, SingleAndAllUidConcurrentTimesConsistent) { | 
|  | uint64_t zero = 0; | 
|  | auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; | 
|  | for (const auto &map : maps) { | 
|  | ASSERT_TRUE(map.has_value()); | 
|  | for (const auto &kv : *map) { | 
|  | uint32_t uid = kv.first; | 
|  | auto times1 = kv.second; | 
|  | auto times2 = getUidConcurrentTimes(uid); | 
|  | ASSERT_TRUE(times2.has_value()); | 
|  | for (uint32_t i = 0; i < times1.active.size(); ++i) { | 
|  | ASSERT_LE(times2->active[i] - times1.active[i], NSEC_PER_SEC); | 
|  | } | 
|  | for (uint32_t i = 0; i < times1.policy.size(); ++i) { | 
|  | for (uint32_t j = 0; j < times1.policy[i].size(); ++j) { | 
|  | ASSERT_LE(times2->policy[i][j] - times1.policy[i][j], NSEC_PER_SEC); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void TestCheckDelta(uint64_t before, uint64_t after) { | 
|  | // Times should never decrease | 
|  | ASSERT_LE(before, after); | 
|  | // UID can't have run for more than ~1s on each CPU | 
|  | ASSERT_LE(after - before, NSEC_PER_SEC * 2 * get_nprocs_conf()); | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, TotalTimeInStateMonotonic) { | 
|  | auto before = getTotalCpuFreqTimes(); | 
|  | ASSERT_TRUE(before.has_value()); | 
|  | sleep(1); | 
|  | auto after = getTotalCpuFreqTimes(); | 
|  | ASSERT_TRUE(after.has_value()); | 
|  |  | 
|  | for (uint32_t policyIdx = 0; policyIdx < after->size(); ++policyIdx) { | 
|  | auto timesBefore = before->at(policyIdx); | 
|  | auto timesAfter = after->at(policyIdx); | 
|  | for (uint32_t freqIdx = 0; freqIdx < timesAfter.size(); ++freqIdx) { | 
|  | ASSERT_NO_FATAL_FAILURE(TestCheckDelta(timesBefore[freqIdx], timesAfter[freqIdx])); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidTimeInStateMonotonic) { | 
|  | auto map1 = getUidsCpuFreqTimes(); | 
|  | ASSERT_TRUE(map1.has_value()); | 
|  | sleep(1); | 
|  | auto map2 = getUidsCpuFreqTimes(); | 
|  | ASSERT_TRUE(map2.has_value()); | 
|  |  | 
|  | for (const auto &kv : *map1) { | 
|  | uint32_t uid = kv.first; | 
|  | auto times = kv.second; | 
|  | ASSERT_NE(map2->find(uid), map2->end()); | 
|  | for (uint32_t policy = 0; policy < times.size(); ++policy) { | 
|  | for (uint32_t freqIdx = 0; freqIdx < times[policy].size(); ++freqIdx) { | 
|  | auto before = times[policy][freqIdx]; | 
|  | auto after = (*map2)[uid][policy][freqIdx]; | 
|  | ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidConcurrentTimesMonotonic) { | 
|  | auto map1 = getUidsConcurrentTimes(); | 
|  | ASSERT_TRUE(map1.has_value()); | 
|  | ASSERT_FALSE(map1->empty()); | 
|  | sleep(1); | 
|  | auto map2 = getUidsConcurrentTimes(); | 
|  | ASSERT_TRUE(map2.has_value()); | 
|  | ASSERT_FALSE(map2->empty()); | 
|  |  | 
|  | for (const auto &kv : *map1) { | 
|  | uint32_t uid = kv.first; | 
|  | auto times = kv.second; | 
|  | ASSERT_NE(map2->find(uid), map2->end()); | 
|  | for (uint32_t i = 0; i < times.active.size(); ++i) { | 
|  | auto before = times.active[i]; | 
|  | auto after = (*map2)[uid].active[i]; | 
|  | ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); | 
|  | } | 
|  | for (uint32_t policy = 0; policy < times.policy.size(); ++policy) { | 
|  | for (uint32_t idx = 0; idx < times.policy[policy].size(); ++idx) { | 
|  | auto before = times.policy[policy][idx]; | 
|  | auto after = (*map2)[uid].policy[policy][idx]; | 
|  | ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidTimeInStateSanityCheck) { | 
|  | uint64_t zero = 0; | 
|  | auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; | 
|  | for (const auto &map : maps) { | 
|  | ASSERT_TRUE(map.has_value()); | 
|  |  | 
|  | bool foundLargeValue = false; | 
|  | for (const auto &kv : *map) { | 
|  | for (const auto &timeVec : kv.second) { | 
|  | for (const auto &time : timeVec) { | 
|  | ASSERT_LE(time, NSEC_PER_YEAR); | 
|  | if (time > UINT32_MAX) foundLargeValue = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using | 
|  | // uint64_t as expected, we should have some times higher than that. | 
|  | ASSERT_TRUE(foundLargeValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidConcurrentTimesSanityCheck) { | 
|  | uint64_t zero = 0; | 
|  | auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; | 
|  | for (const auto &concurrentMap : maps) { | 
|  | ASSERT_TRUE(concurrentMap); | 
|  |  | 
|  | bool activeFoundLargeValue = false; | 
|  | bool policyFoundLargeValue = false; | 
|  | for (const auto &kv : *concurrentMap) { | 
|  | for (const auto &time : kv.second.active) { | 
|  | ASSERT_LE(time, NSEC_PER_YEAR); | 
|  | if (time > UINT32_MAX) activeFoundLargeValue = true; | 
|  | } | 
|  | for (const auto &policyTimeVec : kv.second.policy) { | 
|  | for (const auto &time : policyTimeVec) { | 
|  | ASSERT_LE(time, NSEC_PER_YEAR); | 
|  | if (time > UINT32_MAX) policyFoundLargeValue = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using | 
|  | // uint64_t as expected, we should have some times higher than that. | 
|  | ASSERT_TRUE(activeFoundLargeValue); | 
|  | ASSERT_TRUE(policyFoundLargeValue); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidConcurrentTimesFailsOnInvalidBucket) { | 
|  | uint32_t uid = 0; | 
|  | { | 
|  | // Find an unused UID | 
|  | auto map = getUidsConcurrentTimes(); | 
|  | ASSERT_TRUE(map.has_value()); | 
|  | ASSERT_FALSE(map->empty()); | 
|  | for (const auto &kv : *map) uid = std::max(uid, kv.first); | 
|  | ++uid; | 
|  | } | 
|  | android::base::unique_fd fd{ | 
|  | bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")}; | 
|  | ASSERT_GE(fd, 0); | 
|  | uint32_t nCpus = get_nprocs_conf(); | 
|  | uint32_t maxBucket = (nCpus - 1) / CPUS_PER_ENTRY; | 
|  | time_key_t key = {.uid = uid, .bucket = maxBucket + 1}; | 
|  | std::vector<concurrent_val_t> vals(nCpus); | 
|  | ASSERT_FALSE(writeToMapEntry(fd, &key, vals.data(), BPF_NOEXIST)); | 
|  | EXPECT_FALSE(getUidsConcurrentTimes().has_value()); | 
|  | ASSERT_FALSE(deleteMapEntry(fd, &key)); | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, AllUidTimesConsistent) { | 
|  | auto tisMap = getUidsCpuFreqTimes(); | 
|  | ASSERT_TRUE(tisMap.has_value()); | 
|  |  | 
|  | auto concurrentMap = getUidsConcurrentTimes(); | 
|  | ASSERT_TRUE(concurrentMap.has_value()); | 
|  |  | 
|  | ASSERT_EQ(tisMap->size(), concurrentMap->size()); | 
|  | for (const auto &kv : *tisMap) { | 
|  | uint32_t uid = kv.first; | 
|  | auto times = kv.second; | 
|  | ASSERT_NE(concurrentMap->find(uid), concurrentMap->end()); | 
|  |  | 
|  | auto concurrentTimes = (*concurrentMap)[uid]; | 
|  | ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(times, concurrentTimes)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, RemoveUid) { | 
|  | uint32_t uid = 0; | 
|  | { | 
|  | // Find an unused UID | 
|  | auto times = getUidsCpuFreqTimes(); | 
|  | ASSERT_TRUE(times.has_value()); | 
|  | ASSERT_FALSE(times->empty()); | 
|  | for (const auto &kv : *times) uid = std::max(uid, kv.first); | 
|  | ++uid; | 
|  | } | 
|  | { | 
|  | // Add a map entry for our fake UID by copying a real map entry | 
|  | android::base::unique_fd fd{ | 
|  | bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_time_in_state_map")}; | 
|  | ASSERT_GE(fd, 0); | 
|  | time_key_t k; | 
|  | ASSERT_FALSE(getFirstMapKey(fd, &k)); | 
|  | std::vector<tis_val_t> vals(get_nprocs_conf()); | 
|  | ASSERT_FALSE(findMapEntry(fd, &k, vals.data())); | 
|  | uint32_t copiedUid = k.uid; | 
|  | k.uid = uid; | 
|  | ASSERT_FALSE(writeToMapEntry(fd, &k, vals.data(), BPF_NOEXIST)); | 
|  |  | 
|  | android::base::unique_fd fd2{ | 
|  | bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")}; | 
|  | k.uid = copiedUid; | 
|  | k.bucket = 0; | 
|  | std::vector<concurrent_val_t> cvals(get_nprocs_conf()); | 
|  | ASSERT_FALSE(findMapEntry(fd2, &k, cvals.data())); | 
|  | k.uid = uid; | 
|  | ASSERT_FALSE(writeToMapEntry(fd2, &k, cvals.data(), BPF_NOEXIST)); | 
|  | } | 
|  | auto times = getUidCpuFreqTimes(uid); | 
|  | ASSERT_TRUE(times.has_value()); | 
|  | ASSERT_FALSE(times->empty()); | 
|  |  | 
|  | auto concurrentTimes = getUidConcurrentTimes(0); | 
|  | ASSERT_TRUE(concurrentTimes.has_value()); | 
|  | ASSERT_FALSE(concurrentTimes->active.empty()); | 
|  | ASSERT_FALSE(concurrentTimes->policy.empty()); | 
|  |  | 
|  | uint64_t sum = 0; | 
|  | for (size_t i = 0; i < times->size(); ++i) { | 
|  | for (auto x : (*times)[i]) sum += x; | 
|  | } | 
|  | ASSERT_GT(sum, (uint64_t)0); | 
|  |  | 
|  | uint64_t activeSum = 0; | 
|  | for (size_t i = 0; i < concurrentTimes->active.size(); ++i) { | 
|  | activeSum += concurrentTimes->active[i]; | 
|  | } | 
|  | ASSERT_GT(activeSum, (uint64_t)0); | 
|  |  | 
|  | ASSERT_TRUE(clearUidTimes(uid)); | 
|  |  | 
|  | auto allTimes = getUidsCpuFreqTimes(); | 
|  | ASSERT_TRUE(allTimes.has_value()); | 
|  | ASSERT_FALSE(allTimes->empty()); | 
|  | ASSERT_EQ(allTimes->find(uid), allTimes->end()); | 
|  |  | 
|  | auto allConcurrentTimes = getUidsConcurrentTimes(); | 
|  | ASSERT_TRUE(allConcurrentTimes.has_value()); | 
|  | ASSERT_FALSE(allConcurrentTimes->empty()); | 
|  | ASSERT_EQ(allConcurrentTimes->find(uid), allConcurrentTimes->end()); | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, GetCpuFreqs) { | 
|  | auto freqs = getCpuFreqs(); | 
|  | ASSERT_TRUE(freqs.has_value()); | 
|  |  | 
|  | auto times = getUidCpuFreqTimes(0); | 
|  | ASSERT_TRUE(times.has_value()); | 
|  |  | 
|  | ASSERT_EQ(freqs->size(), times->size()); | 
|  | for (size_t i = 0; i < freqs->size(); ++i) EXPECT_EQ((*freqs)[i].size(), (*times)[i].size()); | 
|  | } | 
|  |  | 
|  | uint64_t timeNanos() { | 
|  | struct timespec spec; | 
|  | clock_gettime(CLOCK_MONOTONIC, &spec); | 
|  | return spec.tv_sec * 1000000000 + spec.tv_nsec; | 
|  | } | 
|  |  | 
|  | // Keeps CPU busy with some number crunching | 
|  | void useCpu() { | 
|  | long sum = 0; | 
|  | for (int i = 0; i < 100000; i++) { | 
|  | sum *= i; | 
|  | } | 
|  | } | 
|  |  | 
|  | sem_t pingsem, pongsem; | 
|  |  | 
|  | void *testThread(void *) { | 
|  | for (int i = 0; i < 10; i++) { | 
|  | sem_wait(&pingsem); | 
|  | useCpu(); | 
|  | sem_post(&pongsem); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, GetAggregatedTaskCpuFreqTimes) { | 
|  | uint64_t startTimeNs = timeNanos(); | 
|  |  | 
|  | sem_init(&pingsem, 0, 1); | 
|  | sem_init(&pongsem, 0, 0); | 
|  |  | 
|  | pthread_t thread; | 
|  | ASSERT_EQ(pthread_create(&thread, NULL, &testThread, NULL), 0); | 
|  |  | 
|  | // This process may have been running for some time, so when we start tracking | 
|  | // CPU time, the very first switch may include the accumulated time. | 
|  | // Yield the remainder of this timeslice to the newly created thread. | 
|  | sem_wait(&pongsem); | 
|  | sem_post(&pingsem); | 
|  |  | 
|  | pid_t tgid = getpid(); | 
|  | startTrackingProcessCpuTimes(tgid); | 
|  |  | 
|  | pid_t tid = pthread_gettid_np(thread); | 
|  | startAggregatingTaskCpuTimes(tid, 42); | 
|  |  | 
|  | // Play ping-pong with the other thread to ensure that both threads get | 
|  | // some CPU time. | 
|  | for (int i = 0; i < 9; i++) { | 
|  | sem_wait(&pongsem); | 
|  | useCpu(); | 
|  | sem_post(&pingsem); | 
|  | } | 
|  |  | 
|  | pthread_join(thread, NULL); | 
|  |  | 
|  | std::optional<std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>>> optionalMap = | 
|  | getAggregatedTaskCpuFreqTimes(tgid, {0, 42}); | 
|  | ASSERT_TRUE(optionalMap); | 
|  |  | 
|  | std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>> map = *optionalMap; | 
|  | ASSERT_EQ(map.size(), 2u); | 
|  |  | 
|  | uint64_t testDurationNs = timeNanos() - startTimeNs; | 
|  | for (auto pair : map) { | 
|  | uint16_t aggregationKey = pair.first; | 
|  | ASSERT_TRUE(aggregationKey == 0 || aggregationKey == 42); | 
|  |  | 
|  | std::vector<std::vector<uint64_t>> timesInState = pair.second; | 
|  | uint64_t totalCpuTime = 0; | 
|  | for (size_t i = 0; i < timesInState.size(); i++) { | 
|  | for (size_t j = 0; j < timesInState[i].size(); j++) { | 
|  | totalCpuTime += timesInState[i][j]; | 
|  | } | 
|  | } | 
|  | ASSERT_GT(totalCpuTime, 0ul); | 
|  | ASSERT_LE(totalCpuTime, testDurationNs); | 
|  | } | 
|  | } | 
|  |  | 
|  | void *forceSwitchWithUid(void *uidPtr) { | 
|  | if (!uidPtr) return nullptr; | 
|  | setuid(*(uint32_t *)uidPtr); | 
|  |  | 
|  | // Sleep briefly to trigger a context switch, ensuring we see at least one update. | 
|  | struct timespec ts; | 
|  | ts.tv_sec = 0; | 
|  | ts.tv_nsec = 1000000; | 
|  | nanosleep(&ts, NULL); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | TEST_F(TimeInStateTest, SdkSandboxUid) { | 
|  | // Find an unused app UID and its corresponding SDK sandbox uid. | 
|  | uint32_t appUid = AID_APP_START, sandboxUid; | 
|  | { | 
|  | auto times = getUidsCpuFreqTimes(); | 
|  | ASSERT_TRUE(times.has_value()); | 
|  | ASSERT_FALSE(times->empty()); | 
|  | for (const auto &kv : *times) { | 
|  | if (kv.first > AID_APP_END) break; | 
|  | appUid = std::max(appUid, kv.first); | 
|  | } | 
|  | appUid++; | 
|  | sandboxUid = appUid + (AID_SDK_SANDBOX_PROCESS_START - AID_APP_START); | 
|  | } | 
|  |  | 
|  | // Create a thread to run with the fake sandbox uid. | 
|  | pthread_t thread; | 
|  | ASSERT_EQ(pthread_create(&thread, NULL, &forceSwitchWithUid, &sandboxUid), 0); | 
|  | pthread_join(thread, NULL); | 
|  |  | 
|  | // Confirm we recorded stats for appUid and AID_SDK_SANDBOX but not sandboxUid | 
|  | auto allTimes = getUidsCpuFreqTimes(); | 
|  | ASSERT_TRUE(allTimes.has_value()); | 
|  | ASSERT_FALSE(allTimes->empty()); | 
|  | ASSERT_NE(allTimes->find(appUid), allTimes->end()); | 
|  | ASSERT_NE(allTimes->find(AID_SDK_SANDBOX), allTimes->end()); | 
|  | ASSERT_EQ(allTimes->find(sandboxUid), allTimes->end()); | 
|  |  | 
|  | auto allConcurrentTimes = getUidsConcurrentTimes(); | 
|  | ASSERT_TRUE(allConcurrentTimes.has_value()); | 
|  | ASSERT_FALSE(allConcurrentTimes->empty()); | 
|  | ASSERT_NE(allConcurrentTimes->find(appUid), allConcurrentTimes->end()); | 
|  | ASSERT_NE(allConcurrentTimes->find(AID_SDK_SANDBOX), allConcurrentTimes->end()); | 
|  | ASSERT_EQ(allConcurrentTimes->find(sandboxUid), allConcurrentTimes->end()); | 
|  |  | 
|  | ASSERT_TRUE(clearUidTimes(appUid)); | 
|  | } | 
|  |  | 
|  | } // namespace bpf | 
|  | } // namespace android |