| /* |
| * Copyright 2018 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #undef LOG_TAG |
| #define LOG_TAG "Scheduler" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include "Scheduler.h" |
| |
| #include <android-base/properties.h> |
| #include <android-base/stringprintf.h> |
| #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> |
| #include <configstore/Utils.h> |
| #include <ftl/fake_guard.h> |
| #include <ftl/small_map.h> |
| #include <gui/WindowInfo.h> |
| #include <system/window.h> |
| #include <utils/Timers.h> |
| #include <utils/Trace.h> |
| |
| #include <FrameTimeline/FrameTimeline.h> |
| #include <algorithm> |
| #include <cinttypes> |
| #include <cstdint> |
| #include <functional> |
| #include <memory> |
| #include <numeric> |
| |
| #include "../Layer.h" |
| #include "DispSyncSource.h" |
| #include "Display/DisplayMap.h" |
| #include "EventThread.h" |
| #include "FrameRateOverrideMappings.h" |
| #include "OneShotTimer.h" |
| #include "SurfaceFlingerProperties.h" |
| #include "VSyncPredictor.h" |
| #include "VSyncReactor.h" |
| |
| #define RETURN_IF_INVALID_HANDLE(handle, ...) \ |
| do { \ |
| if (mConnections.count(handle) == 0) { \ |
| ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ |
| return __VA_ARGS__; \ |
| } \ |
| } while (false) |
| |
| namespace android::scheduler { |
| |
| Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features) |
| : impl::MessageQueue(compositor), mFeatures(features), mSchedulerCallback(callback) {} |
| |
| Scheduler::~Scheduler() { |
| // Stop timers and wait for their threads to exit. |
| mDisplayPowerTimer.reset(); |
| mTouchTimer.reset(); |
| |
| // Stop idle timer and clear callbacks, as the RefreshRateSelector may outlive the Scheduler. |
| setRefreshRateSelector(nullptr); |
| } |
| |
| void Scheduler::startTimers() { |
| using namespace sysprop; |
| using namespace std::string_literals; |
| |
| if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { |
| // Touch events are coming to SF every 100ms, so the timer needs to be higher than that |
| mTouchTimer.emplace( |
| "TouchTimer", std::chrono::milliseconds(millis), |
| [this] { touchTimerCallback(TimerState::Reset); }, |
| [this] { touchTimerCallback(TimerState::Expired); }); |
| mTouchTimer->start(); |
| } |
| |
| if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { |
| mDisplayPowerTimer.emplace( |
| "DisplayPowerTimer", std::chrono::milliseconds(millis), |
| [this] { displayPowerTimerCallback(TimerState::Reset); }, |
| [this] { displayPowerTimerCallback(TimerState::Expired); }); |
| mDisplayPowerTimer->start(); |
| } |
| } |
| |
| void Scheduler::setRefreshRateSelector(RefreshRateSelectorPtr selectorPtr) { |
| // The current RefreshRateSelector instance may outlive this call, so unbind its idle timer. |
| { |
| // mRefreshRateSelectorLock is not locked here to avoid the deadlock |
| // as the callback can attempt to acquire the lock before stopIdleTimer can finish |
| // the execution. It's safe to FakeGuard as main thread is the only thread that |
| // writes to the mRefreshRateSelector. |
| ftl::FakeGuard guard(mRefreshRateSelectorLock); |
| if (mRefreshRateSelector) { |
| mRefreshRateSelector->stopIdleTimer(); |
| mRefreshRateSelector->clearIdleTimerCallbacks(); |
| } |
| } |
| { |
| // Clear state that depends on the current instance. |
| std::scoped_lock lock(mPolicyLock); |
| mPolicy = {}; |
| } |
| |
| std::scoped_lock lock(mRefreshRateSelectorLock); |
| mRefreshRateSelector = std::move(selectorPtr); |
| if (!mRefreshRateSelector) return; |
| |
| mRefreshRateSelector->setIdleTimerCallbacks( |
| {.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); }, |
| .onExpired = [this] { idleTimerCallback(TimerState::Expired); }}, |
| .kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); }, |
| .onExpired = [this] { kernelIdleTimerCallback(TimerState::Expired); }}}); |
| |
| mRefreshRateSelector->startIdleTimer(); |
| } |
| |
| void Scheduler::registerDisplay(PhysicalDisplayId displayId, RefreshRateSelectorPtr selectorPtr) { |
| if (!mLeaderDisplayId) { |
| mLeaderDisplayId = displayId; |
| } |
| |
| mRefreshRateSelectors.emplace_or_replace(displayId, std::move(selectorPtr)); |
| } |
| |
| void Scheduler::unregisterDisplay(PhysicalDisplayId displayId) { |
| if (mLeaderDisplayId == displayId) { |
| mLeaderDisplayId.reset(); |
| } |
| |
| mRefreshRateSelectors.erase(displayId); |
| } |
| |
| void Scheduler::run() { |
| while (true) { |
| waitMessage(); |
| } |
| } |
| |
| void Scheduler::onFrameSignal(ICompositor& compositor, VsyncId vsyncId, |
| TimePoint expectedVsyncTime) { |
| const TimePoint frameTime = SchedulerClock::now(); |
| |
| if (!compositor.commit(frameTime, vsyncId, expectedVsyncTime)) { |
| return; |
| } |
| |
| compositor.composite(frameTime, vsyncId); |
| compositor.sample(); |
| } |
| |
| void Scheduler::createVsyncSchedule(FeatureFlags features) { |
| mVsyncSchedule.emplace(features); |
| } |
| |
| std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource( |
| const char* name, std::chrono::nanoseconds workDuration, |
| std::chrono::nanoseconds readyDuration, bool traceVsync) { |
| return std::make_unique<scheduler::DispSyncSource>(mVsyncSchedule->getDispatch(), |
| mVsyncSchedule->getTracker(), workDuration, |
| readyDuration, traceVsync, name); |
| } |
| |
| std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const { |
| const bool supportsFrameRateOverrideByContent = |
| holdRefreshRateSelector()->supportsFrameRateOverrideByContent(); |
| return mFrameRateOverrideMappings |
| .getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent); |
| } |
| |
| bool Scheduler::isVsyncValid(TimePoint expectedVsyncTimestamp, uid_t uid) const { |
| const auto frameRate = getFrameRateOverride(uid); |
| if (!frameRate.has_value()) { |
| return true; |
| } |
| |
| return mVsyncSchedule->getTracker().isVSyncInPhase(expectedVsyncTimestamp.ns(), *frameRate); |
| } |
| |
| impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const { |
| std::scoped_lock lock(mRefreshRateSelectorLock); |
| |
| return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) { |
| return !isVsyncValid(TimePoint::fromNs(expectedVsyncTimestamp), uid); |
| }; |
| } |
| |
| impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const { |
| return [this](uid_t uid) { |
| const Fps refreshRate = holdRefreshRateSelector()->getActiveModePtr()->getFps(); |
| const nsecs_t currentPeriod = mVsyncSchedule->period().ns() ?: refreshRate.getPeriodNsecs(); |
| |
| const auto frameRate = getFrameRateOverride(uid); |
| if (!frameRate.has_value()) { |
| return currentPeriod; |
| } |
| |
| const auto divisor = RefreshRateSelector::getFrameRateDivisor(refreshRate, *frameRate); |
| if (divisor <= 1) { |
| return currentPeriod; |
| } |
| return currentPeriod * divisor; |
| }; |
| } |
| |
| ConnectionHandle Scheduler::createConnection(const char* connectionName, |
| frametimeline::TokenManager* tokenManager, |
| std::chrono::nanoseconds workDuration, |
| std::chrono::nanoseconds readyDuration) { |
| auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration); |
| auto throttleVsync = makeThrottleVsyncCallback(); |
| auto getVsyncPeriod = makeGetVsyncPeriodFunction(); |
| auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), tokenManager, |
| std::move(throttleVsync), |
| std::move(getVsyncPeriod)); |
| return createConnection(std::move(eventThread)); |
| } |
| |
| ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) { |
| const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; |
| ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); |
| |
| auto connection = createConnectionInternal(eventThread.get()); |
| |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); |
| return handle; |
| } |
| |
| sp<EventThreadConnection> Scheduler::createConnectionInternal( |
| EventThread* eventThread, EventRegistrationFlags eventRegistration) { |
| return eventThread->createEventConnection([&] { resync(); }, eventRegistration); |
| } |
| |
| sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( |
| ConnectionHandle handle, EventRegistrationFlags eventRegistration) { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle, nullptr); |
| return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration); |
| } |
| |
| sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle, nullptr); |
| return mConnections[handle].connection; |
| } |
| |
| void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, |
| bool connected) { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| |
| thread->onHotplugReceived(displayId, connected); |
| } |
| |
| void Scheduler::onScreenAcquired(ConnectionHandle handle) { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| thread->onScreenAcquired(); |
| mScreenAcquired = true; |
| } |
| |
| void Scheduler::onScreenReleased(ConnectionHandle handle) { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| thread->onScreenReleased(); |
| mScreenAcquired = false; |
| } |
| |
| void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) { |
| const bool supportsFrameRateOverrideByContent = |
| holdRefreshRateSelector()->supportsFrameRateOverrideByContent(); |
| |
| std::vector<FrameRateOverride> overrides = |
| mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent); |
| |
| android::EventThread* thread; |
| { |
| std::lock_guard lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| thread->onFrameRateOverridesChanged(displayId, std::move(overrides)); |
| } |
| |
| void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) { |
| { |
| std::lock_guard<std::mutex> lock(mPolicyLock); |
| // Cache the last reported modes for primary display. |
| mPolicy.cachedModeChangedParams = {handle, mode}; |
| |
| // Invalidate content based refresh rate selection so it could be calculated |
| // again for the new refresh rate. |
| mPolicy.contentRequirements.clear(); |
| } |
| onNonPrimaryDisplayModeChanged(handle, mode); |
| } |
| |
| void Scheduler::dispatchCachedReportedMode() { |
| // Check optional fields first. |
| if (!mPolicy.mode) { |
| ALOGW("No mode ID found, not dispatching cached mode."); |
| return; |
| } |
| if (!mPolicy.cachedModeChangedParams) { |
| ALOGW("No mode changed params found, not dispatching cached mode."); |
| return; |
| } |
| |
| // If the mode is not the current mode, this means that a |
| // mode change is in progress. In that case we shouldn't dispatch an event |
| // as it will be dispatched when the current mode changes. |
| if (std::scoped_lock lock(mRefreshRateSelectorLock); |
| mRefreshRateSelector->getActiveModePtr() != mPolicy.mode) { |
| return; |
| } |
| |
| // If there is no change from cached mode, there is no need to dispatch an event |
| if (mPolicy.mode == mPolicy.cachedModeChangedParams->mode) { |
| return; |
| } |
| |
| mPolicy.cachedModeChangedParams->mode = mPolicy.mode; |
| onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->handle, |
| mPolicy.cachedModeChangedParams->mode); |
| } |
| |
| void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| thread->onModeChanged(mode); |
| } |
| |
| size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle, 0); |
| return mConnections[handle].thread->getEventThreadConnectionCount(); |
| } |
| |
| void Scheduler::dump(ConnectionHandle handle, std::string& result) const { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections.at(handle).thread.get(); |
| } |
| thread->dump(result); |
| } |
| |
| void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration, |
| std::chrono::nanoseconds readyDuration) { |
| android::EventThread* thread; |
| { |
| std::lock_guard<std::mutex> lock(mConnectionsLock); |
| RETURN_IF_INVALID_HANDLE(handle); |
| thread = mConnections[handle].thread.get(); |
| } |
| thread->setDuration(workDuration, readyDuration); |
| } |
| |
| void Scheduler::enableHardwareVsync() { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { |
| mVsyncSchedule->getTracker().resetModel(); |
| mSchedulerCallback.setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void Scheduler::disableHardwareVsync(bool makeUnavailable) { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| mSchedulerCallback.setVsyncEnabled(false); |
| mPrimaryHWVsyncEnabled = false; |
| } |
| if (makeUnavailable) { |
| mHWVsyncAvailable = false; |
| } |
| } |
| |
| void Scheduler::resyncToHardwareVsync(bool makeAvailable, Fps refreshRate) { |
| { |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (makeAvailable) { |
| mHWVsyncAvailable = makeAvailable; |
| } else if (!mHWVsyncAvailable) { |
| // Hardware vsync is not currently available, so abort the resync |
| // attempt for now |
| return; |
| } |
| } |
| |
| setVsyncPeriod(refreshRate.getPeriodNsecs()); |
| } |
| |
| void Scheduler::resync() { |
| static constexpr nsecs_t kIgnoreDelay = ms2ns(750); |
| |
| const nsecs_t now = systemTime(); |
| const nsecs_t last = mLastResyncTime.exchange(now); |
| |
| if (now - last > kIgnoreDelay) { |
| const auto refreshRate = [&] { |
| std::scoped_lock lock(mRefreshRateSelectorLock); |
| return mRefreshRateSelector->getActiveModePtr()->getFps(); |
| }(); |
| resyncToHardwareVsync(false, refreshRate); |
| } |
| } |
| |
| void Scheduler::setVsyncPeriod(nsecs_t period) { |
| if (period <= 0) return; |
| |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| mVsyncSchedule->getController().startPeriodTransition(period); |
| |
| if (!mPrimaryHWVsyncEnabled) { |
| mVsyncSchedule->getTracker().resetModel(); |
| mSchedulerCallback.setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod, |
| bool* periodFlushed) { |
| bool needsHwVsync = false; |
| *periodFlushed = false; |
| { // Scope for the lock |
| std::lock_guard<std::mutex> lock(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| needsHwVsync = |
| mVsyncSchedule->getController().addHwVsyncTimestamp(timestamp, hwcVsyncPeriod, |
| periodFlushed); |
| } |
| } |
| |
| if (needsHwVsync) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| void Scheduler::addPresentFence(std::shared_ptr<FenceTime> fence) { |
| if (mVsyncSchedule->getController().addPresentFence(std::move(fence))) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| void Scheduler::registerLayer(Layer* layer) { |
| // If the content detection feature is off, we still keep the layer history, |
| // since we use it for other features (like Frame Rate API), so layers |
| // still need to be registered. |
| mLayerHistory.registerLayer(layer, mFeatures.test(Feature::kContentDetection)); |
| } |
| |
| void Scheduler::deregisterLayer(Layer* layer) { |
| mLayerHistory.deregisterLayer(layer); |
| } |
| |
| void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime, |
| LayerHistory::LayerUpdateType updateType) { |
| { |
| std::scoped_lock lock(mRefreshRateSelectorLock); |
| if (!mRefreshRateSelector->canSwitch()) return; |
| } |
| |
| mLayerHistory.record(layer, presentTime, systemTime(), updateType); |
| } |
| |
| void Scheduler::setModeChangePending(bool pending) { |
| mLayerHistory.setModeChangePending(pending); |
| } |
| |
| void Scheduler::setDefaultFrameRateCompatibility(Layer* layer) { |
| mLayerHistory.setDefaultFrameRateCompatibility(layer, |
| mFeatures.test(Feature::kContentDetection)); |
| } |
| |
| void Scheduler::chooseRefreshRateForContent() { |
| const auto selectorPtr = holdRefreshRateSelector(); |
| if (!selectorPtr->canSwitch()) return; |
| |
| ATRACE_CALL(); |
| |
| LayerHistory::Summary summary = mLayerHistory.summarize(*selectorPtr, systemTime()); |
| applyPolicy(&Policy::contentRequirements, std::move(summary)); |
| } |
| |
| void Scheduler::resetIdleTimer() { |
| std::scoped_lock lock(mRefreshRateSelectorLock); |
| mRefreshRateSelector->resetIdleTimer(/*kernelOnly*/ false); |
| } |
| |
| void Scheduler::onTouchHint() { |
| if (mTouchTimer) { |
| mTouchTimer->reset(); |
| |
| std::scoped_lock lock(mRefreshRateSelectorLock); |
| mRefreshRateSelector->resetIdleTimer(/*kernelOnly*/ true); |
| } |
| } |
| |
| void Scheduler::setDisplayPowerMode(hal::PowerMode powerMode) { |
| { |
| std::lock_guard<std::mutex> lock(mPolicyLock); |
| mPolicy.displayPowerMode = powerMode; |
| } |
| mVsyncSchedule->getController().setDisplayPowerMode(powerMode); |
| |
| if (mDisplayPowerTimer) { |
| mDisplayPowerTimer->reset(); |
| } |
| |
| // Display Power event will boost the refresh rate to performance. |
| // Clear Layer History to get fresh FPS detection |
| mLayerHistory.clear(); |
| } |
| |
| void Scheduler::kernelIdleTimerCallback(TimerState state) { |
| ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state)); |
| |
| // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate |
| // magic number |
| const Fps refreshRate = [&] { |
| std::scoped_lock lock(mRefreshRateSelectorLock); |
| return mRefreshRateSelector->getActiveModePtr()->getFps(); |
| }(); |
| |
| constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz; |
| using namespace fps_approx_ops; |
| |
| if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) { |
| // If we're not in performance mode then the kernel timer shouldn't do |
| // anything, as the refresh rate during DPU power collapse will be the |
| // same. |
| resyncToHardwareVsync(true /* makeAvailable */, refreshRate); |
| } else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) { |
| // Disable HW VSYNC if the timer expired, as we don't need it enabled if |
| // we're not pushing frames, and if we're in PERFORMANCE mode then we'll |
| // need to update the VsyncController model anyway. |
| disableHardwareVsync(false /* makeUnavailable */); |
| } |
| |
| mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); |
| } |
| |
| void Scheduler::idleTimerCallback(TimerState state) { |
| applyPolicy(&Policy::idleTimer, state); |
| ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state)); |
| } |
| |
| void Scheduler::touchTimerCallback(TimerState state) { |
| const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; |
| // Touch event will boost the refresh rate to performance. |
| // Clear layer history to get fresh FPS detection. |
| // NOTE: Instead of checking all the layers, we should be checking the layer |
| // that is currently on top. b/142507166 will give us this capability. |
| if (applyPolicy(&Policy::touch, touch).touch) { |
| mLayerHistory.clear(); |
| } |
| ATRACE_INT("TouchState", static_cast<int>(touch)); |
| } |
| |
| void Scheduler::displayPowerTimerCallback(TimerState state) { |
| applyPolicy(&Policy::displayPowerTimer, state); |
| ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state)); |
| } |
| |
| void Scheduler::dump(std::string& result) const { |
| using base::StringAppendF; |
| |
| StringAppendF(&result, "+ Touch timer: %s\n", |
| mTouchTimer ? mTouchTimer->dump().c_str() : "off"); |
| StringAppendF(&result, "+ Content detection: %s %s\n\n", |
| mFeatures.test(Feature::kContentDetection) ? "on" : "off", |
| mLayerHistory.dump().c_str()); |
| |
| mFrameRateOverrideMappings.dump(result); |
| |
| { |
| std::lock_guard lock(mHWVsyncLock); |
| StringAppendF(&result, |
| "mScreenAcquired=%d mPrimaryHWVsyncEnabled=%d mHWVsyncAvailable=%d\n", |
| mScreenAcquired.load(), mPrimaryHWVsyncEnabled, mHWVsyncAvailable); |
| } |
| } |
| |
| void Scheduler::dumpVsync(std::string& out) const { |
| mVsyncSchedule->dump(out); |
| } |
| |
| bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) { |
| // we always update mFrameRateOverridesByContent here |
| // supportsFrameRateOverridesByContent will be checked |
| // when getting FrameRateOverrides from mFrameRateOverrideMappings |
| if (!consideredSignals.idle) { |
| const auto frameRateOverrides = |
| holdRefreshRateSelector()->getFrameRateOverrides(mPolicy.contentRequirements, |
| displayRefreshRate, |
| consideredSignals); |
| return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides); |
| } |
| return false; |
| } |
| |
| template <typename S, typename T> |
| auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals { |
| std::vector<display::DisplayModeRequest> modeRequests; |
| GlobalSignals consideredSignals; |
| |
| bool refreshRateChanged = false; |
| bool frameRateOverridesChanged; |
| |
| { |
| std::lock_guard<std::mutex> lock(mPolicyLock); |
| |
| auto& currentState = mPolicy.*statePtr; |
| if (currentState == newState) return {}; |
| currentState = std::forward<T>(newState); |
| |
| auto modeChoices = chooseDisplayModes(); |
| |
| // TODO(b/240743786): The leader display's mode must change for any DisplayModeRequest to go |
| // through. Fix this by tracking per-display Scheduler::Policy and timers. |
| DisplayModePtr modePtr; |
| std::tie(modePtr, consideredSignals) = |
| modeChoices.get(*mLeaderDisplayId) |
| .transform([](const DisplayModeChoice& choice) { |
| return std::make_pair(choice.modePtr, choice.consideredSignals); |
| }) |
| .value(); |
| |
| modeRequests.reserve(modeChoices.size()); |
| for (auto& [id, choice] : modeChoices) { |
| modeRequests.emplace_back( |
| display::DisplayModeRequest{.modePtr = |
| ftl::as_non_null(std::move(choice.modePtr)), |
| .emitEvent = !choice.consideredSignals.idle}); |
| } |
| |
| frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, modePtr->getFps()); |
| |
| if (mPolicy.mode != modePtr) { |
| mPolicy.mode = modePtr; |
| refreshRateChanged = true; |
| } else { |
| // We don't need to change the display mode, but we might need to send an event |
| // about a mode change, since it was suppressed if previously considered idle. |
| if (!consideredSignals.idle) { |
| dispatchCachedReportedMode(); |
| } |
| } |
| } |
| if (refreshRateChanged) { |
| mSchedulerCallback.requestDisplayModes(std::move(modeRequests)); |
| } |
| if (frameRateOverridesChanged) { |
| mSchedulerCallback.triggerOnFrameRateOverridesChanged(); |
| } |
| return consideredSignals; |
| } |
| |
| auto Scheduler::chooseDisplayModes() const -> DisplayModeChoiceMap { |
| ATRACE_CALL(); |
| |
| using RankedRefreshRates = RefreshRateSelector::RankedRefreshRates; |
| display::PhysicalDisplayVector<RankedRefreshRates> perDisplayRanking; |
| |
| // Tallies the score of a refresh rate across `displayCount` displays. |
| struct RefreshRateTally { |
| explicit RefreshRateTally(float score) : score(score) {} |
| |
| float score; |
| size_t displayCount = 1; |
| }; |
| |
| // Chosen to exceed a typical number of refresh rates across displays. |
| constexpr size_t kStaticCapacity = 8; |
| ftl::SmallMap<Fps, RefreshRateTally, kStaticCapacity, FpsApproxEqual> refreshRateTallies; |
| |
| const auto globalSignals = makeGlobalSignals(); |
| |
| for (const auto& [id, selectorPtr] : mRefreshRateSelectors) { |
| auto rankedRefreshRates = |
| selectorPtr->getRankedRefreshRates(mPolicy.contentRequirements, globalSignals); |
| |
| for (const auto& [modePtr, score] : rankedRefreshRates.ranking) { |
| const auto [it, inserted] = refreshRateTallies.try_emplace(modePtr->getFps(), score); |
| |
| if (!inserted) { |
| auto& tally = it->second; |
| tally.score += score; |
| tally.displayCount++; |
| } |
| } |
| |
| perDisplayRanking.push_back(std::move(rankedRefreshRates)); |
| } |
| |
| auto maxScoreIt = refreshRateTallies.cbegin(); |
| |
| // Find the first refresh rate common to all displays. |
| while (maxScoreIt != refreshRateTallies.cend() && |
| maxScoreIt->second.displayCount != mRefreshRateSelectors.size()) { |
| ++maxScoreIt; |
| } |
| |
| if (maxScoreIt != refreshRateTallies.cend()) { |
| // Choose the highest refresh rate common to all displays, if any. |
| for (auto it = maxScoreIt + 1; it != refreshRateTallies.cend(); ++it) { |
| const auto [fps, tally] = *it; |
| |
| if (tally.displayCount == mRefreshRateSelectors.size() && |
| tally.score > maxScoreIt->second.score) { |
| maxScoreIt = it; |
| } |
| } |
| } |
| |
| const std::optional<Fps> chosenFps = maxScoreIt != refreshRateTallies.cend() |
| ? std::make_optional(maxScoreIt->first) |
| : std::nullopt; |
| |
| DisplayModeChoiceMap modeChoices; |
| |
| using fps_approx_ops::operator==; |
| |
| for (auto& [ranking, signals] : perDisplayRanking) { |
| if (!chosenFps) { |
| auto& [modePtr, _] = ranking.front(); |
| modeChoices.try_emplace(modePtr->getPhysicalDisplayId(), |
| DisplayModeChoice{std::move(modePtr), signals}); |
| continue; |
| } |
| |
| for (auto& [modePtr, _] : ranking) { |
| if (modePtr->getFps() == *chosenFps) { |
| modeChoices.try_emplace(modePtr->getPhysicalDisplayId(), |
| DisplayModeChoice{std::move(modePtr), signals}); |
| break; |
| } |
| } |
| } |
| return modeChoices; |
| } |
| |
| GlobalSignals Scheduler::makeGlobalSignals() const { |
| const bool powerOnImminent = mDisplayPowerTimer && |
| (mPolicy.displayPowerMode != hal::PowerMode::ON || |
| mPolicy.displayPowerTimer == TimerState::Reset); |
| |
| return {.touch = mTouchTimer && mPolicy.touch == TouchState::Active, |
| .idle = mPolicy.idleTimer == TimerState::Expired, |
| .powerOnImminent = powerOnImminent}; |
| } |
| |
| DisplayModePtr Scheduler::getPreferredDisplayMode() { |
| std::lock_guard<std::mutex> lock(mPolicyLock); |
| // Make sure the stored mode is up to date. |
| if (mPolicy.mode) { |
| const auto ranking = |
| holdRefreshRateSelector() |
| ->getRankedRefreshRates(mPolicy.contentRequirements, makeGlobalSignals()) |
| .ranking; |
| |
| mPolicy.mode = ranking.front().modePtr; |
| } |
| return mPolicy.mode; |
| } |
| |
| void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { |
| std::lock_guard<std::mutex> lock(mVsyncTimelineLock); |
| mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); |
| |
| const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); |
| if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { |
| mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; |
| } |
| } |
| |
| bool Scheduler::onPostComposition(nsecs_t presentTime) { |
| std::lock_guard<std::mutex> lock(mVsyncTimelineLock); |
| if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { |
| if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) { |
| // We need to composite again as refreshTimeNanos is still in the future. |
| return true; |
| } |
| |
| mLastVsyncPeriodChangeTimeline->refreshRequired = false; |
| } |
| return false; |
| } |
| |
| void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) { |
| mLayerHistory.setDisplayArea(displayArea); |
| } |
| |
| void Scheduler::setGameModeRefreshRateForUid(FrameRateOverride frameRateOverride) { |
| if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { |
| return; |
| } |
| |
| mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride); |
| } |
| |
| void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) { |
| if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { |
| return; |
| } |
| |
| mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride); |
| } |
| |
| } // namespace android::scheduler |