| /* | 
 |  * Copyright (C) 2007 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include <cutils/compiler.h> | 
 | #include <utils/String8.h> | 
 | #include <ui/Region.h> | 
 |  | 
 | #include "Transform.h" | 
 | #include "clz.h" | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 |  | 
 | namespace android { | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 |  | 
 | Transform::Transform() { | 
 |     reset(); | 
 | } | 
 |  | 
 | Transform::Transform(const Transform&  other) | 
 |     : mMatrix(other.mMatrix), mType(other.mType) { | 
 | } | 
 |  | 
 | Transform::Transform(uint32_t orientation) { | 
 |     set(orientation, 0, 0); | 
 | } | 
 |  | 
 | Transform::~Transform() { | 
 | } | 
 |  | 
 | static const float EPSILON = 0.0f; | 
 |  | 
 | bool Transform::isZero(float f) { | 
 |     return fabs(f) <= EPSILON; | 
 | } | 
 |  | 
 | bool Transform::absIsOne(float f) { | 
 |     return isZero(fabs(f) - 1.0f); | 
 | } | 
 |  | 
 | Transform Transform::operator * (const Transform& rhs) const | 
 | { | 
 |     if (CC_LIKELY(mType == IDENTITY)) | 
 |         return rhs; | 
 |  | 
 |     Transform r(*this); | 
 |     if (rhs.mType == IDENTITY) | 
 |         return r; | 
 |  | 
 |     // TODO: we could use mType to optimize the matrix multiply | 
 |     const mat33& A(mMatrix); | 
 |     const mat33& B(rhs.mMatrix); | 
 |           mat33& D(r.mMatrix); | 
 |     for (int i=0 ; i<3 ; i++) { | 
 |         const float v0 = A[0][i]; | 
 |         const float v1 = A[1][i]; | 
 |         const float v2 = A[2][i]; | 
 |         D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2]; | 
 |         D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2]; | 
 |         D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2]; | 
 |     } | 
 |     r.mType |= rhs.mType; | 
 |  | 
 |     // TODO: we could recompute this value from r and rhs | 
 |     r.mType &= 0xFF; | 
 |     r.mType |= UNKNOWN_TYPE; | 
 |     return r; | 
 | } | 
 |  | 
 | const vec3& Transform::operator [] (size_t i) const { | 
 |     return mMatrix[i]; | 
 | } | 
 |  | 
 | float Transform::tx() const { | 
 |     return mMatrix[2][0]; | 
 | } | 
 |  | 
 | float Transform::ty() const { | 
 |     return mMatrix[2][1]; | 
 | } | 
 |  | 
 | void Transform::reset() { | 
 |     mType = IDENTITY; | 
 |     for(int i=0 ; i<3 ; i++) { | 
 |         vec3& v(mMatrix[i]); | 
 |         for (int j=0 ; j<3 ; j++) | 
 |             v[j] = ((i==j) ? 1.0f : 0.0f); | 
 |     } | 
 | } | 
 |  | 
 | void Transform::set(float tx, float ty) | 
 | { | 
 |     mMatrix[2][0] = tx; | 
 |     mMatrix[2][1] = ty; | 
 |     mMatrix[2][2] = 1.0f; | 
 |  | 
 |     if (isZero(tx) && isZero(ty)) { | 
 |         mType &= ~TRANSLATE; | 
 |     } else { | 
 |         mType |= TRANSLATE; | 
 |     } | 
 | } | 
 |  | 
 | void Transform::set(float a, float b, float c, float d) | 
 | { | 
 |     mat33& M(mMatrix); | 
 |     M[0][0] = a;    M[1][0] = b; | 
 |     M[0][1] = c;    M[1][1] = d; | 
 |     M[0][2] = 0;    M[1][2] = 0; | 
 |     mType = UNKNOWN_TYPE; | 
 | } | 
 |  | 
 | status_t Transform::set(uint32_t flags, float w, float h) | 
 | { | 
 |     if (flags & ROT_INVALID) { | 
 |         // that's not allowed! | 
 |         reset(); | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     Transform H, V, R; | 
 |     if (flags & ROT_90) { | 
 |         // w & h are inverted when rotating by 90 degrees | 
 |         swap(w, h); | 
 |     } | 
 |  | 
 |     if (flags & FLIP_H) { | 
 |         H.mType = (FLIP_H << 8) | SCALE; | 
 |         H.mType |= isZero(w) ? IDENTITY : TRANSLATE; | 
 |         mat33& M(H.mMatrix); | 
 |         M[0][0] = -1; | 
 |         M[2][0] = w; | 
 |     } | 
 |  | 
 |     if (flags & FLIP_V) { | 
 |         V.mType = (FLIP_V << 8) | SCALE; | 
 |         V.mType |= isZero(h) ? IDENTITY : TRANSLATE; | 
 |         mat33& M(V.mMatrix); | 
 |         M[1][1] = -1; | 
 |         M[2][1] = h; | 
 |     } | 
 |  | 
 |     if (flags & ROT_90) { | 
 |         const float original_w = h; | 
 |         R.mType = (ROT_90 << 8) | ROTATE; | 
 |         R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE; | 
 |         mat33& M(R.mMatrix); | 
 |         M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w; | 
 |         M[0][1] = 1;    M[1][1] = 0; | 
 |     } | 
 |  | 
 |     *this = (R*(H*V)); | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | vec2 Transform::transform(const vec2& v) const { | 
 |     vec2 r; | 
 |     const mat33& M(mMatrix); | 
 |     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]; | 
 |     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]; | 
 |     return r; | 
 | } | 
 |  | 
 | vec3 Transform::transform(const vec3& v) const { | 
 |     vec3 r; | 
 |     const mat33& M(mMatrix); | 
 |     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2]; | 
 |     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2]; | 
 |     r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2]; | 
 |     return r; | 
 | } | 
 |  | 
 | vec2 Transform::transform(int x, int y) const | 
 | { | 
 |     return transform(vec2(x,y)); | 
 | } | 
 |  | 
 | Rect Transform::makeBounds(int w, int h) const | 
 | { | 
 |     return transform( Rect(w, h) ); | 
 | } | 
 |  | 
 | Rect Transform::transform(const Rect& bounds, bool roundOutwards) const | 
 | { | 
 |     Rect r; | 
 |     vec2 lt( bounds.left,  bounds.top    ); | 
 |     vec2 rt( bounds.right, bounds.top    ); | 
 |     vec2 lb( bounds.left,  bounds.bottom ); | 
 |     vec2 rb( bounds.right, bounds.bottom ); | 
 |  | 
 |     lt = transform(lt); | 
 |     rt = transform(rt); | 
 |     lb = transform(lb); | 
 |     rb = transform(rb); | 
 |  | 
 |     if (roundOutwards) { | 
 |         r.left   = floorf(min(lt[0], rt[0], lb[0], rb[0])); | 
 |         r.top    = floorf(min(lt[1], rt[1], lb[1], rb[1])); | 
 |         r.right  = ceilf(max(lt[0], rt[0], lb[0], rb[0])); | 
 |         r.bottom = ceilf(max(lt[1], rt[1], lb[1], rb[1])); | 
 |     } else { | 
 |         r.left   = floorf(min(lt[0], rt[0], lb[0], rb[0]) + 0.5f); | 
 |         r.top    = floorf(min(lt[1], rt[1], lb[1], rb[1]) + 0.5f); | 
 |         r.right  = floorf(max(lt[0], rt[0], lb[0], rb[0]) + 0.5f); | 
 |         r.bottom = floorf(max(lt[1], rt[1], lb[1], rb[1]) + 0.5f); | 
 |     } | 
 |  | 
 |     return r; | 
 | } | 
 |  | 
 | FloatRect Transform::transform(const FloatRect& bounds) const | 
 | { | 
 |     vec2 lt(bounds.left, bounds.top); | 
 |     vec2 rt(bounds.right, bounds.top); | 
 |     vec2 lb(bounds.left, bounds.bottom); | 
 |     vec2 rb(bounds.right, bounds.bottom); | 
 |  | 
 |     lt = transform(lt); | 
 |     rt = transform(rt); | 
 |     lb = transform(lb); | 
 |     rb = transform(rb); | 
 |  | 
 |     FloatRect r; | 
 |     r.left = min(lt[0], rt[0], lb[0], rb[0]); | 
 |     r.top = min(lt[1], rt[1], lb[1], rb[1]); | 
 |     r.right = max(lt[0], rt[0], lb[0], rb[0]); | 
 |     r.bottom = max(lt[1], rt[1], lb[1], rb[1]); | 
 |  | 
 |     return r; | 
 | } | 
 |  | 
 | Region Transform::transform(const Region& reg) const | 
 | { | 
 |     Region out; | 
 |     if (CC_UNLIKELY(type() > TRANSLATE)) { | 
 |         if (CC_LIKELY(preserveRects())) { | 
 |             Region::const_iterator it = reg.begin(); | 
 |             Region::const_iterator const end = reg.end(); | 
 |             while (it != end) { | 
 |                 out.orSelf(transform(*it++)); | 
 |             } | 
 |         } else { | 
 |             out.set(transform(reg.bounds())); | 
 |         } | 
 |     } else { | 
 |         int xpos = floorf(tx() + 0.5f); | 
 |         int ypos = floorf(ty() + 0.5f); | 
 |         out = reg.translate(xpos, ypos); | 
 |     } | 
 |     return out; | 
 | } | 
 |  | 
 | uint32_t Transform::type() const | 
 | { | 
 |     if (mType & UNKNOWN_TYPE) { | 
 |         // recompute what this transform is | 
 |  | 
 |         const mat33& M(mMatrix); | 
 |         const float a = M[0][0]; | 
 |         const float b = M[1][0]; | 
 |         const float c = M[0][1]; | 
 |         const float d = M[1][1]; | 
 |         const float x = M[2][0]; | 
 |         const float y = M[2][1]; | 
 |  | 
 |         bool scale = false; | 
 |         uint32_t flags = ROT_0; | 
 |         if (isZero(b) && isZero(c)) { | 
 |             if (a<0)    flags |= FLIP_H; | 
 |             if (d<0)    flags |= FLIP_V; | 
 |             if (!absIsOne(a) || !absIsOne(d)) { | 
 |                 scale = true; | 
 |             } | 
 |         } else if (isZero(a) && isZero(d)) { | 
 |             flags |= ROT_90; | 
 |             if (b>0)    flags |= FLIP_V; | 
 |             if (c<0)    flags |= FLIP_H; | 
 |             if (!absIsOne(b) || !absIsOne(c)) { | 
 |                 scale = true; | 
 |             } | 
 |         } else { | 
 |             // there is a skew component and/or a non 90 degrees rotation | 
 |             flags = ROT_INVALID; | 
 |         } | 
 |  | 
 |         mType = flags << 8; | 
 |         if (flags & ROT_INVALID) { | 
 |             mType |= UNKNOWN; | 
 |         } else { | 
 |             if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180)) | 
 |                 mType |= ROTATE; | 
 |             if (flags & FLIP_H) | 
 |                 mType ^= SCALE; | 
 |             if (flags & FLIP_V) | 
 |                 mType ^= SCALE; | 
 |             if (scale) | 
 |                 mType |= SCALE; | 
 |         } | 
 |  | 
 |         if (!isZero(x) || !isZero(y)) | 
 |             mType |= TRANSLATE; | 
 |     } | 
 |     return mType; | 
 | } | 
 |  | 
 | Transform Transform::inverse() const { | 
 |     // our 3x3 matrix is always of the form of a 2x2 transformation | 
 |     // followed by a translation: T*M, therefore: | 
 |     // (T*M)^-1 = M^-1 * T^-1 | 
 |     Transform result; | 
 |     if (mType <= TRANSLATE) { | 
 |         // 1 0 0 | 
 |         // 0 1 0 | 
 |         // x y 1 | 
 |         result = *this; | 
 |         result.mMatrix[2][0] = -result.mMatrix[2][0]; | 
 |         result.mMatrix[2][1] = -result.mMatrix[2][1]; | 
 |     } else { | 
 |         // a c 0 | 
 |         // b d 0 | 
 |         // x y 1 | 
 |         const mat33& M(mMatrix); | 
 |         const float a = M[0][0]; | 
 |         const float b = M[1][0]; | 
 |         const float c = M[0][1]; | 
 |         const float d = M[1][1]; | 
 |         const float x = M[2][0]; | 
 |         const float y = M[2][1]; | 
 |  | 
 |         const float idet = 1.0 / (a*d - b*c); | 
 |         result.mMatrix[0][0] =  d*idet; | 
 |         result.mMatrix[0][1] = -c*idet; | 
 |         result.mMatrix[1][0] = -b*idet; | 
 |         result.mMatrix[1][1] =  a*idet; | 
 |         result.mType = mType; | 
 |  | 
 |         vec2 T(-x, -y); | 
 |         T = result.transform(T); | 
 |         result.mMatrix[2][0] = T[0]; | 
 |         result.mMatrix[2][1] = T[1]; | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | uint32_t Transform::getType() const { | 
 |     return type() & 0xFF; | 
 | } | 
 |  | 
 | uint32_t Transform::getOrientation() const | 
 | { | 
 |     return (type() >> 8) & 0xFF; | 
 | } | 
 |  | 
 | bool Transform::preserveRects() const | 
 | { | 
 |     return (getOrientation() & ROT_INVALID) ? false : true; | 
 | } | 
 |  | 
 | void Transform::dump(const char* name) const | 
 | { | 
 |     type(); // updates the type | 
 |  | 
 |     String8 flags, type; | 
 |     const mat33& m(mMatrix); | 
 |     uint32_t orient = mType >> 8; | 
 |  | 
 |     if (orient&ROT_INVALID) { | 
 |         flags.append("ROT_INVALID "); | 
 |     } else { | 
 |         if (orient&ROT_90) { | 
 |             flags.append("ROT_90 "); | 
 |         } else { | 
 |             flags.append("ROT_0 "); | 
 |         } | 
 |         if (orient&FLIP_V) | 
 |             flags.append("FLIP_V "); | 
 |         if (orient&FLIP_H) | 
 |             flags.append("FLIP_H "); | 
 |     } | 
 |  | 
 |     if (!(mType&(SCALE|ROTATE|TRANSLATE))) | 
 |         type.append("IDENTITY "); | 
 |     if (mType&SCALE) | 
 |         type.append("SCALE "); | 
 |     if (mType&ROTATE) | 
 |         type.append("ROTATE "); | 
 |     if (mType&TRANSLATE) | 
 |         type.append("TRANSLATE "); | 
 |  | 
 |     ALOGD("%s 0x%08x (%s, %s)", name, mType, flags.string(), type.string()); | 
 |     ALOGD("%.4f  %.4f  %.4f", m[0][0], m[1][0], m[2][0]); | 
 |     ALOGD("%.4f  %.4f  %.4f", m[0][1], m[1][1], m[2][1]); | 
 |     ALOGD("%.4f  %.4f  %.4f", m[0][2], m[1][2], m[2][2]); | 
 | } | 
 |  | 
 | Transform::orientation_flags Transform::fromRotation(ISurfaceComposer::Rotation rotation) { | 
 |     // Convert to surfaceflinger's internal rotation type. | 
 |     switch (rotation) { | 
 |         case ISurfaceComposer::eRotateNone: | 
 |             return Transform::ROT_0; | 
 |         case ISurfaceComposer::eRotate90: | 
 |             return Transform::ROT_90; | 
 |         case ISurfaceComposer::eRotate180: | 
 |             return Transform::ROT_180; | 
 |         case ISurfaceComposer::eRotate270: | 
 |             return Transform::ROT_270; | 
 |         default: | 
 |             ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation); | 
 |             return Transform::ROT_0; | 
 |     } | 
 | } | 
 |  | 
 | // --------------------------------------------------------------------------- | 
 |  | 
 | }; // namespace android |