| /* |
| * Copyright 2024 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "RotaryEncoderInputMapper.h" |
| |
| #include <list> |
| #include <string> |
| #include <tuple> |
| #include <variant> |
| |
| #include <android-base/logging.h> |
| #include <android_companion_virtualdevice_flags.h> |
| #include <com_android_input_flags.h> |
| #include <flag_macros.h> |
| #include <gtest/gtest.h> |
| #include <input/DisplayViewport.h> |
| #include <linux/input-event-codes.h> |
| #include <linux/input.h> |
| #include <utils/Timers.h> |
| |
| #include "InputMapperTest.h" |
| #include "InputReaderBase.h" |
| #include "InterfaceMocks.h" |
| #include "NotifyArgs.h" |
| #include "TestEventMatchers.h" |
| #include "ui/Rotation.h" |
| |
| #define TAG "RotaryEncoderInputMapper_test" |
| |
| namespace android { |
| |
| using testing::AllOf; |
| using testing::Return; |
| using testing::VariantWith; |
| constexpr ui::LogicalDisplayId DISPLAY_ID = ui::LogicalDisplayId::DEFAULT; |
| constexpr ui::LogicalDisplayId SECONDARY_DISPLAY_ID = ui::LogicalDisplayId{DISPLAY_ID.val() + 1}; |
| constexpr int32_t DISPLAY_WIDTH = 480; |
| constexpr int32_t DISPLAY_HEIGHT = 800; |
| |
| namespace { |
| |
| DisplayViewport createViewport() { |
| DisplayViewport v; |
| v.orientation = ui::Rotation::Rotation0; |
| v.logicalRight = DISPLAY_HEIGHT; |
| v.logicalBottom = DISPLAY_WIDTH; |
| v.physicalRight = DISPLAY_HEIGHT; |
| v.physicalBottom = DISPLAY_WIDTH; |
| v.deviceWidth = DISPLAY_HEIGHT; |
| v.deviceHeight = DISPLAY_WIDTH; |
| v.isActive = true; |
| return v; |
| } |
| |
| DisplayViewport createPrimaryViewport() { |
| DisplayViewport v = createViewport(); |
| v.displayId = DISPLAY_ID; |
| v.uniqueId = "local:1"; |
| return v; |
| } |
| |
| DisplayViewport createSecondaryViewport() { |
| DisplayViewport v = createViewport(); |
| v.displayId = SECONDARY_DISPLAY_ID; |
| v.uniqueId = "local:2"; |
| v.type = ViewportType::EXTERNAL; |
| return v; |
| } |
| |
| } // namespace |
| |
| namespace vd_flags = android::companion::virtualdevice::flags; |
| |
| /** |
| * Unit tests for RotaryEncoderInputMapper. |
| */ |
| class RotaryEncoderInputMapperTest : public InputMapperUnitTest { |
| protected: |
| void SetUp() override { SetUpWithBus(BUS_USB); } |
| void SetUpWithBus(int bus) override { |
| InputMapperUnitTest::SetUpWithBus(bus); |
| |
| EXPECT_CALL(mMockEventHub, hasRelativeAxis(EVENTHUB_ID, REL_WHEEL)) |
| .WillRepeatedly(Return(true)); |
| EXPECT_CALL(mMockEventHub, hasRelativeAxis(EVENTHUB_ID, REL_HWHEEL)) |
| .WillRepeatedly(Return(false)); |
| EXPECT_CALL(mMockEventHub, hasRelativeAxis(EVENTHUB_ID, REL_WHEEL_HI_RES)) |
| .WillRepeatedly(Return(false)); |
| EXPECT_CALL(mMockEventHub, hasRelativeAxis(EVENTHUB_ID, REL_HWHEEL_HI_RES)) |
| .WillRepeatedly(Return(false)); |
| } |
| |
| std::map<std::string, int64_t> mTelemetryLogCounts; |
| |
| /** |
| * A fake function for telemetry logging. |
| * Records the log counts in the `mTelemetryLogCounts` map. |
| */ |
| std::function<void(const char*, int64_t)> mTelemetryLogCounter = |
| [this](const char* key, int64_t value) { mTelemetryLogCounts[key] += value; }; |
| }; |
| |
| TEST_F(RotaryEncoderInputMapperTest, ConfigureDisplayIdWithAssociatedViewport) { |
| DisplayViewport primaryViewport = createPrimaryViewport(); |
| DisplayViewport secondaryViewport = createSecondaryViewport(); |
| mReaderConfiguration.setDisplayViewports({primaryViewport, secondaryViewport}); |
| |
| // Set up the secondary display as the associated viewport of the mapper. |
| EXPECT_CALL((*mDevice), getAssociatedViewport).WillRepeatedly(Return(secondaryViewport)); |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration); |
| |
| std::list<NotifyArgs> args; |
| // Ensure input events are generated for the secondary display. |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 1); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| EXPECT_THAT(args, |
| ElementsAre(VariantWith<NotifyMotionArgs>( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_SCROLL), |
| WithSource(AINPUT_SOURCE_ROTARY_ENCODER), |
| WithDisplayId(SECONDARY_DISPLAY_ID))))); |
| } |
| |
| TEST_F(RotaryEncoderInputMapperTest, ConfigureDisplayIdNoAssociatedViewport) { |
| // Set up the default display. |
| mFakePolicy->clearViewports(); |
| mFakePolicy->addDisplayViewport(createPrimaryViewport()); |
| |
| // Set up the mapper with no associated viewport. |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration); |
| |
| // Ensure input events are generated without display ID |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 1); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| EXPECT_THAT(args, |
| ElementsAre(VariantWith<NotifyMotionArgs>( |
| AllOf(WithMotionAction(AMOTION_EVENT_ACTION_SCROLL), |
| WithSource(AINPUT_SOURCE_ROTARY_ENCODER), |
| WithDisplayId(ui::LogicalDisplayId::INVALID))))); |
| } |
| |
| TEST_F(RotaryEncoderInputMapperTest, ProcessRegularScroll) { |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration); |
| |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 1); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| EXPECT_THAT(args, |
| ElementsAre(VariantWith<NotifyMotionArgs>( |
| AllOf(WithSource(AINPUT_SOURCE_ROTARY_ENCODER), |
| WithMotionAction(AMOTION_EVENT_ACTION_SCROLL), WithScroll(1.0f))))); |
| } |
| |
| TEST_F(RotaryEncoderInputMapperTest, ProcessHighResScroll) { |
| vd_flags::high_resolution_scroll(true); |
| EXPECT_CALL(mMockEventHub, hasRelativeAxis(EVENTHUB_ID, REL_WHEEL_HI_RES)) |
| .WillRepeatedly(Return(true)); |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration); |
| |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL_HI_RES, 60); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| EXPECT_THAT(args, |
| ElementsAre(VariantWith<NotifyMotionArgs>( |
| AllOf(WithSource(AINPUT_SOURCE_ROTARY_ENCODER), |
| WithMotionAction(AMOTION_EVENT_ACTION_SCROLL), WithScroll(0.5f))))); |
| } |
| |
| TEST_F(RotaryEncoderInputMapperTest, HighResScrollIgnoresRegularScroll) { |
| vd_flags::high_resolution_scroll(true); |
| EXPECT_CALL(mMockEventHub, hasRelativeAxis(EVENTHUB_ID, REL_WHEEL_HI_RES)) |
| .WillRepeatedly(Return(true)); |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration); |
| |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL_HI_RES, 60); |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 1); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| EXPECT_THAT(args, |
| ElementsAre(VariantWith<NotifyMotionArgs>( |
| AllOf(WithSource(AINPUT_SOURCE_ROTARY_ENCODER), |
| WithMotionAction(AMOTION_EVENT_ACTION_SCROLL), WithScroll(0.5f))))); |
| } |
| |
| TEST_F_WITH_FLAGS(RotaryEncoderInputMapperTest, RotaryInputTelemetryFlagOff_NoRotationLogging, |
| REQUIRES_FLAGS_DISABLED(ACONFIG_FLAG(com::android::input::flags, |
| rotary_input_telemetry))) { |
| mPropertyMap.addProperty("device.res", "3"); |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration, |
| mTelemetryLogCounter); |
| InputDeviceInfo info; |
| mMapper->populateDeviceInfo(info); |
| |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 70); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| ASSERT_EQ(mTelemetryLogCounts.find("input.value_rotary_input_device_full_rotation_count"), |
| mTelemetryLogCounts.end()); |
| } |
| |
| TEST_F_WITH_FLAGS(RotaryEncoderInputMapperTest, ZeroResolution_NoRotationLogging, |
| REQUIRES_FLAGS_ENABLED(ACONFIG_FLAG(com::android::input::flags, |
| rotary_input_telemetry))) { |
| mPropertyMap.addProperty("device.res", "-3"); |
| mPropertyMap.addProperty("rotary_encoder.min_rotations_to_log", "2"); |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration, |
| mTelemetryLogCounter); |
| InputDeviceInfo info; |
| mMapper->populateDeviceInfo(info); |
| |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 700); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| ASSERT_EQ(mTelemetryLogCounts.find("input.value_rotary_input_device_full_rotation_count"), |
| mTelemetryLogCounts.end()); |
| } |
| |
| TEST_F_WITH_FLAGS(RotaryEncoderInputMapperTest, NegativeMinLogRotation_NoRotationLogging, |
| REQUIRES_FLAGS_ENABLED(ACONFIG_FLAG(com::android::input::flags, |
| rotary_input_telemetry))) { |
| mPropertyMap.addProperty("device.res", "3"); |
| mPropertyMap.addProperty("rotary_encoder.min_rotations_to_log", "-2"); |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration, |
| mTelemetryLogCounter); |
| InputDeviceInfo info; |
| mMapper->populateDeviceInfo(info); |
| |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 700); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| ASSERT_EQ(mTelemetryLogCounts.find("input.value_rotary_input_device_full_rotation_count"), |
| mTelemetryLogCounts.end()); |
| } |
| |
| TEST_F_WITH_FLAGS(RotaryEncoderInputMapperTest, ZeroMinLogRotation_NoRotationLogging, |
| REQUIRES_FLAGS_ENABLED(ACONFIG_FLAG(com::android::input::flags, |
| rotary_input_telemetry))) { |
| mPropertyMap.addProperty("device.res", "3"); |
| mPropertyMap.addProperty("rotary_encoder.min_rotations_to_log", "0"); |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration, |
| mTelemetryLogCounter); |
| InputDeviceInfo info; |
| mMapper->populateDeviceInfo(info); |
| |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 700); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| ASSERT_EQ(mTelemetryLogCounts.find("input.value_rotary_input_device_full_rotation_count"), |
| mTelemetryLogCounts.end()); |
| } |
| |
| TEST_F_WITH_FLAGS(RotaryEncoderInputMapperTest, NoMinLogRotation_NoRotationLogging, |
| REQUIRES_FLAGS_ENABLED(ACONFIG_FLAG(com::android::input::flags, |
| rotary_input_telemetry))) { |
| // 3 units per radian, 2 * M_PI * 3 = ~18.85 units per rotation. |
| mPropertyMap.addProperty("device.res", "3"); |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration, |
| mTelemetryLogCounter); |
| InputDeviceInfo info; |
| mMapper->populateDeviceInfo(info); |
| |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 700); |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| |
| ASSERT_EQ(mTelemetryLogCounts.find("input.value_rotary_input_device_full_rotation_count"), |
| mTelemetryLogCounts.end()); |
| } |
| |
| TEST_F_WITH_FLAGS(RotaryEncoderInputMapperTest, RotationLogging, |
| REQUIRES_FLAGS_ENABLED(ACONFIG_FLAG(com::android::input::flags, |
| rotary_input_telemetry))) { |
| // 3 units per radian, 2 * M_PI * 3 = ~18.85 units per rotation. |
| // Multiples of `unitsPerRoation`, to easily follow the assertions below. |
| // [18.85, 37.7, 56.55, 75.4, 94.25, 113.1, 131.95, 150.8] |
| mPropertyMap.addProperty("device.res", "3"); |
| mPropertyMap.addProperty("rotary_encoder.min_rotations_to_log", "2"); |
| |
| mMapper = createInputMapper<RotaryEncoderInputMapper>(*mDeviceContext, mReaderConfiguration, |
| mTelemetryLogCounter); |
| InputDeviceInfo info; |
| mMapper->populateDeviceInfo(info); |
| |
| std::list<NotifyArgs> args; |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 15); // total scroll = 15 |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| ASSERT_EQ(mTelemetryLogCounts.find("input.value_rotary_input_device_full_rotation_count"), |
| mTelemetryLogCounts.end()); |
| |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 13); // total scroll = 28 |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| // Expect 0 since `min_rotations_to_log` = 2, and total scroll 28 only has 1 rotation. |
| ASSERT_EQ(mTelemetryLogCounts.find("input.value_rotary_input_device_full_rotation_count"), |
| mTelemetryLogCounts.end()); |
| |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, 10); // total scroll = 38 |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| // Total scroll includes >= `min_rotations_to_log` (2), expect log. |
| ASSERT_EQ(mTelemetryLogCounts["input.value_rotary_input_device_full_rotation_count"], 2); |
| |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, -22); // total scroll = 60 |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| // Expect no additional telemetry. Total rotation is 3, and total unlogged rotation is 1, which |
| // is less than `min_rotations_to_log`. |
| ASSERT_EQ(mTelemetryLogCounts["input.value_rotary_input_device_full_rotation_count"], 2); |
| |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, -16); // total scroll = 76 |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| // Total unlogged rotation >= `min_rotations_to_log` (2), so expect 2 more logged rotation. |
| ASSERT_EQ(mTelemetryLogCounts["input.value_rotary_input_device_full_rotation_count"], 4); |
| |
| args += process(ARBITRARY_TIME, EV_REL, REL_WHEEL, -76); // total scroll = 152 |
| args += process(ARBITRARY_TIME, EV_SYN, SYN_REPORT, 0); |
| // Total unlogged scroll >= 4*`min_rotations_to_log`. Expect *all* unlogged rotations to be |
| // logged, even if that's more than multiple of `min_rotations_to_log`. |
| ASSERT_EQ(mTelemetryLogCounts["input.value_rotary_input_device_full_rotation_count"], 8); |
| } |
| |
| } // namespace android |