|  | /* | 
|  | * Copyright 2018 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "Scheduler" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include "Scheduler.h" | 
|  |  | 
|  | #include <android-base/properties.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> | 
|  | #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> | 
|  | #include <configstore/Utils.h> | 
|  | #include <input/InputWindow.h> | 
|  | #include <system/window.h> | 
|  | #include <ui/DisplayStatInfo.h> | 
|  | #include <utils/Timers.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <FrameTimeline/FrameTimeline.h> | 
|  | #include <algorithm> | 
|  | #include <cinttypes> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <memory> | 
|  | #include <numeric> | 
|  |  | 
|  | #include "../Layer.h" | 
|  | #include "DispSyncSource.h" | 
|  | #include "EventThread.h" | 
|  | #include "InjectVSyncSource.h" | 
|  | #include "OneShotTimer.h" | 
|  | #include "SchedulerUtils.h" | 
|  | #include "SurfaceFlingerProperties.h" | 
|  | #include "Timer.h" | 
|  | #include "VSyncDispatchTimerQueue.h" | 
|  | #include "VSyncPredictor.h" | 
|  | #include "VSyncReactor.h" | 
|  | #include "VsyncController.h" | 
|  |  | 
|  | #define RETURN_IF_INVALID_HANDLE(handle, ...)                        \ | 
|  | do {                                                             \ | 
|  | if (mConnections.count(handle) == 0) {                       \ | 
|  | ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \ | 
|  | return __VA_ARGS__;                                      \ | 
|  | }                                                            \ | 
|  | } while (false) | 
|  |  | 
|  | using namespace std::string_literals; | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | std::unique_ptr<scheduler::VSyncTracker> createVSyncTracker() { | 
|  | // TODO(b/144707443): Tune constants. | 
|  | constexpr int kDefaultRate = 60; | 
|  | constexpr auto initialPeriod = std::chrono::duration<nsecs_t, std::ratio<1, kDefaultRate>>(1); | 
|  | constexpr nsecs_t idealPeriod = | 
|  | std::chrono::duration_cast<std::chrono::nanoseconds>(initialPeriod).count(); | 
|  | constexpr size_t vsyncTimestampHistorySize = 20; | 
|  | constexpr size_t minimumSamplesForPrediction = 6; | 
|  | constexpr uint32_t discardOutlierPercent = 20; | 
|  | return std::make_unique<scheduler::VSyncPredictor>(idealPeriod, vsyncTimestampHistorySize, | 
|  | minimumSamplesForPrediction, | 
|  | discardOutlierPercent); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<scheduler::VSyncDispatch> createVSyncDispatch(scheduler::VSyncTracker& tracker) { | 
|  | // TODO(b/144707443): Tune constants. | 
|  | constexpr std::chrono::nanoseconds vsyncMoveThreshold = 3ms; | 
|  | constexpr std::chrono::nanoseconds timerSlack = 500us; | 
|  | return std::make_unique< | 
|  | scheduler::VSyncDispatchTimerQueue>(std::make_unique<scheduler::Timer>(), tracker, | 
|  | timerSlack.count(), vsyncMoveThreshold.count()); | 
|  | } | 
|  |  | 
|  | const char* toContentDetectionString(bool useContentDetection) { | 
|  | return useContentDetection ? "on" : "off"; | 
|  | } | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | class PredictedVsyncTracer { | 
|  | public: | 
|  | PredictedVsyncTracer(scheduler::VSyncDispatch& dispatch) | 
|  | : mRegistration(dispatch, std::bind(&PredictedVsyncTracer::callback, this), | 
|  | "PredictedVsyncTracer") { | 
|  | scheduleRegistration(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | TracedOrdinal<bool> mParity = {"VSYNC-predicted", 0}; | 
|  | scheduler::VSyncCallbackRegistration mRegistration; | 
|  |  | 
|  | void scheduleRegistration() { mRegistration.schedule({0, 0, 0}); } | 
|  |  | 
|  | void callback() { | 
|  | mParity = !mParity; | 
|  | scheduleRegistration(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | Scheduler::Scheduler(const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& callback) | 
|  | : Scheduler(configs, callback, | 
|  | {.supportKernelTimer = sysprop::support_kernel_idle_timer(false), | 
|  | .useContentDetection = sysprop::use_content_detection_for_refresh_rate(false)}) { | 
|  | } | 
|  |  | 
|  | Scheduler::Scheduler(const scheduler::RefreshRateConfigs& configs, ISchedulerCallback& callback, | 
|  | Options options) | 
|  | : Scheduler(createVsyncSchedule(options.supportKernelTimer), configs, callback, | 
|  | createLayerHistory(configs), options) { | 
|  | using namespace sysprop; | 
|  |  | 
|  | const int setIdleTimerMs = base::GetIntProperty("debug.sf.set_idle_timer_ms"s, 0); | 
|  |  | 
|  | if (const auto millis = setIdleTimerMs ? setIdleTimerMs : set_idle_timer_ms(0); millis > 0) { | 
|  | const auto callback = mOptions.supportKernelTimer ? &Scheduler::kernelIdleTimerCallback | 
|  | : &Scheduler::idleTimerCallback; | 
|  | mIdleTimer.emplace( | 
|  | "IdleTimer", std::chrono::milliseconds(millis), | 
|  | [this, callback] { std::invoke(callback, this, TimerState::Reset); }, | 
|  | [this, callback] { std::invoke(callback, this, TimerState::Expired); }); | 
|  | mIdleTimer->start(); | 
|  | } | 
|  |  | 
|  | if (const int64_t millis = set_touch_timer_ms(0); millis > 0) { | 
|  | // Touch events are coming to SF every 100ms, so the timer needs to be higher than that | 
|  | mTouchTimer.emplace( | 
|  | "TouchTimer", std::chrono::milliseconds(millis), | 
|  | [this] { touchTimerCallback(TimerState::Reset); }, | 
|  | [this] { touchTimerCallback(TimerState::Expired); }); | 
|  | mTouchTimer->start(); | 
|  | } | 
|  |  | 
|  | if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) { | 
|  | mDisplayPowerTimer.emplace( | 
|  | "DisplayPowerTimer", std::chrono::milliseconds(millis), | 
|  | [this] { displayPowerTimerCallback(TimerState::Reset); }, | 
|  | [this] { displayPowerTimerCallback(TimerState::Expired); }); | 
|  | mDisplayPowerTimer->start(); | 
|  | } | 
|  | } | 
|  |  | 
|  | Scheduler::Scheduler(VsyncSchedule schedule, const scheduler::RefreshRateConfigs& configs, | 
|  | ISchedulerCallback& schedulerCallback, | 
|  | std::unique_ptr<LayerHistory> layerHistory, Options options) | 
|  | : mOptions(options), | 
|  | mVsyncSchedule(std::move(schedule)), | 
|  | mLayerHistory(std::move(layerHistory)), | 
|  | mSchedulerCallback(schedulerCallback), | 
|  | mRefreshRateConfigs(configs), | 
|  | mPredictedVsyncTracer( | 
|  | base::GetBoolProperty("debug.sf.show_predicted_vsync", false) | 
|  | ? std::make_unique<PredictedVsyncTracer>(*mVsyncSchedule.dispatch) | 
|  | : nullptr) { | 
|  | mSchedulerCallback.setVsyncEnabled(false); | 
|  | } | 
|  |  | 
|  | Scheduler::~Scheduler() { | 
|  | // Ensure the OneShotTimer threads are joined before we start destroying state. | 
|  | mDisplayPowerTimer.reset(); | 
|  | mTouchTimer.reset(); | 
|  | mIdleTimer.reset(); | 
|  | } | 
|  |  | 
|  | Scheduler::VsyncSchedule Scheduler::createVsyncSchedule(bool supportKernelTimer) { | 
|  | auto clock = std::make_unique<scheduler::SystemClock>(); | 
|  | auto tracker = createVSyncTracker(); | 
|  | auto dispatch = createVSyncDispatch(*tracker); | 
|  |  | 
|  | // TODO(b/144707443): Tune constants. | 
|  | constexpr size_t pendingFenceLimit = 20; | 
|  | auto controller = | 
|  | std::make_unique<scheduler::VSyncReactor>(std::move(clock), *tracker, pendingFenceLimit, | 
|  | supportKernelTimer); | 
|  | return {std::move(controller), std::move(tracker), std::move(dispatch)}; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<LayerHistory> Scheduler::createLayerHistory( | 
|  | const scheduler::RefreshRateConfigs& configs) { | 
|  | return std::make_unique<scheduler::LayerHistory>(configs); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource( | 
|  | const char* name, std::chrono::nanoseconds workDuration, | 
|  | std::chrono::nanoseconds readyDuration, bool traceVsync) { | 
|  | return std::make_unique<scheduler::DispSyncSource>(*mVsyncSchedule.dispatch, workDuration, | 
|  | readyDuration, traceVsync, name); | 
|  | } | 
|  |  | 
|  | std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const { | 
|  | if (!mRefreshRateConfigs.supportsFrameRateOverride()) { | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::lock_guard lock(mFrameRateOverridesMutex); | 
|  | { | 
|  | const auto iter = mFrameRateOverridesFromBackdoor.find(uid); | 
|  | if (iter != mFrameRateOverridesFromBackdoor.end()) { | 
|  | return std::make_optional<Fps>(iter->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | const auto iter = mFrameRateOverridesByContent.find(uid); | 
|  | if (iter != mFrameRateOverridesByContent.end()) { | 
|  | return std::make_optional<Fps>(iter->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | bool Scheduler::isVsyncValid(nsecs_t expectedVsyncTimestamp, uid_t uid) const { | 
|  | const auto frameRate = getFrameRateOverride(uid); | 
|  | if (!frameRate.has_value()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return mVsyncSchedule.tracker->isVSyncInPhase(expectedVsyncTimestamp, *frameRate); | 
|  | } | 
|  |  | 
|  | impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const { | 
|  | if (!mRefreshRateConfigs.supportsFrameRateOverride()) { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) { | 
|  | return !isVsyncValid(expectedVsyncTimestamp, uid); | 
|  | }; | 
|  | } | 
|  |  | 
|  | impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const { | 
|  | return [this](uid_t uid) { | 
|  | nsecs_t basePeriod = mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod(); | 
|  | const auto frameRate = getFrameRateOverride(uid); | 
|  | if (!frameRate.has_value()) { | 
|  | return basePeriod; | 
|  | } | 
|  |  | 
|  | const auto divider = scheduler::RefreshRateConfigs::getFrameRateDivider( | 
|  | mRefreshRateConfigs.getCurrentRefreshRate().getFps(), *frameRate); | 
|  | if (divider <= 1) { | 
|  | return basePeriod; | 
|  | } | 
|  | return basePeriod * divider; | 
|  | }; | 
|  | } | 
|  |  | 
|  | Scheduler::ConnectionHandle Scheduler::createConnection( | 
|  | const char* connectionName, frametimeline::TokenManager* tokenManager, | 
|  | std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration, | 
|  | impl::EventThread::InterceptVSyncsCallback interceptCallback) { | 
|  | auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration); | 
|  | auto throttleVsync = makeThrottleVsyncCallback(); | 
|  | auto getVsyncPeriod = makeGetVsyncPeriodFunction(); | 
|  | auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), tokenManager, | 
|  | std::move(interceptCallback), | 
|  | std::move(throttleVsync), | 
|  | std::move(getVsyncPeriod)); | 
|  | return createConnection(std::move(eventThread)); | 
|  | } | 
|  |  | 
|  | Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) { | 
|  | const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++}; | 
|  | ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id); | 
|  |  | 
|  | auto connection = createConnectionInternal(eventThread.get()); | 
|  |  | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | mConnections.emplace(handle, Connection{connection, std::move(eventThread)}); | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | sp<EventThreadConnection> Scheduler::createConnectionInternal( | 
|  | EventThread* eventThread, ISurfaceComposer::EventRegistrationFlags eventRegistration) { | 
|  | return eventThread->createEventConnection([&] { resync(); }, eventRegistration); | 
|  | } | 
|  |  | 
|  | sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection( | 
|  | ConnectionHandle handle, ISurfaceComposer::EventRegistrationFlags eventRegistration) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  | return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration); | 
|  | } | 
|  |  | 
|  | sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, nullptr); | 
|  | return mConnections[handle].connection; | 
|  | } | 
|  |  | 
|  | void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId, | 
|  | bool connected) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  |  | 
|  | thread->onHotplugReceived(displayId, connected); | 
|  | } | 
|  |  | 
|  | void Scheduler::onScreenAcquired(ConnectionHandle handle) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onScreenAcquired(); | 
|  | } | 
|  |  | 
|  | void Scheduler::onScreenReleased(ConnectionHandle handle) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onScreenReleased(); | 
|  | } | 
|  |  | 
|  | void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) { | 
|  | std::vector<FrameRateOverride> overrides; | 
|  | { | 
|  | std::lock_guard lock(mFrameRateOverridesMutex); | 
|  | for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) { | 
|  | overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()}); | 
|  | } | 
|  | for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) { | 
|  | if (mFrameRateOverridesFromBackdoor.count(uid) == 0) { | 
|  | overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()}); | 
|  | } | 
|  | } | 
|  | } | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onFrameRateOverridesChanged(displayId, std::move(overrides)); | 
|  | } | 
|  |  | 
|  | void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, PhysicalDisplayId displayId, | 
|  | DisplayModeId modeId, nsecs_t vsyncPeriod) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | // Cache the last reported modes for primary display. | 
|  | mFeatures.cachedModeChangedParams = {handle, displayId, modeId, vsyncPeriod}; | 
|  |  | 
|  | // Invalidate content based refresh rate selection so it could be calculated | 
|  | // again for the new refresh rate. | 
|  | mFeatures.contentRequirements.clear(); | 
|  | } | 
|  | onNonPrimaryDisplayModeChanged(handle, displayId, modeId, vsyncPeriod); | 
|  | } | 
|  |  | 
|  | void Scheduler::dispatchCachedReportedMode() { | 
|  | // Check optional fields first. | 
|  | if (!mFeatures.modeId.has_value()) { | 
|  | ALOGW("No mode ID found, not dispatching cached mode."); | 
|  | return; | 
|  | } | 
|  | if (!mFeatures.cachedModeChangedParams.has_value()) { | 
|  | ALOGW("No mode changed params found, not dispatching cached mode."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto modeId = *mFeatures.modeId; | 
|  | // If the modeId is not the current mode, this means that a | 
|  | // mode change is in progress. In that case we shouldn't dispatch an event | 
|  | // as it will be dispatched when the current mode changes. | 
|  | if (mRefreshRateConfigs.getCurrentRefreshRate().getModeId() != modeId) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto vsyncPeriod = mRefreshRateConfigs.getRefreshRateFromModeId(modeId).getVsyncPeriod(); | 
|  |  | 
|  | // If there is no change from cached mode, there is no need to dispatch an event | 
|  | if (modeId == mFeatures.cachedModeChangedParams->modeId && | 
|  | vsyncPeriod == mFeatures.cachedModeChangedParams->vsyncPeriod) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mFeatures.cachedModeChangedParams->modeId = modeId; | 
|  | mFeatures.cachedModeChangedParams->vsyncPeriod = vsyncPeriod; | 
|  | onNonPrimaryDisplayModeChanged(mFeatures.cachedModeChangedParams->handle, | 
|  | mFeatures.cachedModeChangedParams->displayId, | 
|  | mFeatures.cachedModeChangedParams->modeId, | 
|  | mFeatures.cachedModeChangedParams->vsyncPeriod); | 
|  | } | 
|  |  | 
|  | void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, PhysicalDisplayId displayId, | 
|  | DisplayModeId modeId, nsecs_t vsyncPeriod) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->onModeChanged(displayId, modeId, vsyncPeriod); | 
|  | } | 
|  |  | 
|  | size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle, 0); | 
|  | return mConnections[handle].thread->getEventThreadConnectionCount(); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(ConnectionHandle handle, std::string& result) const { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections.at(handle).thread.get(); | 
|  | } | 
|  | thread->dump(result); | 
|  | } | 
|  |  | 
|  | void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration, | 
|  | std::chrono::nanoseconds readyDuration) { | 
|  | android::EventThread* thread; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mConnectionsLock); | 
|  | RETURN_IF_INVALID_HANDLE(handle); | 
|  | thread = mConnections[handle].thread.get(); | 
|  | } | 
|  | thread->setDuration(workDuration, readyDuration); | 
|  | } | 
|  |  | 
|  | DisplayStatInfo Scheduler::getDisplayStatInfo(nsecs_t now) { | 
|  | const auto vsyncTime = mVsyncSchedule.tracker->nextAnticipatedVSyncTimeFrom(now); | 
|  | const auto vsyncPeriod = mVsyncSchedule.tracker->currentPeriod(); | 
|  | return DisplayStatInfo{.vsyncTime = vsyncTime, .vsyncPeriod = vsyncPeriod}; | 
|  | } | 
|  |  | 
|  | Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) { | 
|  | if (mInjectVSyncs == enable) { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling"); | 
|  |  | 
|  | if (!mInjectorConnectionHandle) { | 
|  | auto vsyncSource = std::make_unique<InjectVSyncSource>(); | 
|  | mVSyncInjector = vsyncSource.get(); | 
|  |  | 
|  | auto eventThread = | 
|  | std::make_unique<impl::EventThread>(std::move(vsyncSource), | 
|  | /*tokenManager=*/nullptr, | 
|  | impl::EventThread::InterceptVSyncsCallback(), | 
|  | impl::EventThread::ThrottleVsyncCallback(), | 
|  | impl::EventThread::GetVsyncPeriodFunction()); | 
|  |  | 
|  | // EventThread does not dispatch VSYNC unless the display is connected and powered on. | 
|  | eventThread->onHotplugReceived(PhysicalDisplayId::fromPort(0), true); | 
|  | eventThread->onScreenAcquired(); | 
|  |  | 
|  | mInjectorConnectionHandle = createConnection(std::move(eventThread)); | 
|  | } | 
|  |  | 
|  | mInjectVSyncs = enable; | 
|  | return mInjectorConnectionHandle; | 
|  | } | 
|  |  | 
|  | bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime, nsecs_t deadlineTimestamp) { | 
|  | if (!mInjectVSyncs || !mVSyncInjector) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime, deadlineTimestamp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Scheduler::enableHardwareVsync() { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { | 
|  | mVsyncSchedule.tracker->resetModel(); | 
|  | mSchedulerCallback.setVsyncEnabled(true); | 
|  | mPrimaryHWVsyncEnabled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::disableHardwareVsync(bool makeUnavailable) { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (mPrimaryHWVsyncEnabled) { | 
|  | mSchedulerCallback.setVsyncEnabled(false); | 
|  | mPrimaryHWVsyncEnabled = false; | 
|  | } | 
|  | if (makeUnavailable) { | 
|  | mHWVsyncAvailable = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (makeAvailable) { | 
|  | mHWVsyncAvailable = makeAvailable; | 
|  | } else if (!mHWVsyncAvailable) { | 
|  | // Hardware vsync is not currently available, so abort the resync | 
|  | // attempt for now | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (period <= 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | setVsyncPeriod(period); | 
|  | } | 
|  |  | 
|  | void Scheduler::resync() { | 
|  | static constexpr nsecs_t kIgnoreDelay = ms2ns(750); | 
|  |  | 
|  | const nsecs_t now = systemTime(); | 
|  | const nsecs_t last = mLastResyncTime.exchange(now); | 
|  |  | 
|  | if (now - last > kIgnoreDelay) { | 
|  | resyncToHardwareVsync(false, mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setVsyncPeriod(nsecs_t period) { | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | mVsyncSchedule.controller->startPeriodTransition(period); | 
|  |  | 
|  | if (!mPrimaryHWVsyncEnabled) { | 
|  | mVsyncSchedule.tracker->resetModel(); | 
|  | mSchedulerCallback.setVsyncEnabled(true); | 
|  | mPrimaryHWVsyncEnabled = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod, | 
|  | bool* periodFlushed) { | 
|  | bool needsHwVsync = false; | 
|  | *periodFlushed = false; | 
|  | { // Scope for the lock | 
|  | std::lock_guard<std::mutex> lock(mHWVsyncLock); | 
|  | if (mPrimaryHWVsyncEnabled) { | 
|  | needsHwVsync = mVsyncSchedule.controller->addHwVsyncTimestamp(timestamp, hwcVsyncPeriod, | 
|  | periodFlushed); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (needsHwVsync) { | 
|  | enableHardwareVsync(); | 
|  | } else { | 
|  | disableHardwareVsync(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) { | 
|  | if (mVsyncSchedule.controller->addPresentFence(fenceTime)) { | 
|  | enableHardwareVsync(); | 
|  | } else { | 
|  | disableHardwareVsync(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setIgnorePresentFences(bool ignore) { | 
|  | mVsyncSchedule.controller->setIgnorePresentFences(ignore); | 
|  | } | 
|  |  | 
|  | void Scheduler::registerLayer(Layer* layer) { | 
|  | scheduler::LayerHistory::LayerVoteType voteType; | 
|  |  | 
|  | if (!mOptions.useContentDetection || | 
|  | layer->getWindowType() == InputWindowInfo::Type::STATUS_BAR) { | 
|  | voteType = scheduler::LayerHistory::LayerVoteType::NoVote; | 
|  | } else if (layer->getWindowType() == InputWindowInfo::Type::WALLPAPER) { | 
|  | // Running Wallpaper at Min is considered as part of content detection. | 
|  | voteType = scheduler::LayerHistory::LayerVoteType::Min; | 
|  | } else { | 
|  | voteType = scheduler::LayerHistory::LayerVoteType::Heuristic; | 
|  | } | 
|  |  | 
|  | // If the content detection feature is off, we still keep the layer history, | 
|  | // since we use it for other features (like Frame Rate API), so layers | 
|  | // still need to be registered. | 
|  | mLayerHistory->registerLayer(layer, voteType); | 
|  | } | 
|  |  | 
|  | void Scheduler::deregisterLayer(Layer* layer) { | 
|  | mLayerHistory->deregisterLayer(layer); | 
|  | } | 
|  |  | 
|  | void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime, | 
|  | LayerHistory::LayerUpdateType updateType) { | 
|  | if (mRefreshRateConfigs.canSwitch()) { | 
|  | mLayerHistory->record(layer, presentTime, systemTime(), updateType); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setModeChangePending(bool pending) { | 
|  | mLayerHistory->setModeChangePending(pending); | 
|  | } | 
|  |  | 
|  | void Scheduler::chooseRefreshRateForContent() { | 
|  | if (!mRefreshRateConfigs.canSwitch()) return; | 
|  |  | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | scheduler::LayerHistory::Summary summary = mLayerHistory->summarize(systemTime()); | 
|  | scheduler::RefreshRateConfigs::GlobalSignals consideredSignals; | 
|  | DisplayModeId newModeId; | 
|  | bool frameRateChanged; | 
|  | bool frameRateOverridesChanged; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | mFeatures.contentRequirements = summary; | 
|  |  | 
|  | newModeId = calculateRefreshRateModeId(&consideredSignals); | 
|  | auto newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId); | 
|  | frameRateOverridesChanged = | 
|  | updateFrameRateOverrides(consideredSignals, newRefreshRate.getFps()); | 
|  |  | 
|  | if (mFeatures.modeId == newModeId) { | 
|  | // We don't need to change the display mode, but we might need to send an event | 
|  | // about a mode change, since it was suppressed due to a previous idleConsidered | 
|  | if (!consideredSignals.idle) { | 
|  | dispatchCachedReportedMode(); | 
|  | } | 
|  | frameRateChanged = false; | 
|  | } else { | 
|  | mFeatures.modeId = newModeId; | 
|  | frameRateChanged = true; | 
|  | } | 
|  | } | 
|  | if (frameRateChanged) { | 
|  | auto newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId); | 
|  | mSchedulerCallback.changeRefreshRate(newRefreshRate, | 
|  | consideredSignals.idle ? ModeEvent::None | 
|  | : ModeEvent::Changed); | 
|  | } | 
|  | if (frameRateOverridesChanged) { | 
|  | mSchedulerCallback.triggerOnFrameRateOverridesChanged(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::resetIdleTimer() { | 
|  | if (mIdleTimer) { | 
|  | mIdleTimer->reset(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::notifyTouchEvent() { | 
|  | if (mTouchTimer) { | 
|  | mTouchTimer->reset(); | 
|  |  | 
|  | if (mOptions.supportKernelTimer && mIdleTimer) { | 
|  | mIdleTimer->reset(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::setDisplayPowerState(bool normal) { | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | mFeatures.isDisplayPowerStateNormal = normal; | 
|  | } | 
|  |  | 
|  | if (mDisplayPowerTimer) { | 
|  | mDisplayPowerTimer->reset(); | 
|  | } | 
|  |  | 
|  | // Display Power event will boost the refresh rate to performance. | 
|  | // Clear Layer History to get fresh FPS detection | 
|  | mLayerHistory->clear(); | 
|  | } | 
|  |  | 
|  | void Scheduler::kernelIdleTimerCallback(TimerState state) { | 
|  | ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state)); | 
|  |  | 
|  | // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate | 
|  | // magic number | 
|  | const auto& refreshRate = mRefreshRateConfigs.getCurrentRefreshRate(); | 
|  | constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER{65.0f}; | 
|  | if (state == TimerState::Reset && | 
|  | refreshRate.getFps().greaterThanWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) { | 
|  | // If we're not in performance mode then the kernel timer shouldn't do | 
|  | // anything, as the refresh rate during DPU power collapse will be the | 
|  | // same. | 
|  | resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod()); | 
|  | } else if (state == TimerState::Expired && | 
|  | refreshRate.getFps().lessThanOrEqualWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) { | 
|  | // Disable HW VSYNC if the timer expired, as we don't need it enabled if | 
|  | // we're not pushing frames, and if we're in PERFORMANCE mode then we'll | 
|  | // need to update the VsyncController model anyway. | 
|  | disableHardwareVsync(false /* makeUnavailable */); | 
|  | } | 
|  |  | 
|  | mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired); | 
|  | } | 
|  |  | 
|  | void Scheduler::idleTimerCallback(TimerState state) { | 
|  | handleTimerStateChanged(&mFeatures.idleTimer, state); | 
|  | ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::touchTimerCallback(TimerState state) { | 
|  | const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive; | 
|  | // Touch event will boost the refresh rate to performance. | 
|  | // Clear layer history to get fresh FPS detection. | 
|  | // NOTE: Instead of checking all the layers, we should be checking the layer | 
|  | // that is currently on top. b/142507166 will give us this capability. | 
|  | if (handleTimerStateChanged(&mFeatures.touch, touch)) { | 
|  | mLayerHistory->clear(); | 
|  | } | 
|  | ATRACE_INT("TouchState", static_cast<int>(touch)); | 
|  | } | 
|  |  | 
|  | void Scheduler::displayPowerTimerCallback(TimerState state) { | 
|  | handleTimerStateChanged(&mFeatures.displayPowerTimer, state); | 
|  | ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state)); | 
|  | } | 
|  |  | 
|  | void Scheduler::dump(std::string& result) const { | 
|  | using base::StringAppendF; | 
|  |  | 
|  | StringAppendF(&result, "+  Idle timer: %s\n", mIdleTimer ? mIdleTimer->dump().c_str() : "off"); | 
|  | StringAppendF(&result, "+  Touch timer: %s\n", | 
|  | mTouchTimer ? mTouchTimer->dump().c_str() : "off"); | 
|  | StringAppendF(&result, "+  Content detection: %s %s\n\n", | 
|  | toContentDetectionString(mOptions.useContentDetection), | 
|  | mLayerHistory ? mLayerHistory->dump().c_str() : "(no layer history)"); | 
|  |  | 
|  | { | 
|  | std::lock_guard lock(mFrameRateOverridesMutex); | 
|  | StringAppendF(&result, "Frame Rate Overrides (backdoor): {"); | 
|  | for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) { | 
|  | StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str()); | 
|  | } | 
|  | StringAppendF(&result, "}\n"); | 
|  |  | 
|  | StringAppendF(&result, "Frame Rate Overrides (setFrameRate): {"); | 
|  | for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) { | 
|  | StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str()); | 
|  | } | 
|  | StringAppendF(&result, "}\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::dumpVsync(std::string& s) const { | 
|  | using base::StringAppendF; | 
|  |  | 
|  | StringAppendF(&s, "VSyncReactor:\n"); | 
|  | mVsyncSchedule.controller->dump(s); | 
|  | StringAppendF(&s, "VSyncDispatch:\n"); | 
|  | mVsyncSchedule.dispatch->dump(s); | 
|  | } | 
|  |  | 
|  | bool Scheduler::updateFrameRateOverrides( | 
|  | scheduler::RefreshRateConfigs::GlobalSignals consideredSignals, Fps displayRefreshRate) { | 
|  | if (!mRefreshRateConfigs.supportsFrameRateOverride()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!consideredSignals.idle) { | 
|  | const auto frameRateOverrides = | 
|  | mRefreshRateConfigs.getFrameRateOverrides(mFeatures.contentRequirements, | 
|  | displayRefreshRate, | 
|  | consideredSignals.touch); | 
|  | std::lock_guard lock(mFrameRateOverridesMutex); | 
|  | if (!std::equal(mFrameRateOverridesByContent.begin(), mFrameRateOverridesByContent.end(), | 
|  | frameRateOverrides.begin(), frameRateOverrides.end(), | 
|  | [](const std::pair<uid_t, Fps>& a, const std::pair<uid_t, Fps>& b) { | 
|  | return a.first == b.first && a.second.equalsWithMargin(b.second); | 
|  | })) { | 
|  | mFrameRateOverridesByContent = frameRateOverrides; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | bool Scheduler::handleTimerStateChanged(T* currentState, T newState) { | 
|  | DisplayModeId newModeId; | 
|  | bool refreshRateChanged = false; | 
|  | bool frameRateOverridesChanged; | 
|  | scheduler::RefreshRateConfigs::GlobalSignals consideredSignals; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | if (*currentState == newState) { | 
|  | return false; | 
|  | } | 
|  | *currentState = newState; | 
|  | newModeId = calculateRefreshRateModeId(&consideredSignals); | 
|  | const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId); | 
|  | frameRateOverridesChanged = | 
|  | updateFrameRateOverrides(consideredSignals, newRefreshRate.getFps()); | 
|  | if (mFeatures.modeId == newModeId) { | 
|  | // We don't need to change the display mode, but we might need to send an event | 
|  | // about a mode change, since it was suppressed due to a previous idleConsidered | 
|  | if (!consideredSignals.idle) { | 
|  | dispatchCachedReportedMode(); | 
|  | } | 
|  | } else { | 
|  | mFeatures.modeId = newModeId; | 
|  | refreshRateChanged = true; | 
|  | } | 
|  | } | 
|  | if (refreshRateChanged) { | 
|  | const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromModeId(newModeId); | 
|  |  | 
|  | mSchedulerCallback.changeRefreshRate(newRefreshRate, | 
|  | consideredSignals.idle ? ModeEvent::None | 
|  | : ModeEvent::Changed); | 
|  | } | 
|  | if (frameRateOverridesChanged) { | 
|  | mSchedulerCallback.triggerOnFrameRateOverridesChanged(); | 
|  | } | 
|  | return consideredSignals.touch; | 
|  | } | 
|  |  | 
|  | DisplayModeId Scheduler::calculateRefreshRateModeId( | 
|  | scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) { | 
|  | ATRACE_CALL(); | 
|  | if (consideredSignals) *consideredSignals = {}; | 
|  |  | 
|  | // If Display Power is not in normal operation we want to be in performance mode. When coming | 
|  | // back to normal mode, a grace period is given with DisplayPowerTimer. | 
|  | if (mDisplayPowerTimer && | 
|  | (!mFeatures.isDisplayPowerStateNormal || | 
|  | mFeatures.displayPowerTimer == TimerState::Reset)) { | 
|  | return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getModeId(); | 
|  | } | 
|  |  | 
|  | const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active; | 
|  | const bool idle = mIdleTimer && mFeatures.idleTimer == TimerState::Expired; | 
|  |  | 
|  | return mRefreshRateConfigs | 
|  | .getBestRefreshRate(mFeatures.contentRequirements, {.touch = touchActive, .idle = idle}, | 
|  | consideredSignals) | 
|  | .getModeId(); | 
|  | } | 
|  |  | 
|  | std::optional<DisplayModeId> Scheduler::getPreferredModeId() { | 
|  | std::lock_guard<std::mutex> lock(mFeatureStateLock); | 
|  | // Make sure that the default mode ID is first updated, before returned. | 
|  | if (mFeatures.modeId.has_value()) { | 
|  | mFeatures.modeId = calculateRefreshRateModeId(); | 
|  | } | 
|  | return mFeatures.modeId; | 
|  | } | 
|  |  | 
|  | void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) { | 
|  | if (timeline.refreshRequired) { | 
|  | mSchedulerCallback.repaintEverythingForHWC(); | 
|  | } | 
|  |  | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | mLastVsyncPeriodChangeTimeline = std::make_optional(timeline); | 
|  |  | 
|  | const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count(); | 
|  | if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) { | 
|  | mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::onDisplayRefreshed(nsecs_t timestamp) { | 
|  | bool callRepaint = false; | 
|  | { | 
|  | std::lock_guard<std::mutex> lock(mVsyncTimelineLock); | 
|  | if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) { | 
|  | if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) { | 
|  | mLastVsyncPeriodChangeTimeline->refreshRequired = false; | 
|  | } else { | 
|  | // We need to send another refresh as refreshTimeNanos is still in the future | 
|  | callRepaint = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (callRepaint) { | 
|  | mSchedulerCallback.repaintEverythingForHWC(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Scheduler::onPrimaryDisplayAreaChanged(uint32_t displayArea) { | 
|  | mLayerHistory->setDisplayArea(displayArea); | 
|  | } | 
|  |  | 
|  | void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) { | 
|  | if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::lock_guard lock(mFrameRateOverridesMutex); | 
|  | if (frameRateOverride.frameRateHz != 0.f) { | 
|  | mFrameRateOverridesFromBackdoor[frameRateOverride.uid] = Fps(frameRateOverride.frameRateHz); | 
|  | } else { | 
|  | mFrameRateOverridesFromBackdoor.erase(frameRateOverride.uid); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::chrono::steady_clock::time_point Scheduler::getPreviousVsyncFrom( | 
|  | nsecs_t expectedPresentTime) const { | 
|  | const auto presentTime = std::chrono::nanoseconds(expectedPresentTime); | 
|  | const auto vsyncPeriod = std::chrono::nanoseconds(mVsyncSchedule.tracker->currentPeriod()); | 
|  | return std::chrono::steady_clock::time_point(presentTime - vsyncPeriod); | 
|  | } | 
|  |  | 
|  | } // namespace android |