|  | /* | 
|  | * Copyright (C) 2016 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <mutex> | 
|  | #include <array> | 
|  | #include <sstream> | 
|  | #include <algorithm> | 
|  |  | 
|  | #include <gui/Surface.h> | 
|  | #include <gui/BufferItemConsumer.h> | 
|  |  | 
|  | #include <ui/GraphicBuffer.h> | 
|  | #include <math/vec4.h> | 
|  |  | 
|  | #include <GLES3/gl3.h> | 
|  |  | 
|  | #include "Hwc2TestBuffer.h" | 
|  | #include "Hwc2TestLayers.h" | 
|  |  | 
|  | using namespace android; | 
|  |  | 
|  | /* Returns a fence from egl */ | 
|  | typedef void (*FenceCallback)(int32_t fence, void* callbackArgs); | 
|  |  | 
|  | /* Returns fence to fence generator */ | 
|  | static void setFence(int32_t fence, void* fenceGenerator); | 
|  |  | 
|  |  | 
|  | /* Used to receive the surfaces and fences from egl. The egl buffers are thrown | 
|  | * away. The fences are sent to the requester via a callback */ | 
|  | class Hwc2TestSurfaceManager { | 
|  | public: | 
|  | /* Listens for a new frame, detaches the buffer and returns the fence | 
|  | * through saved callback. */ | 
|  | class BufferListener : public ConsumerBase::FrameAvailableListener { | 
|  | public: | 
|  | BufferListener(sp<IGraphicBufferConsumer> consumer, | 
|  | FenceCallback callback, void* callbackArgs) | 
|  | : mConsumer(consumer), | 
|  | mCallback(callback), | 
|  | mCallbackArgs(callbackArgs) { } | 
|  |  | 
|  | void onFrameAvailable(const BufferItem& /*item*/) | 
|  | { | 
|  | BufferItem item; | 
|  |  | 
|  | if (mConsumer->acquireBuffer(&item, 0)) | 
|  | return; | 
|  | if (mConsumer->detachBuffer(item.mSlot)) | 
|  | return; | 
|  |  | 
|  | mCallback(item.mFence->dup(), mCallbackArgs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | sp<IGraphicBufferConsumer> mConsumer; | 
|  | FenceCallback mCallback; | 
|  | void* mCallbackArgs; | 
|  | }; | 
|  |  | 
|  | /* Creates a buffer listener that waits on a new frame from the buffer | 
|  | * queue. */ | 
|  | void initialize(const Area& bufferArea, android_pixel_format_t format, | 
|  | FenceCallback callback, void* callbackArgs) | 
|  | { | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer); | 
|  |  | 
|  | consumer->setDefaultBufferSize(bufferArea.width, bufferArea.height); | 
|  | consumer->setDefaultBufferFormat(format); | 
|  |  | 
|  | mBufferItemConsumer = new BufferItemConsumer(consumer, 0); | 
|  |  | 
|  | mListener = new BufferListener(consumer, callback, callbackArgs); | 
|  | mBufferItemConsumer->setFrameAvailableListener(mListener); | 
|  |  | 
|  | mSurface = new Surface(producer, true); | 
|  | } | 
|  |  | 
|  | /* Used by Egl manager. The surface is never displayed. */ | 
|  | sp<Surface> getSurface() const | 
|  | { | 
|  | return mSurface; | 
|  | } | 
|  |  | 
|  | private: | 
|  | sp<BufferItemConsumer> mBufferItemConsumer; | 
|  | sp<BufferListener> mListener; | 
|  | /* Used by Egl manager. The surface is never displayed */ | 
|  | sp<Surface> mSurface; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Used to generate valid fences. It is not possible to create a dummy sync | 
|  | * fence for testing. Egl can generate buffers along with a valid fence. | 
|  | * The buffer cannot be guaranteed to be the same format across all devices so | 
|  | * a CPU filled buffer is used instead. The Egl fence is used along with the | 
|  | * CPU filled buffer. */ | 
|  | class Hwc2TestEglManager { | 
|  | public: | 
|  | Hwc2TestEglManager() | 
|  | : mEglDisplay(EGL_NO_DISPLAY), | 
|  | mEglSurface(EGL_NO_SURFACE), | 
|  | mEglContext(EGL_NO_CONTEXT) { } | 
|  |  | 
|  | ~Hwc2TestEglManager() | 
|  | { | 
|  | cleanup(); | 
|  | } | 
|  |  | 
|  | int initialize(sp<Surface> surface) | 
|  | { | 
|  | mSurface = surface; | 
|  |  | 
|  | mEglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY); | 
|  | if (mEglDisplay == EGL_NO_DISPLAY) return false; | 
|  |  | 
|  | EGLint major; | 
|  | EGLint minor; | 
|  | if (!eglInitialize(mEglDisplay, &major, &minor)) { | 
|  | ALOGW("Could not initialize EGL"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* We're going to use a 1x1 pbuffer surface later on | 
|  | * The configuration distance doesn't really matter for what we're | 
|  | * trying to do */ | 
|  | EGLint configAttrs[] = { | 
|  | EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT, | 
|  | EGL_RED_SIZE, 8, | 
|  | EGL_GREEN_SIZE, 8, | 
|  | EGL_BLUE_SIZE, 8, | 
|  | EGL_ALPHA_SIZE, 0, | 
|  | EGL_DEPTH_SIZE, 24, | 
|  | EGL_STENCIL_SIZE, 0, | 
|  | EGL_NONE | 
|  | }; | 
|  |  | 
|  | EGLConfig configs[1]; | 
|  | EGLint configCnt; | 
|  | if (!eglChooseConfig(mEglDisplay, configAttrs, configs, 1, | 
|  | &configCnt)) { | 
|  | ALOGW("Could not select EGL configuration"); | 
|  | eglReleaseThread(); | 
|  | eglTerminate(mEglDisplay); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (configCnt <= 0) { | 
|  | ALOGW("Could not find EGL configuration"); | 
|  | eglReleaseThread(); | 
|  | eglTerminate(mEglDisplay); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* These objects are initialized below but the default "null" values are | 
|  | * used to cleanup properly at any point in the initialization sequence */ | 
|  | EGLint attrs[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE }; | 
|  | mEglContext = eglCreateContext(mEglDisplay, configs[0], EGL_NO_CONTEXT, | 
|  | attrs); | 
|  | if (mEglContext == EGL_NO_CONTEXT) { | 
|  | ALOGW("Could not create EGL context"); | 
|  | cleanup(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | EGLint surfaceAttrs[] = { EGL_NONE }; | 
|  | mEglSurface = eglCreateWindowSurface(mEglDisplay, configs[0], | 
|  | mSurface.get(), surfaceAttrs); | 
|  | if (mEglSurface == EGL_NO_SURFACE) { | 
|  | ALOGW("Could not create EGL surface"); | 
|  | cleanup(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext)) { | 
|  | ALOGW("Could not change current EGL context"); | 
|  | cleanup(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void makeCurrent() const | 
|  | { | 
|  | eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface, mEglContext); | 
|  | } | 
|  |  | 
|  | void present() const | 
|  | { | 
|  | eglSwapBuffers(mEglDisplay, mEglSurface); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void cleanup() | 
|  | { | 
|  | if (mEglDisplay == EGL_NO_DISPLAY) | 
|  | return; | 
|  | if (mEglSurface != EGL_NO_SURFACE) | 
|  | eglDestroySurface(mEglDisplay, mEglSurface); | 
|  | if (mEglContext != EGL_NO_CONTEXT) | 
|  | eglDestroyContext(mEglDisplay, mEglContext); | 
|  |  | 
|  | eglMakeCurrent(mEglDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, | 
|  | EGL_NO_CONTEXT); | 
|  | eglReleaseThread(); | 
|  | eglTerminate(mEglDisplay); | 
|  | } | 
|  |  | 
|  | sp<Surface> mSurface; | 
|  | EGLDisplay mEglDisplay; | 
|  | EGLSurface mEglSurface; | 
|  | EGLContext mEglContext; | 
|  | }; | 
|  |  | 
|  |  | 
|  | static const std::array<vec2, 4> triangles = {{ | 
|  | {  1.0f,  1.0f }, | 
|  | { -1.0f,  1.0f }, | 
|  | {  1.0f, -1.0f }, | 
|  | { -1.0f, -1.0f }, | 
|  | }}; | 
|  |  | 
|  | class Hwc2TestFenceGenerator { | 
|  | public: | 
|  |  | 
|  | Hwc2TestFenceGenerator() | 
|  | { | 
|  | mSurfaceManager.initialize({1, 1}, HAL_PIXEL_FORMAT_RGBA_8888, | 
|  | setFence, this); | 
|  |  | 
|  | if (!mEglManager.initialize(mSurfaceManager.getSurface())) | 
|  | return; | 
|  |  | 
|  | mEglManager.makeCurrent(); | 
|  |  | 
|  | glClearColor(0.0, 0.0, 0.0, 1.0); | 
|  | glEnableVertexAttribArray(0); | 
|  | } | 
|  |  | 
|  | ~Hwc2TestFenceGenerator() | 
|  | { | 
|  | if (mFence >= 0) | 
|  | close(mFence); | 
|  | mFence = -1; | 
|  |  | 
|  | mEglManager.makeCurrent(); | 
|  | } | 
|  |  | 
|  | /* It is not possible to simply generate a fence. The easiest way is to | 
|  | * generate a buffer using egl and use the associated fence. The buffer | 
|  | * cannot be guaranteed to be a certain format across all devices using this | 
|  | * method. Instead the buffer is generated using the CPU */ | 
|  | int32_t get() | 
|  | { | 
|  | if (mFence >= 0) { | 
|  | return dup(mFence); | 
|  | } | 
|  |  | 
|  | std::unique_lock<std::mutex> lock(mMutex); | 
|  |  | 
|  | /* If the pending is still set to false and times out, we cannot recover. | 
|  | * Set an error and return */ | 
|  | while (mPending != false) { | 
|  | if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout) | 
|  | return -ETIME; | 
|  | } | 
|  |  | 
|  | /* Generate a fence. The fence will be returned through the setFence | 
|  | * callback */ | 
|  | mEglManager.makeCurrent(); | 
|  |  | 
|  | glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, triangles.data()); | 
|  | glClear(GL_COLOR_BUFFER_BIT); | 
|  |  | 
|  | mEglManager.present(); | 
|  |  | 
|  | /* Wait for the setFence callback */ | 
|  | while (mPending != true) { | 
|  | if (mCv.wait_for(lock, std::chrono::seconds(2)) == std::cv_status::timeout) | 
|  | return -ETIME; | 
|  | } | 
|  |  | 
|  | mPending = false; | 
|  |  | 
|  | return dup(mFence); | 
|  | } | 
|  |  | 
|  | /* Callback that sets the fence */ | 
|  | void set(int32_t fence) | 
|  | { | 
|  | mFence = fence; | 
|  | mPending = true; | 
|  |  | 
|  | mCv.notify_all(); | 
|  | } | 
|  |  | 
|  | private: | 
|  |  | 
|  | Hwc2TestSurfaceManager mSurfaceManager; | 
|  | Hwc2TestEglManager mEglManager; | 
|  |  | 
|  | std::mutex mMutex; | 
|  | std::condition_variable mCv; | 
|  |  | 
|  | int32_t mFence = -1; | 
|  | bool mPending = false; | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void setFence(int32_t fence, void* fenceGenerator) | 
|  | { | 
|  | static_cast<Hwc2TestFenceGenerator*>(fenceGenerator)->set(fence); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Sets the pixel of a buffer given the location, format, stride and color. | 
|  | * Currently only supports RGBA_8888 */ | 
|  | static void setColor(int32_t x, int32_t y, | 
|  | android_pixel_format_t format, uint32_t stride, uint8_t* img, uint8_t r, | 
|  | uint8_t g, uint8_t b, uint8_t a) | 
|  | { | 
|  | switch (format) { | 
|  | case HAL_PIXEL_FORMAT_RGBA_8888: | 
|  | img[(y * stride + x) * 4 + 0] = r; | 
|  | img[(y * stride + x) * 4 + 1] = g; | 
|  | img[(y * stride + x) * 4 + 2] = b; | 
|  | img[(y * stride + x) * 4 + 3] = a; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Hwc2TestBuffer::Hwc2TestBuffer() | 
|  | : mFenceGenerator(new Hwc2TestFenceGenerator()) { } | 
|  |  | 
|  | Hwc2TestBuffer::~Hwc2TestBuffer() = default; | 
|  |  | 
|  | /* When the buffer changes sizes, save the new size and invalidate the current | 
|  | * buffer */ | 
|  | void Hwc2TestBuffer::updateBufferArea(const Area& bufferArea) | 
|  | { | 
|  | if (mBufferArea.width == bufferArea.width | 
|  | && mBufferArea.height == bufferArea.height) | 
|  | return; | 
|  |  | 
|  | mBufferArea.width = bufferArea.width; | 
|  | mBufferArea.height = bufferArea.height; | 
|  |  | 
|  | mValidBuffer = false; | 
|  | } | 
|  |  | 
|  | /* Returns a valid buffer handle and fence. The handle is filled using the CPU | 
|  | * to ensure the correct format across all devices. The fence is created using | 
|  | * egl. */ | 
|  | int Hwc2TestBuffer::get(buffer_handle_t* outHandle, int32_t* outFence) | 
|  | { | 
|  | if (mBufferArea.width == -1 || mBufferArea.height == -1) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* If the current buffer is valid, the previous buffer can be reused. | 
|  | * Otherwise, create new buffer */ | 
|  | if (!mValidBuffer) { | 
|  | int ret = generateBuffer(); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | *outFence = mFenceGenerator->get(); | 
|  | *outHandle = mHandle; | 
|  |  | 
|  | mValidBuffer = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* CPU fills a buffer to guarantee the correct buffer format across all | 
|  | * devices */ | 
|  | int Hwc2TestBuffer::generateBuffer() | 
|  | { | 
|  | /* Create new graphic buffer with correct dimensions */ | 
|  | mGraphicBuffer = new GraphicBuffer(mBufferArea.width, mBufferArea.height, | 
|  | mFormat, GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER, | 
|  | "hwc2_test_buffer"); | 
|  | int ret = mGraphicBuffer->initCheck(); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | if (!mGraphicBuffer->handle) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Locks the buffer for writing */ | 
|  | uint8_t* img; | 
|  | mGraphicBuffer->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img)); | 
|  |  | 
|  | uint32_t stride = mGraphicBuffer->getStride(); | 
|  |  | 
|  | /* Iterate from the top row of the buffer to the bottom row */ | 
|  | for (int32_t y = 0; y < mBufferArea.height; y++) { | 
|  |  | 
|  | /* Will be used as R, G and B values for pixel colors */ | 
|  | uint8_t max = 255; | 
|  | uint8_t min = 0; | 
|  |  | 
|  | /* Divide the rows into 3 sections. The first section will contain | 
|  | * the lighest colors. The last section will contain the darkest | 
|  | * colors. */ | 
|  | if (y < mBufferArea.height * 1.0 / 3.0) { | 
|  | min = 255 / 2; | 
|  | } else if (y >= mBufferArea.height * 2.0 / 3.0) { | 
|  | max = 255 / 2; | 
|  | } | 
|  |  | 
|  | /* Divide the columns into 3 sections. The first section is red, | 
|  | * the second is green and the third is blue */ | 
|  | int32_t x = 0; | 
|  | for (; x < mBufferArea.width / 3; x++) { | 
|  | setColor(x, y, mFormat, stride, img, max, min, min, 255); | 
|  | } | 
|  |  | 
|  | for (; x < mBufferArea.width * 2 / 3; x++) { | 
|  | setColor(x, y, mFormat, stride, img, min, max, min, 255); | 
|  | } | 
|  |  | 
|  | for (; x < mBufferArea.width; x++) { | 
|  | setColor(x, y, mFormat, stride, img, min, min, max, 255); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unlock the buffer for reading */ | 
|  | mGraphicBuffer->unlock(); | 
|  |  | 
|  | mHandle = mGraphicBuffer->handle; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | Hwc2TestClientTargetBuffer::Hwc2TestClientTargetBuffer() | 
|  | : mFenceGenerator(new Hwc2TestFenceGenerator()) { } | 
|  |  | 
|  | Hwc2TestClientTargetBuffer::~Hwc2TestClientTargetBuffer() { } | 
|  |  | 
|  | /* Generates a client target buffer using the layers assigned for client | 
|  | * composition. Takes into account the individual layer properties such as | 
|  | * transform, blend mode, source crop, etc. */ | 
|  | int Hwc2TestClientTargetBuffer::get(buffer_handle_t* outHandle, | 
|  | int32_t* outFence, const Area& bufferArea, | 
|  | const Hwc2TestLayers* testLayers, | 
|  | const std::set<hwc2_layer_t>* clientLayers, | 
|  | const std::set<hwc2_layer_t>* clearLayers) | 
|  | { | 
|  | /* Create new graphic buffer with correct dimensions */ | 
|  | mGraphicBuffer = new GraphicBuffer(bufferArea.width, bufferArea.height, | 
|  | mFormat, GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_HW_RENDER, | 
|  | "hwc2_test_buffer"); | 
|  | int ret = mGraphicBuffer->initCheck(); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | if (!mGraphicBuffer->handle) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | uint8_t* img; | 
|  | mGraphicBuffer->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, (void**)(&img)); | 
|  |  | 
|  | uint32_t stride = mGraphicBuffer->getStride(); | 
|  |  | 
|  | float bWDiv3 = bufferArea.width / 3; | 
|  | float bW2Div3 = bufferArea.width * 2 / 3; | 
|  | float bHDiv3 = bufferArea.height / 3; | 
|  | float bH2Div3 = bufferArea.height * 2 / 3; | 
|  |  | 
|  | /* Cycle through every pixel in the buffer and determine what color it | 
|  | * should be. */ | 
|  | for (int32_t y = 0; y < bufferArea.height; y++) { | 
|  | for (int32_t x = 0; x < bufferArea.width; x++) { | 
|  |  | 
|  | uint8_t r = 0, g = 0, b = 0; | 
|  | float a = 0.0f; | 
|  |  | 
|  | /* Cycle through each client layer from back to front and | 
|  | * update the pixel color. */ | 
|  | for (auto layer = clientLayers->rbegin(); | 
|  | layer != clientLayers->rend(); ++layer) { | 
|  |  | 
|  | const hwc_rect_t df = testLayers->getDisplayFrame(*layer); | 
|  |  | 
|  | float dfL = df.left; | 
|  | float dfT = df.top; | 
|  | float dfR = df.right; | 
|  | float dfB = df.bottom; | 
|  |  | 
|  | /* If the pixel location falls outside of the layer display | 
|  | * frame, skip the layer. */ | 
|  | if (x < dfL || x >= dfR || y < dfT || y >= dfB) | 
|  | continue; | 
|  |  | 
|  | /* If the device has requested the layer be clear, clear | 
|  | * the pixel and continue. */ | 
|  | if (clearLayers->count(*layer) != 0) { | 
|  | r = 0; | 
|  | g = 0; | 
|  | b = 0; | 
|  | a = 0.0f; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | float planeAlpha = testLayers->getPlaneAlpha(*layer); | 
|  |  | 
|  | /* If the layer is a solid color, fill the color and | 
|  | * continue. */ | 
|  | if (testLayers->getComposition(*layer) | 
|  | == HWC2_COMPOSITION_SOLID_COLOR) { | 
|  | const auto color = testLayers->getColor(*layer); | 
|  | r = color.r; | 
|  | g = color.g; | 
|  | b = color.b; | 
|  | a = color.a * planeAlpha; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | float xPos = x; | 
|  | float yPos = y; | 
|  |  | 
|  | hwc_transform_t transform = testLayers->getTransform(*layer); | 
|  |  | 
|  | float dfW = dfR - dfL; | 
|  | float dfH = dfB - dfT; | 
|  |  | 
|  | /* If a layer has a transform, find which location on the | 
|  | * layer will end up in the current pixel location. We | 
|  | * can calculate the color of the current pixel using that | 
|  | * location. */ | 
|  | if (transform > 0) { | 
|  | /* Change origin to be the center of the layer. */ | 
|  | xPos = xPos - dfL - dfW / 2.0; | 
|  | yPos = yPos - dfT - dfH / 2.0; | 
|  |  | 
|  | /* Flip Horizontal by reflecting across the y axis. */ | 
|  | if (transform & HWC_TRANSFORM_FLIP_H) | 
|  | xPos = -xPos; | 
|  |  | 
|  | /* Flip vertical by reflecting across the x axis. */ | 
|  | if (transform & HWC_TRANSFORM_FLIP_V) | 
|  | yPos = -yPos; | 
|  |  | 
|  | /* Rotate 90 by using a basic linear algebra rotation | 
|  | * and scaling the result so the display frame remains | 
|  | * the same. For example, a buffer of size 100x50 should | 
|  | * rotate 90 degress but remain the same dimension | 
|  | * (100x50) at the end of the transformation. */ | 
|  | if (transform & HWC_TRANSFORM_ROT_90) { | 
|  | float tmp = xPos; | 
|  | xPos = -yPos * dfW / dfH; | 
|  | yPos = tmp * dfH / dfW; | 
|  | } | 
|  |  | 
|  | /* Change origin back to the top left corner of the | 
|  | * layer. */ | 
|  | xPos = xPos + dfL + dfW / 2.0; | 
|  | yPos = yPos + dfT + dfH / 2.0; | 
|  | } | 
|  |  | 
|  | hwc_frect_t sc = testLayers->getSourceCrop(*layer); | 
|  | float scL = sc.left, scT = sc.top; | 
|  |  | 
|  | float dfWDivScW = dfW / (sc.right - scL); | 
|  | float dfHDivScH = dfH / (sc.bottom - scT); | 
|  |  | 
|  | float max = 255, min = 0; | 
|  |  | 
|  | /* Choose the pixel color. Similar to generateBuffer, | 
|  | * each layer will be divided into 3x3 colors. Because | 
|  | * both the source crop and display frame must be taken into | 
|  | * account, the formulas are more complicated. | 
|  | * | 
|  | * If the source crop and display frame were not taken into | 
|  | * account, we would simply divide the buffer into three | 
|  | * sections by height. Each section would get one color. | 
|  | * For example the formula for the first section would be: | 
|  | * | 
|  | * if (yPos < bufferArea.height / 3) | 
|  | *        //Select first section color | 
|  | * | 
|  | * However the pixel color is chosen based on the source | 
|  | * crop and displayed based on the display frame. | 
|  | * | 
|  | * If the display frame top was 0 and the source crop height | 
|  | * and display frame height were the same. The only factor | 
|  | * would be the source crop top. To calculate the new | 
|  | * section boundary, the section boundary would be moved up | 
|  | * by the height of the source crop top. The formula would | 
|  | * be: | 
|  | * if (yPos < (bufferArea.height / 3 - sourceCrop.top) | 
|  | *        //Select first section color | 
|  | * | 
|  | * If the display frame top could also vary but source crop | 
|  | * and display frame heights were the same, the formula | 
|  | * would be: | 
|  | * if (yPos < (bufferArea.height / 3 - sourceCrop.top | 
|  | *              + displayFrameTop) | 
|  | *        //Select first section color | 
|  | * | 
|  | * If the heights were not the same, the conversion between | 
|  | * the source crop and display frame dimensions must be | 
|  | * taken into account. The formula would be: | 
|  | * if (yPos < ((bufferArea.height / 3) - sourceCrop.top) | 
|  | *              * displayFrameHeight / sourceCropHeight | 
|  | *              + displayFrameTop) | 
|  | *        //Select first section color | 
|  | */ | 
|  | if (yPos < ((bHDiv3) - scT) * dfHDivScH + dfT) { | 
|  | min = 255 / 2; | 
|  | } else if (yPos >= ((bH2Div3) - scT) * dfHDivScH + dfT) { | 
|  | max = 255 / 2; | 
|  | } | 
|  |  | 
|  | uint8_t rCur = min, gCur = min, bCur = min; | 
|  | float aCur = 1.0f; | 
|  |  | 
|  | /* This further divides the color sections from 3 to 3x3. | 
|  | * The math behind it follows the same logic as the previous | 
|  | * comment */ | 
|  | if (xPos < ((bWDiv3) - scL) * (dfWDivScW) + dfL) { | 
|  | rCur = max; | 
|  | } else if (xPos < ((bW2Div3) - scL) * (dfWDivScW) + dfL) { | 
|  | gCur = max; | 
|  | } else { | 
|  | bCur = max; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Blend the pixel color with the previous layers' pixel | 
|  | * colors using the plane alpha and blend mode. The final | 
|  | * pixel color is chosen using the plane alpha and blend | 
|  | * mode formulas found in hwcomposer2.h */ | 
|  | hwc2_blend_mode_t blendMode = testLayers->getBlendMode(*layer); | 
|  |  | 
|  | if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) { | 
|  | rCur *= planeAlpha; | 
|  | gCur *= planeAlpha; | 
|  | bCur *= planeAlpha; | 
|  | } | 
|  |  | 
|  | aCur *= planeAlpha; | 
|  |  | 
|  | if (blendMode == HWC2_BLEND_MODE_PREMULTIPLIED) { | 
|  | r = rCur + r * (1.0 - aCur); | 
|  | g = gCur + g * (1.0 - aCur); | 
|  | b = bCur + b * (1.0 - aCur); | 
|  | a = aCur + a * (1.0 - aCur); | 
|  | } else if (blendMode == HWC2_BLEND_MODE_COVERAGE) { | 
|  | r = rCur * aCur + r * (1.0 - aCur); | 
|  | g = gCur * aCur + g * (1.0 - aCur); | 
|  | b = bCur * aCur + b * (1.0 - aCur); | 
|  | a = aCur * aCur + a * (1.0 - aCur); | 
|  | } else { | 
|  | r = rCur; | 
|  | g = gCur; | 
|  | b = bCur; | 
|  | a = aCur; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set the pixel color */ | 
|  | setColor(x, y, mFormat, stride, img, r, g, b, a * 255); | 
|  | } | 
|  | } | 
|  |  | 
|  | mGraphicBuffer->unlock(); | 
|  |  | 
|  | *outFence = mFenceGenerator->get(); | 
|  | *outHandle = mGraphicBuffer->handle; | 
|  |  | 
|  | return 0; | 
|  | } |