| /* | 
 |  * Copyright (C) 2013 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
 | //#define LOG_NDEBUG 0 | 
 |  | 
 | // This is needed for stdint.h to define INT64_MAX in C++ | 
 | #define __STDC_LIMIT_MACROS | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include <algorithm> | 
 |  | 
 | #include <log/log.h> | 
 | #include <utils/String8.h> | 
 | #include <utils/Thread.h> | 
 | #include <utils/Trace.h> | 
 | #include <utils/Vector.h> | 
 |  | 
 | #include <ui/FenceTime.h> | 
 |  | 
 | #include "DispSync.h" | 
 | #include "EventLog/EventLog.h" | 
 | #include "SurfaceFlinger.h" | 
 |  | 
 | using std::max; | 
 | using std::min; | 
 |  | 
 | namespace android { | 
 |  | 
 | // Setting this to true enables verbose tracing that can be used to debug | 
 | // vsync event model or phase issues. | 
 | static const bool kTraceDetailedInfo = false; | 
 |  | 
 | // Setting this to true adds a zero-phase tracer for correlating with hardware | 
 | // vsync events | 
 | static const bool kEnableZeroPhaseTracer = false; | 
 |  | 
 | // This is the threshold used to determine when hardware vsync events are | 
 | // needed to re-synchronize the software vsync model with the hardware.  The | 
 | // error metric used is the mean of the squared difference between each | 
 | // present time and the nearest software-predicted vsync. | 
 | static const nsecs_t kErrorThreshold = 160000000000; // 400 usec squared | 
 |  | 
 | #undef LOG_TAG | 
 | #define LOG_TAG "DispSyncThread" | 
 | class DispSyncThread : public Thread { | 
 | public: | 
 |     explicit DispSyncThread(const char* name) | 
 |           : mName(name), | 
 |             mStop(false), | 
 |             mPeriod(0), | 
 |             mPhase(0), | 
 |             mReferenceTime(0), | 
 |             mWakeupLatency(0), | 
 |             mFrameNumber(0) {} | 
 |  | 
 |     virtual ~DispSyncThread() {} | 
 |  | 
 |     void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         Mutex::Autolock lock(mMutex); | 
 |         mPeriod = period; | 
 |         mPhase = phase; | 
 |         mReferenceTime = referenceTime; | 
 |         ALOGV("[%s] updateModel: mPeriod = %" PRId64 ", mPhase = %" PRId64 | 
 |               " mReferenceTime = %" PRId64, | 
 |               mName, ns2us(mPeriod), ns2us(mPhase), ns2us(mReferenceTime)); | 
 |         mCond.signal(); | 
 |     } | 
 |  | 
 |     void stop() { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         Mutex::Autolock lock(mMutex); | 
 |         mStop = true; | 
 |         mCond.signal(); | 
 |     } | 
 |  | 
 |     virtual bool threadLoop() { | 
 |         status_t err; | 
 |         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); | 
 |  | 
 |         while (true) { | 
 |             Vector<CallbackInvocation> callbackInvocations; | 
 |  | 
 |             nsecs_t targetTime = 0; | 
 |  | 
 |             { // Scope for lock | 
 |                 Mutex::Autolock lock(mMutex); | 
 |  | 
 |                 if (kTraceDetailedInfo) { | 
 |                     ATRACE_INT64("DispSync:Frame", mFrameNumber); | 
 |                 } | 
 |                 ALOGV("[%s] Frame %" PRId64, mName, mFrameNumber); | 
 |                 ++mFrameNumber; | 
 |  | 
 |                 if (mStop) { | 
 |                     return false; | 
 |                 } | 
 |  | 
 |                 if (mPeriod == 0) { | 
 |                     err = mCond.wait(mMutex); | 
 |                     if (err != NO_ERROR) { | 
 |                         ALOGE("error waiting for new events: %s (%d)", strerror(-err), err); | 
 |                         return false; | 
 |                     } | 
 |                     continue; | 
 |                 } | 
 |  | 
 |                 targetTime = computeNextEventTimeLocked(now); | 
 |  | 
 |                 bool isWakeup = false; | 
 |  | 
 |                 if (now < targetTime) { | 
 |                     if (kTraceDetailedInfo) ATRACE_NAME("DispSync waiting"); | 
 |  | 
 |                     if (targetTime == INT64_MAX) { | 
 |                         ALOGV("[%s] Waiting forever", mName); | 
 |                         err = mCond.wait(mMutex); | 
 |                     } else { | 
 |                         ALOGV("[%s] Waiting until %" PRId64, mName, ns2us(targetTime)); | 
 |                         err = mCond.waitRelative(mMutex, targetTime - now); | 
 |                     } | 
 |  | 
 |                     if (err == TIMED_OUT) { | 
 |                         isWakeup = true; | 
 |                     } else if (err != NO_ERROR) { | 
 |                         ALOGE("error waiting for next event: %s (%d)", strerror(-err), err); | 
 |                         return false; | 
 |                     } | 
 |                 } | 
 |  | 
 |                 now = systemTime(SYSTEM_TIME_MONOTONIC); | 
 |  | 
 |                 // Don't correct by more than 1.5 ms | 
 |                 static const nsecs_t kMaxWakeupLatency = us2ns(1500); | 
 |  | 
 |                 if (isWakeup) { | 
 |                     mWakeupLatency = ((mWakeupLatency * 63) + (now - targetTime)) / 64; | 
 |                     mWakeupLatency = min(mWakeupLatency, kMaxWakeupLatency); | 
 |                     if (kTraceDetailedInfo) { | 
 |                         ATRACE_INT64("DispSync:WakeupLat", now - targetTime); | 
 |                         ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency); | 
 |                     } | 
 |                 } | 
 |  | 
 |                 callbackInvocations = gatherCallbackInvocationsLocked(now); | 
 |             } | 
 |  | 
 |             if (callbackInvocations.size() > 0) { | 
 |                 fireCallbackInvocations(callbackInvocations); | 
 |             } | 
 |         } | 
 |  | 
 |         return false; | 
 |     } | 
 |  | 
 |     status_t addEventListener(const char* name, nsecs_t phase, DispSync::Callback* callback) { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         Mutex::Autolock lock(mMutex); | 
 |  | 
 |         for (size_t i = 0; i < mEventListeners.size(); i++) { | 
 |             if (mEventListeners[i].mCallback == callback) { | 
 |                 return BAD_VALUE; | 
 |             } | 
 |         } | 
 |  | 
 |         EventListener listener; | 
 |         listener.mName = name; | 
 |         listener.mPhase = phase; | 
 |         listener.mCallback = callback; | 
 |  | 
 |         // We want to allow the firstmost future event to fire without | 
 |         // allowing any past events to fire | 
 |         listener.mLastEventTime = systemTime() - mPeriod / 2 + mPhase - mWakeupLatency; | 
 |  | 
 |         mEventListeners.push(listener); | 
 |  | 
 |         mCond.signal(); | 
 |  | 
 |         return NO_ERROR; | 
 |     } | 
 |  | 
 |     status_t removeEventListener(DispSync::Callback* callback) { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         Mutex::Autolock lock(mMutex); | 
 |  | 
 |         for (size_t i = 0; i < mEventListeners.size(); i++) { | 
 |             if (mEventListeners[i].mCallback == callback) { | 
 |                 mEventListeners.removeAt(i); | 
 |                 mCond.signal(); | 
 |                 return NO_ERROR; | 
 |             } | 
 |         } | 
 |  | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     status_t changePhaseOffset(DispSync::Callback* callback, nsecs_t phase) { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         Mutex::Autolock lock(mMutex); | 
 |  | 
 |         for (size_t i = 0; i < mEventListeners.size(); i++) { | 
 |             if (mEventListeners[i].mCallback == callback) { | 
 |                 EventListener& listener = mEventListeners.editItemAt(i); | 
 |                 const nsecs_t oldPhase = listener.mPhase; | 
 |                 listener.mPhase = phase; | 
 |  | 
 |                 // Pretend that the last time this event was handled at the same frame but with the | 
 |                 // new offset to allow for a seamless offset change without double-firing or | 
 |                 // skipping. | 
 |                 listener.mLastEventTime -= (oldPhase - phase); | 
 |                 mCond.signal(); | 
 |                 return NO_ERROR; | 
 |             } | 
 |         } | 
 |  | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     // This method is only here to handle the !SurfaceFlinger::hasSyncFramework | 
 |     // case. | 
 |     bool hasAnyEventListeners() { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         Mutex::Autolock lock(mMutex); | 
 |         return !mEventListeners.empty(); | 
 |     } | 
 |  | 
 | private: | 
 |     struct EventListener { | 
 |         const char* mName; | 
 |         nsecs_t mPhase; | 
 |         nsecs_t mLastEventTime; | 
 |         DispSync::Callback* mCallback; | 
 |     }; | 
 |  | 
 |     struct CallbackInvocation { | 
 |         DispSync::Callback* mCallback; | 
 |         nsecs_t mEventTime; | 
 |     }; | 
 |  | 
 |     nsecs_t computeNextEventTimeLocked(nsecs_t now) { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         ALOGV("[%s] computeNextEventTimeLocked", mName); | 
 |         nsecs_t nextEventTime = INT64_MAX; | 
 |         for (size_t i = 0; i < mEventListeners.size(); i++) { | 
 |             nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], now); | 
 |  | 
 |             if (t < nextEventTime) { | 
 |                 nextEventTime = t; | 
 |             } | 
 |         } | 
 |  | 
 |         ALOGV("[%s] nextEventTime = %" PRId64, mName, ns2us(nextEventTime)); | 
 |         return nextEventTime; | 
 |     } | 
 |  | 
 |     Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         ALOGV("[%s] gatherCallbackInvocationsLocked @ %" PRId64, mName, ns2us(now)); | 
 |  | 
 |         Vector<CallbackInvocation> callbackInvocations; | 
 |         nsecs_t onePeriodAgo = now - mPeriod; | 
 |  | 
 |         for (size_t i = 0; i < mEventListeners.size(); i++) { | 
 |             nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], onePeriodAgo); | 
 |  | 
 |             if (t < now) { | 
 |                 CallbackInvocation ci; | 
 |                 ci.mCallback = mEventListeners[i].mCallback; | 
 |                 ci.mEventTime = t; | 
 |                 ALOGV("[%s] [%s] Preparing to fire", mName, mEventListeners[i].mName); | 
 |                 callbackInvocations.push(ci); | 
 |                 mEventListeners.editItemAt(i).mLastEventTime = t; | 
 |             } | 
 |         } | 
 |  | 
 |         return callbackInvocations; | 
 |     } | 
 |  | 
 |     nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener, nsecs_t baseTime) { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         ALOGV("[%s] [%s] computeListenerNextEventTimeLocked(%" PRId64 ")", mName, listener.mName, | 
 |               ns2us(baseTime)); | 
 |  | 
 |         nsecs_t lastEventTime = listener.mLastEventTime + mWakeupLatency; | 
 |         ALOGV("[%s] lastEventTime: %" PRId64, mName, ns2us(lastEventTime)); | 
 |         if (baseTime < lastEventTime) { | 
 |             baseTime = lastEventTime; | 
 |             ALOGV("[%s] Clamping baseTime to lastEventTime -> %" PRId64, mName, ns2us(baseTime)); | 
 |         } | 
 |  | 
 |         baseTime -= mReferenceTime; | 
 |         ALOGV("[%s] Relative baseTime = %" PRId64, mName, ns2us(baseTime)); | 
 |         nsecs_t phase = mPhase + listener.mPhase; | 
 |         ALOGV("[%s] Phase = %" PRId64, mName, ns2us(phase)); | 
 |         baseTime -= phase; | 
 |         ALOGV("[%s] baseTime - phase = %" PRId64, mName, ns2us(baseTime)); | 
 |  | 
 |         // If our previous time is before the reference (because the reference | 
 |         // has since been updated), the division by mPeriod will truncate | 
 |         // towards zero instead of computing the floor. Since in all cases | 
 |         // before the reference we want the next time to be effectively now, we | 
 |         // set baseTime to -mPeriod so that numPeriods will be -1. | 
 |         // When we add 1 and the phase, we will be at the correct event time for | 
 |         // this period. | 
 |         if (baseTime < 0) { | 
 |             ALOGV("[%s] Correcting negative baseTime", mName); | 
 |             baseTime = -mPeriod; | 
 |         } | 
 |  | 
 |         nsecs_t numPeriods = baseTime / mPeriod; | 
 |         ALOGV("[%s] numPeriods = %" PRId64, mName, numPeriods); | 
 |         nsecs_t t = (numPeriods + 1) * mPeriod + phase; | 
 |         ALOGV("[%s] t = %" PRId64, mName, ns2us(t)); | 
 |         t += mReferenceTime; | 
 |         ALOGV("[%s] Absolute t = %" PRId64, mName, ns2us(t)); | 
 |  | 
 |         // Check that it's been slightly more than half a period since the last | 
 |         // event so that we don't accidentally fall into double-rate vsyncs | 
 |         if (t - listener.mLastEventTime < (3 * mPeriod / 5)) { | 
 |             t += mPeriod; | 
 |             ALOGV("[%s] Modifying t -> %" PRId64, mName, ns2us(t)); | 
 |         } | 
 |  | 
 |         t -= mWakeupLatency; | 
 |         ALOGV("[%s] Corrected for wakeup latency -> %" PRId64, mName, ns2us(t)); | 
 |  | 
 |         return t; | 
 |     } | 
 |  | 
 |     void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) { | 
 |         if (kTraceDetailedInfo) ATRACE_CALL(); | 
 |         for (size_t i = 0; i < callbacks.size(); i++) { | 
 |             callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime); | 
 |         } | 
 |     } | 
 |  | 
 |     const char* const mName; | 
 |  | 
 |     bool mStop; | 
 |  | 
 |     nsecs_t mPeriod; | 
 |     nsecs_t mPhase; | 
 |     nsecs_t mReferenceTime; | 
 |     nsecs_t mWakeupLatency; | 
 |  | 
 |     int64_t mFrameNumber; | 
 |  | 
 |     Vector<EventListener> mEventListeners; | 
 |  | 
 |     Mutex mMutex; | 
 |     Condition mCond; | 
 | }; | 
 |  | 
 | #undef LOG_TAG | 
 | #define LOG_TAG "DispSync" | 
 |  | 
 | class ZeroPhaseTracer : public DispSync::Callback { | 
 | public: | 
 |     ZeroPhaseTracer() : mParity(false) {} | 
 |  | 
 |     virtual void onDispSyncEvent(nsecs_t /*when*/) { | 
 |         mParity = !mParity; | 
 |         ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0); | 
 |     } | 
 |  | 
 | private: | 
 |     bool mParity; | 
 | }; | 
 |  | 
 | DispSync::DispSync(const char* name) | 
 |       : mName(name), mRefreshSkipCount(0), mThread(new DispSyncThread(name)) {} | 
 |  | 
 | DispSync::~DispSync() {} | 
 |  | 
 | void DispSync::init(bool hasSyncFramework, int64_t dispSyncPresentTimeOffset) { | 
 |     mIgnorePresentFences = !hasSyncFramework; | 
 |     mPresentTimeOffset = dispSyncPresentTimeOffset; | 
 |     mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE); | 
 |  | 
 |     // set DispSync to SCHED_FIFO to minimize jitter | 
 |     struct sched_param param = {0}; | 
 |     param.sched_priority = 2; | 
 |     if (sched_setscheduler(mThread->getTid(), SCHED_FIFO, ¶m) != 0) { | 
 |         ALOGE("Couldn't set SCHED_FIFO for DispSyncThread"); | 
 |     } | 
 |  | 
 |     reset(); | 
 |     beginResync(); | 
 |  | 
 |     if (kTraceDetailedInfo) { | 
 |         // If we're not getting present fences then the ZeroPhaseTracer | 
 |         // would prevent HW vsync event from ever being turned off. | 
 |         // Even if we're just ignoring the fences, the zero-phase tracing is | 
 |         // not needed because any time there is an event registered we will | 
 |         // turn on the HW vsync events. | 
 |         if (!mIgnorePresentFences && kEnableZeroPhaseTracer) { | 
 |             mZeroPhaseTracer = std::make_unique<ZeroPhaseTracer>(); | 
 |             addEventListener("ZeroPhaseTracer", 0, mZeroPhaseTracer.get()); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void DispSync::reset() { | 
 |     Mutex::Autolock lock(mMutex); | 
 |  | 
 |     mPhase = 0; | 
 |     mReferenceTime = 0; | 
 |     mModelUpdated = false; | 
 |     mNumResyncSamples = 0; | 
 |     mFirstResyncSample = 0; | 
 |     mNumResyncSamplesSincePresent = 0; | 
 |     resetErrorLocked(); | 
 | } | 
 |  | 
 | bool DispSync::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |  | 
 |     mPresentFences[mPresentSampleOffset] = fenceTime; | 
 |     mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES; | 
 |     mNumResyncSamplesSincePresent = 0; | 
 |  | 
 |     updateErrorLocked(); | 
 |  | 
 |     return !mModelUpdated || mError > kErrorThreshold; | 
 | } | 
 |  | 
 | void DispSync::beginResync() { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     ALOGV("[%s] beginResync", mName); | 
 |     mModelUpdated = false; | 
 |     mNumResyncSamples = 0; | 
 | } | 
 |  | 
 | bool DispSync::addResyncSample(nsecs_t timestamp) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |  | 
 |     ALOGV("[%s] addResyncSample(%" PRId64 ")", mName, ns2us(timestamp)); | 
 |  | 
 |     size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES; | 
 |     mResyncSamples[idx] = timestamp; | 
 |     if (mNumResyncSamples == 0) { | 
 |         mPhase = 0; | 
 |         mReferenceTime = timestamp; | 
 |         ALOGV("[%s] First resync sample: mPeriod = %" PRId64 ", mPhase = 0, " | 
 |               "mReferenceTime = %" PRId64, | 
 |               mName, ns2us(mPeriod), ns2us(mReferenceTime)); | 
 |         mThread->updateModel(mPeriod, mPhase, mReferenceTime); | 
 |     } | 
 |  | 
 |     if (mNumResyncSamples < MAX_RESYNC_SAMPLES) { | 
 |         mNumResyncSamples++; | 
 |     } else { | 
 |         mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES; | 
 |     } | 
 |  | 
 |     updateModelLocked(); | 
 |  | 
 |     if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) { | 
 |         resetErrorLocked(); | 
 |     } | 
 |  | 
 |     if (mIgnorePresentFences) { | 
 |         // If we don't have the sync framework we will never have | 
 |         // addPresentFence called.  This means we have no way to know whether | 
 |         // or not we're synchronized with the HW vsyncs, so we just request | 
 |         // that the HW vsync events be turned on whenever we need to generate | 
 |         // SW vsync events. | 
 |         return mThread->hasAnyEventListeners(); | 
 |     } | 
 |  | 
 |     // Check against kErrorThreshold / 2 to add some hysteresis before having to | 
 |     // resync again | 
 |     bool modelLocked = mModelUpdated && mError < (kErrorThreshold / 2); | 
 |     ALOGV("[%s] addResyncSample returning %s", mName, modelLocked ? "locked" : "unlocked"); | 
 |     return !modelLocked; | 
 | } | 
 |  | 
 | void DispSync::endResync() {} | 
 |  | 
 | status_t DispSync::addEventListener(const char* name, nsecs_t phase, Callback* callback) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     return mThread->addEventListener(name, phase, callback); | 
 | } | 
 |  | 
 | void DispSync::setRefreshSkipCount(int count) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     ALOGD("setRefreshSkipCount(%d)", count); | 
 |     mRefreshSkipCount = count; | 
 |     updateModelLocked(); | 
 | } | 
 |  | 
 | status_t DispSync::removeEventListener(Callback* callback) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     return mThread->removeEventListener(callback); | 
 | } | 
 |  | 
 | status_t DispSync::changePhaseOffset(Callback* callback, nsecs_t phase) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     return mThread->changePhaseOffset(callback, phase); | 
 | } | 
 |  | 
 | void DispSync::setPeriod(nsecs_t period) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     mPeriod = period; | 
 |     mPhase = 0; | 
 |     mReferenceTime = 0; | 
 |     mThread->updateModel(mPeriod, mPhase, mReferenceTime); | 
 | } | 
 |  | 
 | nsecs_t DispSync::getPeriod() { | 
 |     // lock mutex as mPeriod changes multiple times in updateModelLocked | 
 |     Mutex::Autolock lock(mMutex); | 
 |     return mPeriod; | 
 | } | 
 |  | 
 | void DispSync::updateModelLocked() { | 
 |     ALOGV("[%s] updateModelLocked %zu", mName, mNumResyncSamples); | 
 |     if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) { | 
 |         ALOGV("[%s] Computing...", mName); | 
 |         nsecs_t durationSum = 0; | 
 |         nsecs_t minDuration = INT64_MAX; | 
 |         nsecs_t maxDuration = 0; | 
 |         for (size_t i = 1; i < mNumResyncSamples; i++) { | 
 |             size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES; | 
 |             size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES; | 
 |             nsecs_t duration = mResyncSamples[idx] - mResyncSamples[prev]; | 
 |             durationSum += duration; | 
 |             minDuration = min(minDuration, duration); | 
 |             maxDuration = max(maxDuration, duration); | 
 |         } | 
 |  | 
 |         // Exclude the min and max from the average | 
 |         durationSum -= minDuration + maxDuration; | 
 |         mPeriod = durationSum / (mNumResyncSamples - 3); | 
 |  | 
 |         ALOGV("[%s] mPeriod = %" PRId64, mName, ns2us(mPeriod)); | 
 |  | 
 |         double sampleAvgX = 0; | 
 |         double sampleAvgY = 0; | 
 |         double scale = 2.0 * M_PI / double(mPeriod); | 
 |         // Intentionally skip the first sample | 
 |         for (size_t i = 1; i < mNumResyncSamples; i++) { | 
 |             size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES; | 
 |             nsecs_t sample = mResyncSamples[idx] - mReferenceTime; | 
 |             double samplePhase = double(sample % mPeriod) * scale; | 
 |             sampleAvgX += cos(samplePhase); | 
 |             sampleAvgY += sin(samplePhase); | 
 |         } | 
 |  | 
 |         sampleAvgX /= double(mNumResyncSamples - 1); | 
 |         sampleAvgY /= double(mNumResyncSamples - 1); | 
 |  | 
 |         mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale); | 
 |  | 
 |         ALOGV("[%s] mPhase = %" PRId64, mName, ns2us(mPhase)); | 
 |  | 
 |         if (mPhase < -(mPeriod / 2)) { | 
 |             mPhase += mPeriod; | 
 |             ALOGV("[%s] Adjusting mPhase -> %" PRId64, mName, ns2us(mPhase)); | 
 |         } | 
 |  | 
 |         if (kTraceDetailedInfo) { | 
 |             ATRACE_INT64("DispSync:Period", mPeriod); | 
 |             ATRACE_INT64("DispSync:Phase", mPhase + mPeriod / 2); | 
 |         } | 
 |  | 
 |         // Artificially inflate the period if requested. | 
 |         mPeriod += mPeriod * mRefreshSkipCount; | 
 |  | 
 |         mThread->updateModel(mPeriod, mPhase, mReferenceTime); | 
 |         mModelUpdated = true; | 
 |     } | 
 | } | 
 |  | 
 | void DispSync::updateErrorLocked() { | 
 |     if (!mModelUpdated) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Need to compare present fences against the un-adjusted refresh period, | 
 |     // since they might arrive between two events. | 
 |     nsecs_t period = mPeriod / (1 + mRefreshSkipCount); | 
 |  | 
 |     int numErrSamples = 0; | 
 |     nsecs_t sqErrSum = 0; | 
 |  | 
 |     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { | 
 |         // Only check for the cached value of signal time to avoid unecessary | 
 |         // syscalls. It is the responsibility of the DispSync owner to | 
 |         // call getSignalTime() periodically so the cache is updated when the | 
 |         // fence signals. | 
 |         nsecs_t time = mPresentFences[i]->getCachedSignalTime(); | 
 |         if (time == Fence::SIGNAL_TIME_PENDING || time == Fence::SIGNAL_TIME_INVALID) { | 
 |             continue; | 
 |         } | 
 |  | 
 |         nsecs_t sample = time - mReferenceTime; | 
 |         if (sample <= mPhase) { | 
 |             continue; | 
 |         } | 
 |  | 
 |         nsecs_t sampleErr = (sample - mPhase) % period; | 
 |         if (sampleErr > period / 2) { | 
 |             sampleErr -= period; | 
 |         } | 
 |         sqErrSum += sampleErr * sampleErr; | 
 |         numErrSamples++; | 
 |     } | 
 |  | 
 |     if (numErrSamples > 0) { | 
 |         mError = sqErrSum / numErrSamples; | 
 |         mZeroErrSamplesCount = 0; | 
 |     } else { | 
 |         mError = 0; | 
 |         // Use mod ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT to avoid log spam. | 
 |         mZeroErrSamplesCount++; | 
 |         ALOGE_IF((mZeroErrSamplesCount % ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT) == 0, | 
 |                  "No present times for model error."); | 
 |     } | 
 |  | 
 |     if (kTraceDetailedInfo) { | 
 |         ATRACE_INT64("DispSync:Error", mError); | 
 |     } | 
 | } | 
 |  | 
 | void DispSync::resetErrorLocked() { | 
 |     mPresentSampleOffset = 0; | 
 |     mError = 0; | 
 |     mZeroErrSamplesCount = 0; | 
 |     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { | 
 |         mPresentFences[i] = FenceTime::NO_FENCE; | 
 |     } | 
 | } | 
 |  | 
 | nsecs_t DispSync::computeNextRefresh(int periodOffset) const { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); | 
 |     nsecs_t phase = mReferenceTime + mPhase; | 
 |     return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase; | 
 | } | 
 |  | 
 | void DispSync::dump(String8& result) const { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     result.appendFormat("present fences are %s\n", mIgnorePresentFences ? "ignored" : "used"); | 
 |     result.appendFormat("mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n", mPeriod, | 
 |                         1000000000.0 / mPeriod, mRefreshSkipCount); | 
 |     result.appendFormat("mPhase: %" PRId64 " ns\n", mPhase); | 
 |     result.appendFormat("mError: %" PRId64 " ns (sqrt=%.1f)\n", mError, sqrt(mError)); | 
 |     result.appendFormat("mNumResyncSamplesSincePresent: %d (limit %d)\n", | 
 |                         mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT); | 
 |     result.appendFormat("mNumResyncSamples: %zd (max %d)\n", mNumResyncSamples, MAX_RESYNC_SAMPLES); | 
 |  | 
 |     result.appendFormat("mResyncSamples:\n"); | 
 |     nsecs_t previous = -1; | 
 |     for (size_t i = 0; i < mNumResyncSamples; i++) { | 
 |         size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES; | 
 |         nsecs_t sampleTime = mResyncSamples[idx]; | 
 |         if (i == 0) { | 
 |             result.appendFormat("  %" PRId64 "\n", sampleTime); | 
 |         } else { | 
 |             result.appendFormat("  %" PRId64 " (+%" PRId64 ")\n", sampleTime, | 
 |                                 sampleTime - previous); | 
 |         } | 
 |         previous = sampleTime; | 
 |     } | 
 |  | 
 |     result.appendFormat("mPresentFences [%d]:\n", NUM_PRESENT_SAMPLES); | 
 |     nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); | 
 |     previous = Fence::SIGNAL_TIME_INVALID; | 
 |     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { | 
 |         size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES; | 
 |         nsecs_t presentTime = mPresentFences[idx]->getSignalTime(); | 
 |         if (presentTime == Fence::SIGNAL_TIME_PENDING) { | 
 |             result.appendFormat("  [unsignaled fence]\n"); | 
 |         } else if (presentTime == Fence::SIGNAL_TIME_INVALID) { | 
 |             result.appendFormat("  [invalid fence]\n"); | 
 |         } else if (previous == Fence::SIGNAL_TIME_PENDING || | 
 |                    previous == Fence::SIGNAL_TIME_INVALID) { | 
 |             result.appendFormat("  %" PRId64 "  (%.3f ms ago)\n", presentTime, | 
 |                                 (now - presentTime) / 1000000.0); | 
 |         } else { | 
 |             result.appendFormat("  %" PRId64 " (+%" PRId64 " / %.3f)  (%.3f ms ago)\n", presentTime, | 
 |                                 presentTime - previous, (presentTime - previous) / (double)mPeriod, | 
 |                                 (now - presentTime) / 1000000.0); | 
 |         } | 
 |         previous = presentTime; | 
 |     } | 
 |  | 
 |     result.appendFormat("current monotonic time: %" PRId64 "\n", now); | 
 | } | 
 |  | 
 | } // namespace android |