| /* |
| * Copyright (C) 2024 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <input/InputConsumerNoResampling.h> |
| |
| #include <chrono> |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include <TestEventMatchers.h> |
| #include <TestInputChannel.h> |
| #include <attestation/HmacKeyManager.h> |
| #include <gmock/gmock.h> |
| #include <gtest/gtest.h> |
| #include <input/BlockingQueue.h> |
| #include <input/InputEventBuilders.h> |
| #include <input/Resampler.h> |
| #include <utils/Looper.h> |
| #include <utils/StrongPointer.h> |
| |
| namespace android { |
| namespace { |
| |
| using std::chrono::nanoseconds; |
| using namespace std::chrono_literals; |
| |
| struct Pointer { |
| int32_t id{0}; |
| float x{0.0f}; |
| float y{0.0f}; |
| ToolType toolType{ToolType::FINGER}; |
| bool isResampled{false}; |
| |
| PointerBuilder asPointerBuilder() const { |
| return PointerBuilder{id, toolType}.x(x).y(y).isResampled(isResampled); |
| } |
| }; |
| |
| struct InputEventEntry { |
| std::chrono::nanoseconds eventTime{0}; |
| std::vector<Pointer> pointers{}; |
| int32_t action{-1}; |
| }; |
| |
| } // namespace |
| |
| class InputConsumerResamplingTest : public ::testing::Test, public InputConsumerCallbacks { |
| protected: |
| InputConsumerResamplingTest() |
| : mClientTestChannel{std::make_shared<TestInputChannel>("TestChannel")}, |
| mLooper{sp<Looper>::make(/*allowNonCallbacks=*/false)} { |
| Looper::setForThread(mLooper); |
| mConsumer = std::make_unique< |
| InputConsumerNoResampling>(mClientTestChannel, mLooper, *this, |
| []() { return std::make_unique<LegacyResampler>(); }); |
| } |
| |
| void invokeLooperCallback() const { |
| sp<LooperCallback> callback; |
| ASSERT_TRUE(mLooper->getFdStateDebug(mClientTestChannel->getFd(), /*ident=*/nullptr, |
| /*events=*/nullptr, &callback, /*data=*/nullptr)); |
| ASSERT_NE(callback, nullptr); |
| callback->handleEvent(mClientTestChannel->getFd(), ALOOPER_EVENT_INPUT, /*data=*/nullptr); |
| } |
| |
| InputMessage nextPointerMessage(const InputEventEntry& entry); |
| |
| void assertReceivedMotionEvent(const std::vector<InputEventEntry>& expectedEntries); |
| |
| std::shared_ptr<TestInputChannel> mClientTestChannel; |
| sp<Looper> mLooper; |
| std::unique_ptr<InputConsumerNoResampling> mConsumer; |
| |
| BlockingQueue<std::unique_ptr<KeyEvent>> mKeyEvents; |
| BlockingQueue<std::unique_ptr<MotionEvent>> mMotionEvents; |
| BlockingQueue<std::unique_ptr<FocusEvent>> mFocusEvents; |
| BlockingQueue<std::unique_ptr<CaptureEvent>> mCaptureEvents; |
| BlockingQueue<std::unique_ptr<DragEvent>> mDragEvents; |
| BlockingQueue<std::unique_ptr<TouchModeEvent>> mTouchModeEvents; |
| |
| private: |
| uint32_t mLastSeq{0}; |
| size_t mOnBatchedInputEventPendingInvocationCount{0}; |
| |
| // InputConsumerCallbacks interface |
| void onKeyEvent(std::unique_ptr<KeyEvent> event, uint32_t seq) override { |
| mKeyEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| } |
| void onMotionEvent(std::unique_ptr<MotionEvent> event, uint32_t seq) override { |
| mMotionEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| } |
| void onBatchedInputEventPending(int32_t pendingBatchSource) override { |
| if (!mConsumer->probablyHasInput()) { |
| ADD_FAILURE() << "should deterministically have input because there is a batch"; |
| } |
| ++mOnBatchedInputEventPendingInvocationCount; |
| } |
| void onFocusEvent(std::unique_ptr<FocusEvent> event, uint32_t seq) override { |
| mFocusEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| } |
| void onCaptureEvent(std::unique_ptr<CaptureEvent> event, uint32_t seq) override { |
| mCaptureEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| } |
| void onDragEvent(std::unique_ptr<DragEvent> event, uint32_t seq) override { |
| mDragEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| } |
| void onTouchModeEvent(std::unique_ptr<TouchModeEvent> event, uint32_t seq) override { |
| mTouchModeEvents.push(std::move(event)); |
| mConsumer->finishInputEvent(seq, true); |
| } |
| }; |
| |
| InputMessage InputConsumerResamplingTest::nextPointerMessage(const InputEventEntry& entry) { |
| ++mLastSeq; |
| InputMessageBuilder messageBuilder = InputMessageBuilder{InputMessage::Type::MOTION, mLastSeq} |
| .eventTime(entry.eventTime.count()) |
| .deviceId(1) |
| .action(entry.action) |
| .downTime(0); |
| for (const Pointer& pointer : entry.pointers) { |
| messageBuilder.pointer(pointer.asPointerBuilder()); |
| } |
| return messageBuilder.build(); |
| } |
| |
| void InputConsumerResamplingTest::assertReceivedMotionEvent( |
| const std::vector<InputEventEntry>& expectedEntries) { |
| std::unique_ptr<MotionEvent> motionEvent = mMotionEvents.pop(); |
| ASSERT_NE(motionEvent, nullptr); |
| |
| ASSERT_EQ(motionEvent->getHistorySize() + 1, expectedEntries.size()); |
| |
| for (size_t sampleIndex = 0; sampleIndex < expectedEntries.size(); ++sampleIndex) { |
| SCOPED_TRACE("sampleIndex: " + std::to_string(sampleIndex)); |
| const InputEventEntry& expectedEntry = expectedEntries[sampleIndex]; |
| EXPECT_EQ(motionEvent->getHistoricalEventTime(sampleIndex), |
| expectedEntry.eventTime.count()); |
| EXPECT_EQ(motionEvent->getPointerCount(), expectedEntry.pointers.size()); |
| EXPECT_EQ(motionEvent->getAction(), expectedEntry.action); |
| |
| for (size_t pointerIndex = 0; pointerIndex < expectedEntry.pointers.size(); |
| ++pointerIndex) { |
| SCOPED_TRACE("pointerIndex: " + std::to_string(pointerIndex)); |
| ssize_t eventPointerIndex = |
| motionEvent->findPointerIndex(expectedEntry.pointers[pointerIndex].id); |
| EXPECT_EQ(motionEvent->getHistoricalRawX(eventPointerIndex, sampleIndex), |
| expectedEntry.pointers[pointerIndex].x); |
| EXPECT_EQ(motionEvent->getHistoricalRawY(eventPointerIndex, sampleIndex), |
| expectedEntry.pointers[pointerIndex].y); |
| EXPECT_EQ(motionEvent->getHistoricalX(eventPointerIndex, sampleIndex), |
| expectedEntry.pointers[pointerIndex].x); |
| EXPECT_EQ(motionEvent->getHistoricalY(eventPointerIndex, sampleIndex), |
| expectedEntry.pointers[pointerIndex].y); |
| EXPECT_EQ(motionEvent->isResampled(pointerIndex, sampleIndex), |
| expectedEntry.pointers[pointerIndex].isResampled); |
| } |
| } |
| } |
| |
| /** |
| * Timeline |
| * ---------+------------------+------------------+--------+-----------------+---------------------- |
| * 0 ms 10 ms 20 ms 25 ms 35 ms |
| * ACTION_DOWN ACTION_MOVE ACTION_MOVE ^ ^ |
| * | | |
| * resampled value | |
| * frameTime |
| * Typically, the prediction is made for time frameTime - RESAMPLE_LATENCY, or 30 ms in this case, |
| * where RESAMPLE_LATENCY equals 5 milliseconds. However, that would be 10 ms later than the last |
| * real sample (which came in at 20 ms). Therefore, the resampling should happen at 20 ms + |
| * RESAMPLE_MAX_PREDICTION = 28 ms, where RESAMPLE_MAX_PREDICTION equals 8 milliseconds. In this |
| * situation, though, resample time is further limited by taking half of the difference between the |
| * last two real events, which would put this time at: 20 ms + (20 ms - 10 ms) / 2 = 25 ms. |
| */ |
| TEST_F(InputConsumerResamplingTest, EventIsResampled) { |
| // Send the initial ACTION_DOWN separately, so that the first consumed event will only return an |
| // InputEvent with a single action. |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {0ms, {Pointer{.id = 0, .x = 10.0f, .y = 20.0f}}, AMOTION_EVENT_ACTION_DOWN})); |
| |
| mClientTestChannel->assertNoSentMessages(); |
| |
| invokeLooperCallback(); |
| assertReceivedMotionEvent({InputEventEntry{0ms, |
| {Pointer{.id = 0, .x = 10.0f, .y = 20.0f}}, |
| AMOTION_EVENT_ACTION_DOWN}}); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {10ms, {Pointer{.id = 0, .x = 20.0f, .y = 30.0f}}, AMOTION_EVENT_ACTION_MOVE})); |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {20ms, {Pointer{.id = 0, .x = 30.0f, .y = 30.0f}}, AMOTION_EVENT_ACTION_MOVE})); |
| |
| invokeLooperCallback(); |
| mConsumer->consumeBatchedInputEvents(nanoseconds{35ms}.count()); |
| assertReceivedMotionEvent( |
| {InputEventEntry{10ms, |
| {Pointer{.id = 0, .x = 20.0f, .y = 30.0f}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{20ms, |
| {Pointer{.id = 0, .x = 30.0f, .y = 30.0f}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{25ms, |
| {Pointer{.id = 0, .x = 35.0f, .y = 30.0f, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}}); |
| |
| mClientTestChannel->assertFinishMessage(/*seq=*/1, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/2, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/3, /*handled=*/true); |
| } |
| |
| /** |
| * Same as above test, but use pointer id=1 instead of 0 to make sure that system does not |
| * have these hardcoded. |
| */ |
| TEST_F(InputConsumerResamplingTest, EventIsResampledWithDifferentId) { |
| // Send the initial ACTION_DOWN separately, so that the first consumed event will only return an |
| // InputEvent with a single action. |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {0ms, {Pointer{.id = 1, .x = 10.0f, .y = 20.0f}}, AMOTION_EVENT_ACTION_DOWN})); |
| |
| mClientTestChannel->assertNoSentMessages(); |
| |
| invokeLooperCallback(); |
| assertReceivedMotionEvent({InputEventEntry{0ms, |
| {Pointer{.id = 1, .x = 10.0f, .y = 20.0f}}, |
| AMOTION_EVENT_ACTION_DOWN}}); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {10ms, {Pointer{.id = 1, .x = 20.0f, .y = 30.0f}}, AMOTION_EVENT_ACTION_MOVE})); |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {20ms, {Pointer{.id = 1, .x = 30.0f, .y = 30.0f}}, AMOTION_EVENT_ACTION_MOVE})); |
| |
| invokeLooperCallback(); |
| mConsumer->consumeBatchedInputEvents(nanoseconds{35ms}.count()); |
| assertReceivedMotionEvent( |
| {InputEventEntry{10ms, |
| {Pointer{.id = 1, .x = 20.0f, .y = 30.0f}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{20ms, |
| {Pointer{.id = 1, .x = 30.0f, .y = 30.0f}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{25ms, |
| {Pointer{.id = 1, .x = 35.0f, .y = 30.0f, .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}}); |
| |
| mClientTestChannel->assertFinishMessage(/*seq=*/1, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/2, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/3, /*handled=*/true); |
| } |
| |
| /** |
| * Stylus pointer coordinates are resampled. |
| */ |
| TEST_F(InputConsumerResamplingTest, StylusEventIsResampled) { |
| // Send the initial ACTION_DOWN separately, so that the first consumed event will only return an |
| // InputEvent with a single action. |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {0ms, |
| {Pointer{.id = 0, .x = 10.0f, .y = 20.0f, .toolType = ToolType::STYLUS}}, |
| AMOTION_EVENT_ACTION_DOWN})); |
| |
| mClientTestChannel->assertNoSentMessages(); |
| |
| invokeLooperCallback(); |
| assertReceivedMotionEvent({InputEventEntry{0ms, |
| {Pointer{.id = 0, |
| .x = 10.0f, |
| .y = 20.0f, |
| .toolType = ToolType::STYLUS}}, |
| AMOTION_EVENT_ACTION_DOWN}}); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {10ms, |
| {Pointer{.id = 0, .x = 20.0f, .y = 30.0f, .toolType = ToolType::STYLUS}}, |
| AMOTION_EVENT_ACTION_MOVE})); |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {20ms, |
| {Pointer{.id = 0, .x = 30.0f, .y = 30.0f, .toolType = ToolType::STYLUS}}, |
| AMOTION_EVENT_ACTION_MOVE})); |
| |
| invokeLooperCallback(); |
| mConsumer->consumeBatchedInputEvents(nanoseconds{35ms}.count()); |
| assertReceivedMotionEvent({InputEventEntry{10ms, |
| {Pointer{.id = 0, |
| .x = 20.0f, |
| .y = 30.0f, |
| .toolType = ToolType::STYLUS}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{20ms, |
| {Pointer{.id = 0, |
| .x = 30.0f, |
| .y = 30.0f, |
| .toolType = ToolType::STYLUS}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{25ms, |
| {Pointer{.id = 0, |
| .x = 35.0f, |
| .y = 30.0f, |
| .toolType = ToolType::STYLUS, |
| .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}}); |
| |
| mClientTestChannel->assertFinishMessage(/*seq=*/1, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/2, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/3, /*handled=*/true); |
| } |
| |
| /** |
| * Mouse pointer coordinates are resampled. |
| */ |
| TEST_F(InputConsumerResamplingTest, MouseEventIsResampled) { |
| // Send the initial ACTION_DOWN separately, so that the first consumed event will only return an |
| // InputEvent with a single action. |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {0ms, |
| {Pointer{.id = 0, .x = 10.0f, .y = 20.0f, .toolType = ToolType::MOUSE}}, |
| AMOTION_EVENT_ACTION_DOWN})); |
| |
| mClientTestChannel->assertNoSentMessages(); |
| |
| invokeLooperCallback(); |
| assertReceivedMotionEvent({InputEventEntry{0ms, |
| {Pointer{.id = 0, |
| .x = 10.0f, |
| .y = 20.0f, |
| .toolType = ToolType::MOUSE}}, |
| AMOTION_EVENT_ACTION_DOWN}}); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {10ms, |
| {Pointer{.id = 0, .x = 20.0f, .y = 30.0f, .toolType = ToolType::MOUSE}}, |
| AMOTION_EVENT_ACTION_MOVE})); |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {20ms, |
| {Pointer{.id = 0, .x = 30.0f, .y = 30.0f, .toolType = ToolType::MOUSE}}, |
| AMOTION_EVENT_ACTION_MOVE})); |
| |
| invokeLooperCallback(); |
| mConsumer->consumeBatchedInputEvents(nanoseconds{35ms}.count()); |
| assertReceivedMotionEvent({InputEventEntry{10ms, |
| {Pointer{.id = 0, |
| .x = 20.0f, |
| .y = 30.0f, |
| .toolType = ToolType::MOUSE}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{20ms, |
| {Pointer{.id = 0, |
| .x = 30.0f, |
| .y = 30.0f, |
| .toolType = ToolType::MOUSE}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{25ms, |
| {Pointer{.id = 0, |
| .x = 35.0f, |
| .y = 30.0f, |
| .toolType = ToolType::MOUSE, |
| .isResampled = true}}, |
| AMOTION_EVENT_ACTION_MOVE}}); |
| |
| mClientTestChannel->assertFinishMessage(/*seq=*/1, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/2, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/3, /*handled=*/true); |
| } |
| |
| /** |
| * Motion events with palm tool type are not resampled. |
| */ |
| TEST_F(InputConsumerResamplingTest, PalmEventIsNotResampled) { |
| // Send the initial ACTION_DOWN separately, so that the first consumed event will only return an |
| // InputEvent with a single action. |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {0ms, |
| {Pointer{.id = 0, .x = 10.0f, .y = 20.0f, .toolType = ToolType::PALM}}, |
| AMOTION_EVENT_ACTION_DOWN})); |
| |
| mClientTestChannel->assertNoSentMessages(); |
| |
| invokeLooperCallback(); |
| assertReceivedMotionEvent( |
| {InputEventEntry{0ms, |
| {Pointer{.id = 0, .x = 10.0f, .y = 20.0f, .toolType = ToolType::PALM}}, |
| AMOTION_EVENT_ACTION_DOWN}}); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {10ms, |
| {Pointer{.id = 0, .x = 20.0f, .y = 30.0f, .toolType = ToolType::PALM}}, |
| AMOTION_EVENT_ACTION_MOVE})); |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {20ms, |
| {Pointer{.id = 0, .x = 30.0f, .y = 30.0f, .toolType = ToolType::PALM}}, |
| AMOTION_EVENT_ACTION_MOVE})); |
| |
| invokeLooperCallback(); |
| mConsumer->consumeBatchedInputEvents(nanoseconds{35ms}.count()); |
| assertReceivedMotionEvent( |
| {InputEventEntry{10ms, |
| {Pointer{.id = 0, .x = 20.0f, .y = 30.0f, .toolType = ToolType::PALM}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{20ms, |
| {Pointer{.id = 0, .x = 30.0f, .y = 30.0f, .toolType = ToolType::PALM}}, |
| AMOTION_EVENT_ACTION_MOVE}}); |
| |
| mClientTestChannel->assertFinishMessage(/*seq=*/1, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/2, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/3, /*handled=*/true); |
| } |
| |
| /** |
| * Event should not be resampled when sample time is equal to event time. |
| */ |
| TEST_F(InputConsumerResamplingTest, SampleTimeEqualsEventTime) { |
| // Send the initial ACTION_DOWN separately, so that the first consumed event will only return an |
| // InputEvent with a single action. |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {0ms, {Pointer{.id = 0, .x = 10.0f, .y = 20.0f}}, AMOTION_EVENT_ACTION_DOWN})); |
| |
| mClientTestChannel->assertNoSentMessages(); |
| |
| invokeLooperCallback(); |
| assertReceivedMotionEvent({InputEventEntry{0ms, |
| {Pointer{.id = 0, .x = 10.0f, .y = 20.0f}}, |
| AMOTION_EVENT_ACTION_DOWN}}); |
| |
| // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {10ms, {Pointer{.id = 0, .x = 20.0f, .y = 30.0f}}, AMOTION_EVENT_ACTION_MOVE})); |
| mClientTestChannel->enqueueMessage(nextPointerMessage( |
| {20ms, {Pointer{.id = 0, .x = 30.0f, .y = 30.0f}}, AMOTION_EVENT_ACTION_MOVE})); |
| |
| invokeLooperCallback(); |
| mConsumer->consumeBatchedInputEvents(nanoseconds{20ms + 5ms /*RESAMPLE_LATENCY*/}.count()); |
| |
| // MotionEvent should not resampled because the resample time falls exactly on the existing |
| // event time. |
| assertReceivedMotionEvent({InputEventEntry{10ms, |
| {Pointer{.id = 0, .x = 20.0f, .y = 30.0f}}, |
| AMOTION_EVENT_ACTION_MOVE}, |
| InputEventEntry{20ms, |
| {Pointer{.id = 0, .x = 30.0f, .y = 30.0f}}, |
| AMOTION_EVENT_ACTION_MOVE}}); |
| |
| mClientTestChannel->assertFinishMessage(/*seq=*/1, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/2, /*handled=*/true); |
| mClientTestChannel->assertFinishMessage(/*seq=*/3, /*handled=*/true); |
| } |
| |
| } // namespace android |