| /* | 
 |  * Copyright (C) 2018 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 |  | 
 | #include <bpf_timeinstate.h> | 
 |  | 
 | #include <sys/sysinfo.h> | 
 |  | 
 | #include <pthread.h> | 
 | #include <semaphore.h> | 
 | #include <numeric> | 
 | #include <unordered_map> | 
 | #include <vector> | 
 |  | 
 | #include <gtest/gtest.h> | 
 |  | 
 | #include <android-base/unique_fd.h> | 
 | #include <bpf/BpfMap.h> | 
 | #include <cputimeinstate.h> | 
 | #include <libbpf.h> | 
 |  | 
 | namespace android { | 
 | namespace bpf { | 
 |  | 
 | static constexpr uint64_t NSEC_PER_SEC = 1000000000; | 
 | static constexpr uint64_t NSEC_PER_YEAR = NSEC_PER_SEC * 60 * 60 * 24 * 365; | 
 |  | 
 | using std::vector; | 
 |  | 
 | TEST(TimeInStateTest, IsTrackingSupported) { | 
 |     isTrackingUidTimesSupported(); | 
 |     SUCCEED(); | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, TotalTimeInState) { | 
 |     auto times = getTotalCpuFreqTimes(); | 
 |     ASSERT_TRUE(times.has_value()); | 
 |     EXPECT_FALSE(times->empty()); | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, SingleUidTimeInState) { | 
 |     auto times = getUidCpuFreqTimes(0); | 
 |     ASSERT_TRUE(times.has_value()); | 
 |     EXPECT_FALSE(times->empty()); | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, SingleUidConcurrentTimes) { | 
 |     auto concurrentTimes = getUidConcurrentTimes(0); | 
 |     ASSERT_TRUE(concurrentTimes.has_value()); | 
 |     ASSERT_FALSE(concurrentTimes->active.empty()); | 
 |     ASSERT_FALSE(concurrentTimes->policy.empty()); | 
 |  | 
 |     uint64_t policyEntries = 0; | 
 |     for (const auto &policyTimeVec : concurrentTimes->policy) policyEntries += policyTimeVec.size(); | 
 |     ASSERT_EQ(concurrentTimes->active.size(), policyEntries); | 
 | } | 
 |  | 
 | static void TestConcurrentTimesConsistent(const struct concurrent_time_t &concurrentTime) { | 
 |     size_t maxPolicyCpus = 0; | 
 |     for (const auto &vec : concurrentTime.policy) { | 
 |         maxPolicyCpus = std::max(maxPolicyCpus, vec.size()); | 
 |     } | 
 |     uint64_t policySum = 0; | 
 |     for (size_t i = 0; i < maxPolicyCpus; ++i) { | 
 |         for (const auto &vec : concurrentTime.policy) { | 
 |             if (i < vec.size()) policySum += vec[i]; | 
 |         } | 
 |         ASSERT_LE(concurrentTime.active[i], policySum); | 
 |         policySum -= concurrentTime.active[i]; | 
 |     } | 
 |     policySum = 0; | 
 |     for (size_t i = 0; i < concurrentTime.active.size(); ++i) { | 
 |         for (const auto &vec : concurrentTime.policy) { | 
 |             if (i < vec.size()) policySum += vec[vec.size() - 1 - i]; | 
 |         } | 
 |         auto activeSum = concurrentTime.active[concurrentTime.active.size() - 1 - i]; | 
 |         // This check is slightly flaky because we may read a map entry in the middle of an update | 
 |         // when active times have been updated but policy times have not. This happens infrequently | 
 |         // and can be distinguished from more serious bugs by re-running the test: if the underlying | 
 |         // data itself is inconsistent, the test will fail every time. | 
 |         ASSERT_LE(activeSum, policySum); | 
 |         policySum -= activeSum; | 
 |     } | 
 | } | 
 |  | 
 | static void TestUidTimesConsistent(const std::vector<std::vector<uint64_t>> &timeInState, | 
 |                                    const struct concurrent_time_t &concurrentTime) { | 
 |     ASSERT_NO_FATAL_FAILURE(TestConcurrentTimesConsistent(concurrentTime)); | 
 |     ASSERT_EQ(timeInState.size(), concurrentTime.policy.size()); | 
 |     uint64_t policySum = 0; | 
 |     for (uint32_t i = 0; i < timeInState.size(); ++i) { | 
 |         uint64_t tisSum = | 
 |                 std::accumulate(timeInState[i].begin(), timeInState[i].end(), (uint64_t)0); | 
 |         uint64_t concurrentSum = std::accumulate(concurrentTime.policy[i].begin(), | 
 |                                                  concurrentTime.policy[i].end(), (uint64_t)0); | 
 |         if (tisSum < concurrentSum) | 
 |             ASSERT_LE(concurrentSum - tisSum, NSEC_PER_SEC); | 
 |         else | 
 |             ASSERT_LE(tisSum - concurrentSum, NSEC_PER_SEC); | 
 |         policySum += concurrentSum; | 
 |     } | 
 |     uint64_t activeSum = std::accumulate(concurrentTime.active.begin(), concurrentTime.active.end(), | 
 |                                          (uint64_t)0); | 
 |     EXPECT_EQ(activeSum, policySum); | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, SingleUidTimesConsistent) { | 
 |     auto times = getUidCpuFreqTimes(0); | 
 |     ASSERT_TRUE(times.has_value()); | 
 |  | 
 |     auto concurrentTimes = getUidConcurrentTimes(0); | 
 |     ASSERT_TRUE(concurrentTimes.has_value()); | 
 |  | 
 |     ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(*times, *concurrentTimes)); | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidTimeInState) { | 
 |     uint64_t zero = 0; | 
 |     auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; | 
 |     for (const auto &map : maps) { | 
 |         ASSERT_TRUE(map.has_value()); | 
 |  | 
 |         ASSERT_FALSE(map->empty()); | 
 |  | 
 |         vector<size_t> sizes; | 
 |         auto firstEntry = map->begin()->second; | 
 |         for (const auto &subEntry : firstEntry) sizes.emplace_back(subEntry.size()); | 
 |  | 
 |         for (const auto &vec : *map) { | 
 |             ASSERT_EQ(vec.second.size(), sizes.size()); | 
 |             for (size_t i = 0; i < vec.second.size(); ++i) ASSERT_EQ(vec.second[i].size(), sizes[i]); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void TestCheckUpdate(const std::vector<std::vector<uint64_t>> &before, | 
 |                      const std::vector<std::vector<uint64_t>> &after) { | 
 |     ASSERT_EQ(before.size(), after.size()); | 
 |     uint64_t sumBefore = 0, sumAfter = 0; | 
 |     for (size_t i = 0; i < before.size(); ++i) { | 
 |         ASSERT_EQ(before[i].size(), after[i].size()); | 
 |         for (size_t j = 0; j < before[i].size(); ++j) { | 
 |             // Times should never decrease | 
 |             ASSERT_LE(before[i][j], after[i][j]); | 
 |         } | 
 |         sumBefore += std::accumulate(before[i].begin(), before[i].end(), (uint64_t)0); | 
 |         sumAfter += std::accumulate(after[i].begin(), after[i].end(), (uint64_t)0); | 
 |     } | 
 |     ASSERT_LE(sumBefore, sumAfter); | 
 |     ASSERT_LE(sumAfter - sumBefore, NSEC_PER_SEC); | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidUpdatedTimeInState) { | 
 |     uint64_t lastUpdate = 0; | 
 |     auto map1 = getUidsUpdatedCpuFreqTimes(&lastUpdate); | 
 |     ASSERT_TRUE(map1.has_value()); | 
 |     ASSERT_FALSE(map1->empty()); | 
 |     ASSERT_NE(lastUpdate, (uint64_t)0); | 
 |     uint64_t oldLastUpdate = lastUpdate; | 
 |  | 
 |     // Sleep briefly to trigger a context switch, ensuring we see at least one update. | 
 |     struct timespec ts; | 
 |     ts.tv_sec = 0; | 
 |     ts.tv_nsec = 1000000; | 
 |     nanosleep (&ts, NULL); | 
 |  | 
 |     auto map2 = getUidsUpdatedCpuFreqTimes(&lastUpdate); | 
 |     ASSERT_TRUE(map2.has_value()); | 
 |     ASSERT_FALSE(map2->empty()); | 
 |     ASSERT_NE(lastUpdate, oldLastUpdate); | 
 |  | 
 |     bool someUidsExcluded = false; | 
 |     for (const auto &[uid, v] : *map1) { | 
 |         if (map2->find(uid) == map2->end()) { | 
 |             someUidsExcluded = true; | 
 |             break; | 
 |         } | 
 |     } | 
 |     ASSERT_TRUE(someUidsExcluded); | 
 |  | 
 |     for (const auto &[uid, newTimes] : *map2) { | 
 |         ASSERT_NE(map1->find(uid), map1->end()); | 
 |         ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid], newTimes)); | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, TotalAndAllUidTimeInStateConsistent) { | 
 |     auto allUid = getUidsCpuFreqTimes(); | 
 |     auto total = getTotalCpuFreqTimes(); | 
 |  | 
 |     ASSERT_TRUE(allUid.has_value() && total.has_value()); | 
 |  | 
 |     // Check the number of policies. | 
 |     ASSERT_EQ(allUid->at(0).size(), total->size()); | 
 |  | 
 |     for (uint32_t policyIdx = 0; policyIdx < total->size(); ++policyIdx) { | 
 |         std::vector<uint64_t> totalTimes = total->at(policyIdx); | 
 |         uint32_t totalFreqsCount = totalTimes.size(); | 
 |         std::vector<uint64_t> allUidTimes(totalFreqsCount, 0); | 
 |         for (auto const &[uid, uidTimes]: *allUid) { | 
 |             for (uint32_t freqIdx = 0; freqIdx < uidTimes[policyIdx].size(); ++freqIdx) { | 
 |                 allUidTimes[std::min(freqIdx, totalFreqsCount - 1)] += uidTimes[policyIdx][freqIdx]; | 
 |             } | 
 |         } | 
 |  | 
 |         for (uint32_t freqIdx = 0; freqIdx < totalFreqsCount; ++freqIdx) { | 
 |             ASSERT_LE(allUidTimes[freqIdx], totalTimes[freqIdx]); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, SingleAndAllUidTimeInStateConsistent) { | 
 |     uint64_t zero = 0; | 
 |     auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; | 
 |     for (const auto &map : maps) { | 
 |         ASSERT_TRUE(map.has_value()); | 
 |         ASSERT_FALSE(map->empty()); | 
 |  | 
 |         for (const auto &kv : *map) { | 
 |             uint32_t uid = kv.first; | 
 |             auto times1 = kv.second; | 
 |             auto times2 = getUidCpuFreqTimes(uid); | 
 |             ASSERT_TRUE(times2.has_value()); | 
 |  | 
 |             ASSERT_EQ(times1.size(), times2->size()); | 
 |             for (uint32_t i = 0; i < times1.size(); ++i) { | 
 |                 ASSERT_EQ(times1[i].size(), (*times2)[i].size()); | 
 |                 for (uint32_t j = 0; j < times1[i].size(); ++j) { | 
 |                     ASSERT_LE((*times2)[i][j] - times1[i][j], NSEC_PER_SEC); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidConcurrentTimes) { | 
 |     uint64_t zero = 0; | 
 |     auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; | 
 |     for (const auto &map : maps) { | 
 |         ASSERT_TRUE(map.has_value()); | 
 |         ASSERT_FALSE(map->empty()); | 
 |  | 
 |         auto firstEntry = map->begin()->second; | 
 |         for (const auto &kv : *map) { | 
 |             ASSERT_EQ(kv.second.active.size(), firstEntry.active.size()); | 
 |             ASSERT_EQ(kv.second.policy.size(), firstEntry.policy.size()); | 
 |             for (size_t i = 0; i < kv.second.policy.size(); ++i) { | 
 |                 ASSERT_EQ(kv.second.policy[i].size(), firstEntry.policy[i].size()); | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidUpdatedConcurrentTimes) { | 
 |     uint64_t lastUpdate = 0; | 
 |     auto map1 = getUidsUpdatedConcurrentTimes(&lastUpdate); | 
 |     ASSERT_TRUE(map1.has_value()); | 
 |     ASSERT_FALSE(map1->empty()); | 
 |     ASSERT_NE(lastUpdate, (uint64_t)0); | 
 |  | 
 |     // Sleep briefly to trigger a context switch, ensuring we see at least one update. | 
 |     struct timespec ts; | 
 |     ts.tv_sec = 0; | 
 |     ts.tv_nsec = 1000000; | 
 |     nanosleep (&ts, NULL); | 
 |  | 
 |     uint64_t oldLastUpdate = lastUpdate; | 
 |     auto map2 = getUidsUpdatedConcurrentTimes(&lastUpdate); | 
 |     ASSERT_TRUE(map2.has_value()); | 
 |     ASSERT_FALSE(map2->empty()); | 
 |     ASSERT_NE(lastUpdate, oldLastUpdate); | 
 |  | 
 |     bool someUidsExcluded = false; | 
 |     for (const auto &[uid, v] : *map1) { | 
 |         if (map2->find(uid) == map2->end()) { | 
 |             someUidsExcluded = true; | 
 |             break; | 
 |         } | 
 |     } | 
 |     ASSERT_TRUE(someUidsExcluded); | 
 |  | 
 |     for (const auto &[uid, newTimes] : *map2) { | 
 |         ASSERT_NE(map1->find(uid), map1->end()); | 
 |         ASSERT_NO_FATAL_FAILURE(TestCheckUpdate({(*map1)[uid].active},{newTimes.active})); | 
 |         ASSERT_NO_FATAL_FAILURE(TestCheckUpdate((*map1)[uid].policy, newTimes.policy)); | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, SingleAndAllUidConcurrentTimesConsistent) { | 
 |     uint64_t zero = 0; | 
 |     auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; | 
 |     for (const auto &map : maps) { | 
 |         ASSERT_TRUE(map.has_value()); | 
 |         for (const auto &kv : *map) { | 
 |             uint32_t uid = kv.first; | 
 |             auto times1 = kv.second; | 
 |             auto times2 = getUidConcurrentTimes(uid); | 
 |             ASSERT_TRUE(times2.has_value()); | 
 |             for (uint32_t i = 0; i < times1.active.size(); ++i) { | 
 |                 ASSERT_LE(times2->active[i] - times1.active[i], NSEC_PER_SEC); | 
 |             } | 
 |             for (uint32_t i = 0; i < times1.policy.size(); ++i) { | 
 |                 for (uint32_t j = 0; j < times1.policy[i].size(); ++j) { | 
 |                     ASSERT_LE(times2->policy[i][j] - times1.policy[i][j], NSEC_PER_SEC); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void TestCheckDelta(uint64_t before, uint64_t after) { | 
 |     // Times should never decrease | 
 |     ASSERT_LE(before, after); | 
 |     // UID can't have run for more than ~1s on each CPU | 
 |     ASSERT_LE(after - before, NSEC_PER_SEC * 2 * get_nprocs_conf()); | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, TotalTimeInStateMonotonic) { | 
 |     auto before = getTotalCpuFreqTimes(); | 
 |     ASSERT_TRUE(before.has_value()); | 
 |     sleep(1); | 
 |     auto after = getTotalCpuFreqTimes(); | 
 |     ASSERT_TRUE(after.has_value()); | 
 |  | 
 |     for (uint32_t policyIdx = 0; policyIdx < after->size(); ++policyIdx) { | 
 |         auto timesBefore = before->at(policyIdx); | 
 |         auto timesAfter = after->at(policyIdx); | 
 |         for (uint32_t freqIdx = 0; freqIdx < timesAfter.size(); ++freqIdx) { | 
 |             ASSERT_NO_FATAL_FAILURE(TestCheckDelta(timesBefore[freqIdx], timesAfter[freqIdx])); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidTimeInStateMonotonic) { | 
 |     auto map1 = getUidsCpuFreqTimes(); | 
 |     ASSERT_TRUE(map1.has_value()); | 
 |     sleep(1); | 
 |     auto map2 = getUidsCpuFreqTimes(); | 
 |     ASSERT_TRUE(map2.has_value()); | 
 |  | 
 |     for (const auto &kv : *map1) { | 
 |         uint32_t uid = kv.first; | 
 |         auto times = kv.second; | 
 |         ASSERT_NE(map2->find(uid), map2->end()); | 
 |         for (uint32_t policy = 0; policy < times.size(); ++policy) { | 
 |             for (uint32_t freqIdx = 0; freqIdx < times[policy].size(); ++freqIdx) { | 
 |                 auto before = times[policy][freqIdx]; | 
 |                 auto after = (*map2)[uid][policy][freqIdx]; | 
 |                 ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidConcurrentTimesMonotonic) { | 
 |     auto map1 = getUidsConcurrentTimes(); | 
 |     ASSERT_TRUE(map1.has_value()); | 
 |     ASSERT_FALSE(map1->empty()); | 
 |     sleep(1); | 
 |     auto map2 = getUidsConcurrentTimes(); | 
 |     ASSERT_TRUE(map2.has_value()); | 
 |     ASSERT_FALSE(map2->empty()); | 
 |  | 
 |     for (const auto &kv : *map1) { | 
 |         uint32_t uid = kv.first; | 
 |         auto times = kv.second; | 
 |         ASSERT_NE(map2->find(uid), map2->end()); | 
 |         for (uint32_t i = 0; i < times.active.size(); ++i) { | 
 |             auto before = times.active[i]; | 
 |             auto after = (*map2)[uid].active[i]; | 
 |             ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); | 
 |         } | 
 |         for (uint32_t policy = 0; policy < times.policy.size(); ++policy) { | 
 |             for (uint32_t idx = 0; idx < times.policy[policy].size(); ++idx) { | 
 |                 auto before = times.policy[policy][idx]; | 
 |                 auto after = (*map2)[uid].policy[policy][idx]; | 
 |                 ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); | 
 |             } | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidTimeInStateSanityCheck) { | 
 |     uint64_t zero = 0; | 
 |     auto maps = {getUidsCpuFreqTimes(), getUidsUpdatedCpuFreqTimes(&zero)}; | 
 |     for (const auto &map : maps) { | 
 |         ASSERT_TRUE(map.has_value()); | 
 |  | 
 |         bool foundLargeValue = false; | 
 |         for (const auto &kv : *map) { | 
 |             for (const auto &timeVec : kv.second) { | 
 |                 for (const auto &time : timeVec) { | 
 |                     ASSERT_LE(time, NSEC_PER_YEAR); | 
 |                     if (time > UINT32_MAX) foundLargeValue = true; | 
 |                 } | 
 |             } | 
 |         } | 
 |         // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using | 
 |         // uint64_t as expected, we should have some times higher than that. | 
 |         ASSERT_TRUE(foundLargeValue); | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidConcurrentTimesSanityCheck) { | 
 |     uint64_t zero = 0; | 
 |     auto maps = {getUidsConcurrentTimes(), getUidsUpdatedConcurrentTimes(&zero)}; | 
 |     for (const auto &concurrentMap : maps) { | 
 |         ASSERT_TRUE(concurrentMap); | 
 |  | 
 |         bool activeFoundLargeValue = false; | 
 |         bool policyFoundLargeValue = false; | 
 |         for (const auto &kv : *concurrentMap) { | 
 |             for (const auto &time : kv.second.active) { | 
 |                 ASSERT_LE(time, NSEC_PER_YEAR); | 
 |                 if (time > UINT32_MAX) activeFoundLargeValue = true; | 
 |             } | 
 |             for (const auto &policyTimeVec : kv.second.policy) { | 
 |                 for (const auto &time : policyTimeVec) { | 
 |                     ASSERT_LE(time, NSEC_PER_YEAR); | 
 |                     if (time > UINT32_MAX) policyFoundLargeValue = true; | 
 |                 } | 
 |             } | 
 |         } | 
 |         // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using | 
 |         // uint64_t as expected, we should have some times higher than that. | 
 |         ASSERT_TRUE(activeFoundLargeValue); | 
 |         ASSERT_TRUE(policyFoundLargeValue); | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidConcurrentTimesFailsOnInvalidBucket) { | 
 |     uint32_t uid = 0; | 
 |     { | 
 |         // Find an unused UID | 
 |         auto map = getUidsConcurrentTimes(); | 
 |         ASSERT_TRUE(map.has_value()); | 
 |         ASSERT_FALSE(map->empty()); | 
 |         for (const auto &kv : *map) uid = std::max(uid, kv.first); | 
 |         ++uid; | 
 |     } | 
 |     android::base::unique_fd fd{ | 
 |         bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")}; | 
 |     ASSERT_GE(fd, 0); | 
 |     uint32_t nCpus = get_nprocs_conf(); | 
 |     uint32_t maxBucket = (nCpus - 1) / CPUS_PER_ENTRY; | 
 |     time_key_t key = {.uid = uid, .bucket = maxBucket + 1}; | 
 |     std::vector<concurrent_val_t> vals(nCpus); | 
 |     ASSERT_FALSE(writeToMapEntry(fd, &key, vals.data(), BPF_NOEXIST)); | 
 |     EXPECT_FALSE(getUidsConcurrentTimes().has_value()); | 
 |     ASSERT_FALSE(deleteMapEntry(fd, &key)); | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, AllUidTimesConsistent) { | 
 |     auto tisMap = getUidsCpuFreqTimes(); | 
 |     ASSERT_TRUE(tisMap.has_value()); | 
 |  | 
 |     auto concurrentMap = getUidsConcurrentTimes(); | 
 |     ASSERT_TRUE(concurrentMap.has_value()); | 
 |  | 
 |     ASSERT_EQ(tisMap->size(), concurrentMap->size()); | 
 |     for (const auto &kv : *tisMap) { | 
 |         uint32_t uid = kv.first; | 
 |         auto times = kv.second; | 
 |         ASSERT_NE(concurrentMap->find(uid), concurrentMap->end()); | 
 |  | 
 |         auto concurrentTimes = (*concurrentMap)[uid]; | 
 |         ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(times, concurrentTimes)); | 
 |     } | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, RemoveUid) { | 
 |     uint32_t uid = 0; | 
 |     { | 
 |         // Find an unused UID | 
 |         auto times = getUidsCpuFreqTimes(); | 
 |         ASSERT_TRUE(times.has_value()); | 
 |         ASSERT_FALSE(times->empty()); | 
 |         for (const auto &kv : *times) uid = std::max(uid, kv.first); | 
 |         ++uid; | 
 |     } | 
 |     { | 
 |         // Add a map entry for our fake UID by copying a real map entry | 
 |         android::base::unique_fd fd{ | 
 |                 bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_time_in_state_map")}; | 
 |         ASSERT_GE(fd, 0); | 
 |         time_key_t k; | 
 |         ASSERT_FALSE(getFirstMapKey(fd, &k)); | 
 |         std::vector<tis_val_t> vals(get_nprocs_conf()); | 
 |         ASSERT_FALSE(findMapEntry(fd, &k, vals.data())); | 
 |         uint32_t copiedUid = k.uid; | 
 |         k.uid = uid; | 
 |         ASSERT_FALSE(writeToMapEntry(fd, &k, vals.data(), BPF_NOEXIST)); | 
 |  | 
 |         android::base::unique_fd fd2{ | 
 |                 bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")}; | 
 |         k.uid = copiedUid; | 
 |         k.bucket = 0; | 
 |         std::vector<concurrent_val_t> cvals(get_nprocs_conf()); | 
 |         ASSERT_FALSE(findMapEntry(fd2, &k, cvals.data())); | 
 |         k.uid = uid; | 
 |         ASSERT_FALSE(writeToMapEntry(fd2, &k, cvals.data(), BPF_NOEXIST)); | 
 |     } | 
 |     auto times = getUidCpuFreqTimes(uid); | 
 |     ASSERT_TRUE(times.has_value()); | 
 |     ASSERT_FALSE(times->empty()); | 
 |  | 
 |     auto concurrentTimes = getUidConcurrentTimes(0); | 
 |     ASSERT_TRUE(concurrentTimes.has_value()); | 
 |     ASSERT_FALSE(concurrentTimes->active.empty()); | 
 |     ASSERT_FALSE(concurrentTimes->policy.empty()); | 
 |  | 
 |     uint64_t sum = 0; | 
 |     for (size_t i = 0; i < times->size(); ++i) { | 
 |         for (auto x : (*times)[i]) sum += x; | 
 |     } | 
 |     ASSERT_GT(sum, (uint64_t)0); | 
 |  | 
 |     uint64_t activeSum = 0; | 
 |     for (size_t i = 0; i < concurrentTimes->active.size(); ++i) { | 
 |         activeSum += concurrentTimes->active[i]; | 
 |     } | 
 |     ASSERT_GT(activeSum, (uint64_t)0); | 
 |  | 
 |     ASSERT_TRUE(clearUidTimes(uid)); | 
 |  | 
 |     auto allTimes = getUidsCpuFreqTimes(); | 
 |     ASSERT_TRUE(allTimes.has_value()); | 
 |     ASSERT_FALSE(allTimes->empty()); | 
 |     ASSERT_EQ(allTimes->find(uid), allTimes->end()); | 
 |  | 
 |     auto allConcurrentTimes = getUidsConcurrentTimes(); | 
 |     ASSERT_TRUE(allConcurrentTimes.has_value()); | 
 |     ASSERT_FALSE(allConcurrentTimes->empty()); | 
 |     ASSERT_EQ(allConcurrentTimes->find(uid), allConcurrentTimes->end()); | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, GetCpuFreqs) { | 
 |     auto freqs = getCpuFreqs(); | 
 |     ASSERT_TRUE(freqs.has_value()); | 
 |  | 
 |     auto times = getUidCpuFreqTimes(0); | 
 |     ASSERT_TRUE(times.has_value()); | 
 |  | 
 |     ASSERT_EQ(freqs->size(), times->size()); | 
 |     for (size_t i = 0; i < freqs->size(); ++i) EXPECT_EQ((*freqs)[i].size(), (*times)[i].size()); | 
 | } | 
 |  | 
 | uint64_t timeNanos() { | 
 |     struct timespec spec; | 
 |     clock_gettime(CLOCK_MONOTONIC, &spec); | 
 |     return spec.tv_sec * 1000000000 + spec.tv_nsec; | 
 | } | 
 |  | 
 | // Keeps CPU busy with some number crunching | 
 | void useCpu() { | 
 |     long sum = 0; | 
 |     for (int i = 0; i < 100000; i++) { | 
 |         sum *= i; | 
 |     } | 
 | } | 
 |  | 
 | sem_t pingsem, pongsem; | 
 |  | 
 | void *testThread(void *) { | 
 |     for (int i = 0; i < 10; i++) { | 
 |         sem_wait(&pingsem); | 
 |         useCpu(); | 
 |         sem_post(&pongsem); | 
 |     } | 
 |     return nullptr; | 
 | } | 
 |  | 
 | TEST(TimeInStateTest, GetAggregatedTaskCpuFreqTimes) { | 
 |     uint64_t startTimeNs = timeNanos(); | 
 |  | 
 |     sem_init(&pingsem, 0, 1); | 
 |     sem_init(&pongsem, 0, 0); | 
 |  | 
 |     pthread_t thread; | 
 |     ASSERT_EQ(pthread_create(&thread, NULL, &testThread, NULL), 0); | 
 |  | 
 |     // This process may have been running for some time, so when we start tracking | 
 |     // CPU time, the very first switch may include the accumulated time. | 
 |     // Yield the remainder of this timeslice to the newly created thread. | 
 |     sem_wait(&pongsem); | 
 |     sem_post(&pingsem); | 
 |  | 
 |     pid_t tgid = getpid(); | 
 |     startTrackingProcessCpuTimes(tgid); | 
 |  | 
 |     pid_t tid = pthread_gettid_np(thread); | 
 |     startAggregatingTaskCpuTimes(tid, 42); | 
 |  | 
 |     // Play ping-pong with the other thread to ensure that both threads get | 
 |     // some CPU time. | 
 |     for (int i = 0; i < 9; i++) { | 
 |         sem_wait(&pongsem); | 
 |         useCpu(); | 
 |         sem_post(&pingsem); | 
 |     } | 
 |  | 
 |     pthread_join(thread, NULL); | 
 |  | 
 |     std::optional<std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>>> optionalMap = | 
 |             getAggregatedTaskCpuFreqTimes(tgid, {0, 42}); | 
 |     ASSERT_TRUE(optionalMap); | 
 |  | 
 |     std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>> map = *optionalMap; | 
 |     ASSERT_EQ(map.size(), 2u); | 
 |  | 
 |     uint64_t testDurationNs = timeNanos() - startTimeNs; | 
 |     for (auto pair : map) { | 
 |         uint16_t aggregationKey = pair.first; | 
 |         ASSERT_TRUE(aggregationKey == 0 || aggregationKey == 42); | 
 |  | 
 |         std::vector<std::vector<uint64_t>> timesInState = pair.second; | 
 |         uint64_t totalCpuTime = 0; | 
 |         for (size_t i = 0; i < timesInState.size(); i++) { | 
 |             for (size_t j = 0; j < timesInState[i].size(); j++) { | 
 |                 totalCpuTime += timesInState[i][j]; | 
 |             } | 
 |         } | 
 |         ASSERT_GT(totalCpuTime, 0ul); | 
 |         ASSERT_LE(totalCpuTime, testDurationNs); | 
 |     } | 
 | } | 
 |  | 
 | } // namespace bpf | 
 | } // namespace android |