|  | /* | 
|  | * Copyright (C) 2007 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <cutils/compiler.h> | 
|  | #include <ui/Region.h> | 
|  | #include <ui/Transform.h> | 
|  | #include <utils/String8.h> | 
|  |  | 
|  | namespace android { | 
|  | namespace ui { | 
|  |  | 
|  | Transform::Transform() { | 
|  | reset(); | 
|  | } | 
|  |  | 
|  | Transform::Transform(const Transform&  other) | 
|  | : mMatrix(other.mMatrix), mType(other.mType) { | 
|  | } | 
|  |  | 
|  | Transform::Transform(uint32_t orientation, int w, int h) { | 
|  | set(orientation, w, h); | 
|  | } | 
|  |  | 
|  | Transform::~Transform() = default; | 
|  |  | 
|  | static const float EPSILON = 0.0f; | 
|  |  | 
|  | bool Transform::isZero(float f) { | 
|  | return fabs(f) <= EPSILON; | 
|  | } | 
|  |  | 
|  | bool Transform::absIsOne(float f) { | 
|  | return isZero(fabs(f) - 1.0f); | 
|  | } | 
|  |  | 
|  | bool Transform::operator==(const Transform& other) const { | 
|  | return mMatrix[0][0] == other.mMatrix[0][0] && mMatrix[0][1] == other.mMatrix[0][1] && | 
|  | mMatrix[0][2] == other.mMatrix[0][2] && mMatrix[1][0] == other.mMatrix[1][0] && | 
|  | mMatrix[1][1] == other.mMatrix[1][1] && mMatrix[1][2] == other.mMatrix[1][2] && | 
|  | mMatrix[2][0] == other.mMatrix[2][0] && mMatrix[2][1] == other.mMatrix[2][1] && | 
|  | mMatrix[2][2] == other.mMatrix[2][2]; | 
|  | ; | 
|  | } | 
|  |  | 
|  | Transform Transform::operator * (const Transform& rhs) const | 
|  | { | 
|  | if (CC_LIKELY(mType == IDENTITY)) | 
|  | return rhs; | 
|  |  | 
|  | Transform r(*this); | 
|  | if (rhs.mType == IDENTITY) | 
|  | return r; | 
|  |  | 
|  | // TODO: we could use mType to optimize the matrix multiply | 
|  | const mat33& A(mMatrix); | 
|  | const mat33& B(rhs.mMatrix); | 
|  | mat33& D(r.mMatrix); | 
|  | for (size_t i = 0; i < 3; i++) { | 
|  | const float v0 = A[0][i]; | 
|  | const float v1 = A[1][i]; | 
|  | const float v2 = A[2][i]; | 
|  | D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2]; | 
|  | D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2]; | 
|  | D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2]; | 
|  | } | 
|  | r.mType |= rhs.mType; | 
|  |  | 
|  | // TODO: we could recompute this value from r and rhs | 
|  | r.mType &= 0xFF; | 
|  | r.mType |= UNKNOWN_TYPE; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | Transform& Transform::operator=(const Transform& other) { | 
|  | mMatrix = other.mMatrix; | 
|  | mType = other.mType; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | const vec3& Transform::operator [] (size_t i) const { | 
|  | return mMatrix[i]; | 
|  | } | 
|  |  | 
|  | float Transform::tx() const { | 
|  | return mMatrix[2][0]; | 
|  | } | 
|  |  | 
|  | float Transform::ty() const { | 
|  | return mMatrix[2][1]; | 
|  | } | 
|  |  | 
|  | float Transform::sx() const { | 
|  | return mMatrix[0][0]; | 
|  | } | 
|  |  | 
|  | float Transform::sy() const { | 
|  | return mMatrix[1][1]; | 
|  | } | 
|  |  | 
|  | void Transform::reset() { | 
|  | mType = IDENTITY; | 
|  | for(size_t i = 0; i < 3; i++) { | 
|  | vec3& v(mMatrix[i]); | 
|  | for (size_t j = 0; j < 3; j++) | 
|  | v[j] = ((i == j) ? 1.0f : 0.0f); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Transform::set(float tx, float ty) | 
|  | { | 
|  | mMatrix[2][0] = tx; | 
|  | mMatrix[2][1] = ty; | 
|  | mMatrix[2][2] = 1.0f; | 
|  |  | 
|  | if (isZero(tx) && isZero(ty)) { | 
|  | mType &= ~TRANSLATE; | 
|  | } else { | 
|  | mType |= TRANSLATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Transform::set(float a, float b, float c, float d) | 
|  | { | 
|  | mat33& M(mMatrix); | 
|  | M[0][0] = a;    M[1][0] = b; | 
|  | M[0][1] = c;    M[1][1] = d; | 
|  | M[0][2] = 0;    M[1][2] = 0; | 
|  | mType = UNKNOWN_TYPE; | 
|  | } | 
|  |  | 
|  | status_t Transform::set(uint32_t flags, float w, float h) | 
|  | { | 
|  | if (flags & ROT_INVALID) { | 
|  | // that's not allowed! | 
|  | reset(); | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | Transform H, V, R; | 
|  | if (flags & ROT_90) { | 
|  | // w & h are inverted when rotating by 90 degrees | 
|  | std::swap(w, h); | 
|  | } | 
|  |  | 
|  | if (flags & FLIP_H) { | 
|  | H.mType = (FLIP_H << 8) | SCALE; | 
|  | H.mType |= isZero(w) ? IDENTITY : TRANSLATE; | 
|  | mat33& M(H.mMatrix); | 
|  | M[0][0] = -1; | 
|  | M[2][0] = w; | 
|  | } | 
|  |  | 
|  | if (flags & FLIP_V) { | 
|  | V.mType = (FLIP_V << 8) | SCALE; | 
|  | V.mType |= isZero(h) ? IDENTITY : TRANSLATE; | 
|  | mat33& M(V.mMatrix); | 
|  | M[1][1] = -1; | 
|  | M[2][1] = h; | 
|  | } | 
|  |  | 
|  | if (flags & ROT_90) { | 
|  | const float original_w = h; | 
|  | R.mType = (ROT_90 << 8) | ROTATE; | 
|  | R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE; | 
|  | mat33& M(R.mMatrix); | 
|  | M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w; | 
|  | M[0][1] = 1;    M[1][1] = 0; | 
|  | } | 
|  |  | 
|  | *this = (R*(H*V)); | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | vec2 Transform::transform(const vec2& v) const { | 
|  | vec2 r; | 
|  | const mat33& M(mMatrix); | 
|  | r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]; | 
|  | r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | vec3 Transform::transform(const vec3& v) const { | 
|  | vec3 r; | 
|  | const mat33& M(mMatrix); | 
|  | r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2]; | 
|  | r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2]; | 
|  | r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2]; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | vec2 Transform::transform(int x, int y) const | 
|  | { | 
|  | return transform(vec2(x,y)); | 
|  | } | 
|  |  | 
|  | Rect Transform::makeBounds(int w, int h) const | 
|  | { | 
|  | return transform( Rect(w, h) ); | 
|  | } | 
|  |  | 
|  | Rect Transform::transform(const Rect& bounds, bool roundOutwards) const | 
|  | { | 
|  | Rect r; | 
|  | vec2 lt( bounds.left,  bounds.top    ); | 
|  | vec2 rt( bounds.right, bounds.top    ); | 
|  | vec2 lb( bounds.left,  bounds.bottom ); | 
|  | vec2 rb( bounds.right, bounds.bottom ); | 
|  |  | 
|  | lt = transform(lt); | 
|  | rt = transform(rt); | 
|  | lb = transform(lb); | 
|  | rb = transform(rb); | 
|  |  | 
|  | if (roundOutwards) { | 
|  | r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}))); | 
|  | r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}))); | 
|  | r.right  = static_cast<int32_t>(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]}))); | 
|  | r.bottom = static_cast<int32_t>(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]}))); | 
|  | } else { | 
|  | r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); | 
|  | r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); | 
|  | r.right  = static_cast<int32_t>(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); | 
|  | r.bottom = static_cast<int32_t>(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | FloatRect Transform::transform(const FloatRect& bounds) const | 
|  | { | 
|  | vec2 lt(bounds.left, bounds.top); | 
|  | vec2 rt(bounds.right, bounds.top); | 
|  | vec2 lb(bounds.left, bounds.bottom); | 
|  | vec2 rb(bounds.right, bounds.bottom); | 
|  |  | 
|  | lt = transform(lt); | 
|  | rt = transform(rt); | 
|  | lb = transform(lb); | 
|  | rb = transform(rb); | 
|  |  | 
|  | FloatRect r; | 
|  | r.left = std::min({lt[0], rt[0], lb[0], rb[0]}); | 
|  | r.top = std::min({lt[1], rt[1], lb[1], rb[1]}); | 
|  | r.right = std::max({lt[0], rt[0], lb[0], rb[0]}); | 
|  | r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]}); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | Region Transform::transform(const Region& reg) const | 
|  | { | 
|  | Region out; | 
|  | if (CC_UNLIKELY(type() > TRANSLATE)) { | 
|  | if (CC_LIKELY(preserveRects())) { | 
|  | Region::const_iterator it = reg.begin(); | 
|  | Region::const_iterator const end = reg.end(); | 
|  | while (it != end) { | 
|  | out.orSelf(transform(*it++)); | 
|  | } | 
|  | } else { | 
|  | out.set(transform(reg.bounds())); | 
|  | } | 
|  | } else { | 
|  | int xpos = static_cast<int>(floorf(tx() + 0.5f)); | 
|  | int ypos = static_cast<int>(floorf(ty() + 0.5f)); | 
|  | out = reg.translate(xpos, ypos); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | uint32_t Transform::type() const | 
|  | { | 
|  | if (mType & UNKNOWN_TYPE) { | 
|  | // recompute what this transform is | 
|  |  | 
|  | const mat33& M(mMatrix); | 
|  | const float a = M[0][0]; | 
|  | const float b = M[1][0]; | 
|  | const float c = M[0][1]; | 
|  | const float d = M[1][1]; | 
|  | const float x = M[2][0]; | 
|  | const float y = M[2][1]; | 
|  |  | 
|  | bool scale = false; | 
|  | uint32_t flags = ROT_0; | 
|  | if (isZero(b) && isZero(c)) { | 
|  | if (a<0)    flags |= FLIP_H; | 
|  | if (d<0)    flags |= FLIP_V; | 
|  | if (!absIsOne(a) || !absIsOne(d)) { | 
|  | scale = true; | 
|  | } | 
|  | } else if (isZero(a) && isZero(d)) { | 
|  | flags |= ROT_90; | 
|  | if (b>0)    flags |= FLIP_V; | 
|  | if (c<0)    flags |= FLIP_H; | 
|  | if (!absIsOne(b) || !absIsOne(c)) { | 
|  | scale = true; | 
|  | } | 
|  | } else { | 
|  | // there is a skew component and/or a non 90 degrees rotation | 
|  | flags = ROT_INVALID; | 
|  | } | 
|  |  | 
|  | mType = flags << 8; | 
|  | if (flags & ROT_INVALID) { | 
|  | mType |= UNKNOWN; | 
|  | } else { | 
|  | if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180)) | 
|  | mType |= ROTATE; | 
|  | if (flags & FLIP_H) | 
|  | mType ^= SCALE; | 
|  | if (flags & FLIP_V) | 
|  | mType ^= SCALE; | 
|  | if (scale) | 
|  | mType |= SCALE; | 
|  | } | 
|  |  | 
|  | if (!isZero(x) || !isZero(y)) | 
|  | mType |= TRANSLATE; | 
|  | } | 
|  | return mType; | 
|  | } | 
|  |  | 
|  | Transform Transform::inverse() const { | 
|  | // our 3x3 matrix is always of the form of a 2x2 transformation | 
|  | // followed by a translation: T*M, therefore: | 
|  | // (T*M)^-1 = M^-1 * T^-1 | 
|  | Transform result; | 
|  | if (mType <= TRANSLATE) { | 
|  | // 1 0 0 | 
|  | // 0 1 0 | 
|  | // x y 1 | 
|  | result = *this; | 
|  | result.mMatrix[2][0] = -result.mMatrix[2][0]; | 
|  | result.mMatrix[2][1] = -result.mMatrix[2][1]; | 
|  | } else { | 
|  | // a c 0 | 
|  | // b d 0 | 
|  | // x y 1 | 
|  | const mat33& M(mMatrix); | 
|  | const float a = M[0][0]; | 
|  | const float b = M[1][0]; | 
|  | const float c = M[0][1]; | 
|  | const float d = M[1][1]; | 
|  | const float x = M[2][0]; | 
|  | const float y = M[2][1]; | 
|  |  | 
|  | const float idet = 1.0f / (a*d - b*c); | 
|  | result.mMatrix[0][0] =  d*idet; | 
|  | result.mMatrix[0][1] = -c*idet; | 
|  | result.mMatrix[1][0] = -b*idet; | 
|  | result.mMatrix[1][1] =  a*idet; | 
|  | result.mType = mType; | 
|  |  | 
|  | vec2 T(-x, -y); | 
|  | T = result.transform(T); | 
|  | result.mMatrix[2][0] = T[0]; | 
|  | result.mMatrix[2][1] = T[1]; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | uint32_t Transform::getType() const { | 
|  | return type() & 0xFF; | 
|  | } | 
|  |  | 
|  | uint32_t Transform::getOrientation() const | 
|  | { | 
|  | return (type() >> 8) & 0xFF; | 
|  | } | 
|  |  | 
|  | bool Transform::preserveRects() const | 
|  | { | 
|  | return (getOrientation() & ROT_INVALID) ? false : true; | 
|  | } | 
|  |  | 
|  | mat4 Transform::asMatrix4() const { | 
|  | // Internally Transform uses a 3x3 matrix since the transform is meant for | 
|  | // two-dimensional values. An equivalent 4x4 matrix means inserting an extra | 
|  | // row and column which adds as an identity transform on the third | 
|  | // dimension. | 
|  |  | 
|  | mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element | 
|  |  | 
|  | m[0][0] = mMatrix[0][0]; | 
|  | m[0][1] = mMatrix[0][1]; | 
|  | m[0][2] = 0.f; | 
|  | m[0][3] = mMatrix[0][2]; | 
|  |  | 
|  | m[1][0] = mMatrix[1][0]; | 
|  | m[1][1] = mMatrix[1][1]; | 
|  | m[1][2] = 0.f; | 
|  | m[1][3] = mMatrix[1][2]; | 
|  |  | 
|  | m[2][0] = 0.f; | 
|  | m[2][1] = 0.f; | 
|  | m[2][2] = 1.f; | 
|  | m[2][3] = 0.f; | 
|  |  | 
|  | m[3][0] = mMatrix[2][0]; | 
|  | m[3][1] = mMatrix[2][1]; | 
|  | m[3][2] = 0.f; | 
|  | m[3][3] = mMatrix[2][2]; | 
|  |  | 
|  | return m; | 
|  | } | 
|  |  | 
|  | void Transform::dump(std::string& out, const char* name) const { | 
|  | using android::base::StringAppendF; | 
|  |  | 
|  | type(); // Ensure the information in mType is up to date | 
|  |  | 
|  | const uint32_t type = mType; | 
|  | const uint32_t orient = type >> 8; | 
|  |  | 
|  | StringAppendF(&out, "%s 0x%08x (", name, orient); | 
|  |  | 
|  | if (orient & ROT_INVALID) { | 
|  | out.append("ROT_INVALID "); | 
|  | } else { | 
|  | if (orient & ROT_90) { | 
|  | out.append("ROT_90 "); | 
|  | } else { | 
|  | out.append("ROT_0 "); | 
|  | } | 
|  | if (orient & FLIP_V) out.append("FLIP_V "); | 
|  | if (orient & FLIP_H) out.append("FLIP_H "); | 
|  | } | 
|  |  | 
|  | StringAppendF(&out, ") 0x%02x (", type); | 
|  |  | 
|  | if (!(type & (SCALE | ROTATE | TRANSLATE))) out.append("IDENTITY "); | 
|  | if (type & SCALE) out.append("SCALE "); | 
|  | if (type & ROTATE) out.append("ROTATE "); | 
|  | if (type & TRANSLATE) out.append("TRANSLATE "); | 
|  |  | 
|  | out.append(")\n"); | 
|  |  | 
|  | for (size_t i = 0; i < 3; i++) { | 
|  | StringAppendF(&out, "    %.4f  %.4f  %.4f\n", static_cast<double>(mMatrix[0][i]), | 
|  | static_cast<double>(mMatrix[1][i]), static_cast<double>(mMatrix[2][i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Transform::dump(const char* name) const { | 
|  | std::string out; | 
|  | dump(out, name); | 
|  | ALOGD("%s", out.c_str()); | 
|  | } | 
|  |  | 
|  | }  // namespace ui | 
|  | }  // namespace android |