| /** |
| * Copyright 2024 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <input/Resampler.h> |
| |
| #include <gtest/gtest.h> |
| |
| #include <chrono> |
| #include <memory> |
| #include <vector> |
| |
| #include <input/Input.h> |
| #include <input/InputEventBuilders.h> |
| #include <input/InputTransport.h> |
| #include <utils/Timers.h> |
| |
| namespace android { |
| |
| namespace { |
| |
| using namespace std::literals::chrono_literals; |
| |
| constexpr float EPSILON = MotionEvent::ROUNDING_PRECISION; |
| |
| struct Pointer { |
| int32_t id{0}; |
| ToolType toolType{ToolType::FINGER}; |
| float x{0.0f}; |
| float y{0.0f}; |
| bool isResampled{false}; |
| /** |
| * Converts from Pointer to PointerCoords. Enables calling LegacyResampler methods and |
| * assertions only with the relevant data for tests. |
| */ |
| operator PointerCoords() const; |
| }; |
| |
| Pointer::operator PointerCoords() const { |
| PointerCoords pointerCoords; |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); |
| pointerCoords.isResampled = isResampled; |
| return pointerCoords; |
| } |
| |
| struct InputSample { |
| std::chrono::milliseconds eventTime{0}; |
| std::vector<Pointer> pointers{}; |
| /** |
| * Converts from InputSample to InputMessage. Enables calling LegacyResampler methods only with |
| * the relevant data for tests. |
| */ |
| operator InputMessage() const; |
| }; |
| |
| InputSample::operator InputMessage() const { |
| InputMessage message; |
| message.header.type = InputMessage::Type::MOTION; |
| message.body.motion.pointerCount = pointers.size(); |
| message.body.motion.eventTime = static_cast<std::chrono::nanoseconds>(eventTime).count(); |
| message.body.motion.source = AINPUT_SOURCE_CLASS_POINTER; |
| message.body.motion.downTime = 0; |
| const uint32_t pointerCount = message.body.motion.pointerCount; |
| for (uint32_t i = 0; i < pointerCount; ++i) { |
| message.body.motion.pointers[i].properties.id = pointers[i].id; |
| message.body.motion.pointers[i].properties.toolType = pointers[i].toolType; |
| message.body.motion.pointers[i].coords.setAxisValue(AMOTION_EVENT_AXIS_X, pointers[i].x); |
| message.body.motion.pointers[i].coords.setAxisValue(AMOTION_EVENT_AXIS_Y, pointers[i].y); |
| message.body.motion.pointers[i].coords.isResampled = pointers[i].isResampled; |
| } |
| return message; |
| } |
| |
| struct InputStream { |
| std::vector<InputSample> samples{}; |
| int32_t action{0}; |
| DeviceId deviceId{0}; |
| /** |
| * Converts from InputStream to MotionEvent. Enables calling LegacyResampler methods only with |
| * the relevant data for tests. |
| */ |
| operator MotionEvent() const; |
| }; |
| |
| InputStream::operator MotionEvent() const { |
| const InputSample& firstSample{*samples.begin()}; |
| MotionEventBuilder motionEventBuilder = |
| MotionEventBuilder(action, AINPUT_SOURCE_CLASS_POINTER) |
| .downTime(0) |
| .eventTime(static_cast<std::chrono::nanoseconds>(firstSample.eventTime).count()) |
| .deviceId(deviceId); |
| for (const Pointer& pointer : firstSample.pointers) { |
| const PointerBuilder pointerBuilder = |
| PointerBuilder(pointer.id, pointer.toolType).x(pointer.x).y(pointer.y); |
| motionEventBuilder.pointer(pointerBuilder); |
| } |
| MotionEvent motionEvent = motionEventBuilder.build(); |
| const size_t numSamples = samples.size(); |
| for (size_t i = 1; i < numSamples; ++i) { |
| std::vector<PointerCoords> pointersCoords{samples[i].pointers.begin(), |
| samples[i].pointers.end()}; |
| motionEvent.addSample(static_cast<std::chrono::nanoseconds>(samples[i].eventTime).count(), |
| pointersCoords.data(), motionEvent.getId()); |
| } |
| return motionEvent; |
| } |
| |
| } // namespace |
| |
| class ResamplerTest : public testing::Test { |
| protected: |
| ResamplerTest() : mResampler(std::make_unique<LegacyResampler>()) {} |
| |
| ~ResamplerTest() override {} |
| |
| void SetUp() override {} |
| |
| void TearDown() override {} |
| |
| std::unique_ptr<Resampler> mResampler; |
| |
| MotionEvent buildMotionEvent(const int32_t action, const nsecs_t eventTime, |
| const std::vector<PointerBuilder>& pointers); |
| |
| InputMessage createMessage(const uint32_t pointerCount, const nsecs_t eventTime, |
| const int32_t action, |
| const std::vector<PointerProperties>& properties, |
| const std::vector<PointerCoords>& coords); |
| |
| /** |
| * Checks that beforeCall and afterCall are equal except for the mutated attributes by addSample |
| * member function. |
| * @param beforeCall MotionEvent before passing it to resampleMotionEvent |
| * @param afterCall MotionEvent after passing it to resampleMotionEvent |
| */ |
| void assertMotionEventMetaDataDidNotMutate(const MotionEvent& beforeCall, |
| const MotionEvent& afterCall); |
| |
| /** |
| * Asserts the MotionEvent is resampled by checking an increment in history size and that the |
| * resampled coordinates are near the expected ones. |
| */ |
| void assertMotionEventIsResampledAndCoordsNear(const MotionEvent& original, |
| const MotionEvent& resampled, |
| const PointerCoords& expectedCoords); |
| |
| void assertMotionEventIsNotResampled(const MotionEvent& original, |
| const MotionEvent& notResampled); |
| }; |
| |
| MotionEvent ResamplerTest::buildMotionEvent(const int32_t action, const nsecs_t eventTime, |
| const std::vector<PointerBuilder>& pointerBuilders) { |
| MotionEventBuilder motionEventBuilder = MotionEventBuilder(action, AINPUT_SOURCE_CLASS_POINTER) |
| .downTime(0) |
| .eventTime(eventTime); |
| for (const PointerBuilder& pointerBuilder : pointerBuilders) { |
| motionEventBuilder.pointer(pointerBuilder); |
| } |
| return motionEventBuilder.build(); |
| } |
| |
| InputMessage ResamplerTest::createMessage(const uint32_t pointerCount, const nsecs_t eventTime, |
| const int32_t action, |
| const std::vector<PointerProperties>& properties, |
| const std::vector<PointerCoords>& coords) { |
| InputMessage message; |
| message.header.type = InputMessage::Type::MOTION; |
| message.body.motion.pointerCount = pointerCount; |
| message.body.motion.eventTime = eventTime; |
| message.body.motion.source = AINPUT_SOURCE_CLASS_POINTER; |
| message.body.motion.downTime = 0; |
| for (uint32_t i = 0; i < pointerCount; ++i) { |
| message.body.motion.pointers[i].properties = properties[i]; |
| message.body.motion.pointers[i].coords = coords[i]; |
| } |
| return message; |
| } |
| |
| void ResamplerTest::assertMotionEventMetaDataDidNotMutate(const MotionEvent& beforeCall, |
| const MotionEvent& afterCall) { |
| EXPECT_EQ(beforeCall.getDeviceId(), afterCall.getDeviceId()); |
| EXPECT_EQ(beforeCall.getAction(), afterCall.getAction()); |
| EXPECT_EQ(beforeCall.getActionButton(), afterCall.getActionButton()); |
| EXPECT_EQ(beforeCall.getButtonState(), afterCall.getButtonState()); |
| EXPECT_EQ(beforeCall.getFlags(), afterCall.getFlags()); |
| EXPECT_EQ(beforeCall.getEdgeFlags(), afterCall.getEdgeFlags()); |
| EXPECT_EQ(beforeCall.getClassification(), afterCall.getClassification()); |
| EXPECT_EQ(beforeCall.getPointerCount(), afterCall.getPointerCount()); |
| EXPECT_EQ(beforeCall.getMetaState(), afterCall.getMetaState()); |
| EXPECT_EQ(beforeCall.getSource(), afterCall.getSource()); |
| EXPECT_EQ(beforeCall.getXPrecision(), afterCall.getXPrecision()); |
| EXPECT_EQ(beforeCall.getYPrecision(), afterCall.getYPrecision()); |
| EXPECT_EQ(beforeCall.getDownTime(), afterCall.getDownTime()); |
| EXPECT_EQ(beforeCall.getDisplayId(), afterCall.getDisplayId()); |
| } |
| |
| void ResamplerTest::assertMotionEventIsResampledAndCoordsNear(const MotionEvent& original, |
| const MotionEvent& resampled, |
| const PointerCoords& expectedCoords) { |
| assertMotionEventMetaDataDidNotMutate(original, resampled); |
| const size_t originalSampleSize = original.getHistorySize() + 1; |
| const size_t resampledSampleSize = resampled.getHistorySize() + 1; |
| EXPECT_EQ(originalSampleSize + 1, resampledSampleSize); |
| const PointerCoords& resampledCoords = |
| resampled.getSamplePointerCoords()[resampled.getHistorySize()]; |
| EXPECT_TRUE(resampledCoords.isResampled); |
| EXPECT_NEAR(expectedCoords.getX(), resampledCoords.getX(), EPSILON); |
| EXPECT_NEAR(expectedCoords.getY(), resampledCoords.getY(), EPSILON); |
| } |
| |
| void ResamplerTest::assertMotionEventIsNotResampled(const MotionEvent& original, |
| const MotionEvent& notResampled) { |
| assertMotionEventMetaDataDidNotMutate(original, notResampled); |
| const size_t originalSampleSize = original.getHistorySize() + 1; |
| const size_t notResampledSampleSize = notResampled.getHistorySize() + 1; |
| EXPECT_EQ(originalSampleSize, notResampledSampleSize); |
| } |
| |
| TEST_F(ResamplerTest, NonResampledAxesArePreserved) { |
| constexpr float TOUCH_MAJOR_VALUE = 1.0f; |
| |
| MotionEvent motionEvent = |
| InputStream{{{5ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| |
| constexpr std::chrono::nanoseconds eventTime{10ms}; |
| PointerCoords pointerCoords{}; |
| pointerCoords.isResampled = false; |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, 2.0f); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, 2.0f); |
| pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, TOUCH_MAJOR_VALUE); |
| |
| motionEvent.addSample(eventTime.count(), &pointerCoords, motionEvent.getId()); |
| |
| const InputMessage futureSample = |
| InputSample{15ms, {{.id = 0, .x = 3.0f, .y = 4.0f, .isResampled = false}}}; |
| |
| const MotionEvent originalMotionEvent = motionEvent; |
| |
| mResampler->resampleMotionEvent(11ms, motionEvent, &futureSample); |
| |
| EXPECT_EQ(motionEvent.getTouchMajor(0), TOUCH_MAJOR_VALUE); |
| |
| assertMotionEventIsResampledAndCoordsNear(originalMotionEvent, motionEvent, |
| Pointer{.id = 0, |
| .x = 2.2f, |
| .y = 2.4f, |
| .isResampled = true}); |
| } |
| |
| TEST_F(ResamplerTest, SinglePointerNotEnoughDataToResample) { |
| MotionEvent motionEvent = |
| InputStream{{{5ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE, |
| .deviceId = 0}; |
| const MotionEvent originalMotionEvent = motionEvent; |
| mResampler->resampleMotionEvent(11ms, motionEvent, nullptr); |
| assertMotionEventIsNotResampled(originalMotionEvent, motionEvent); |
| } |
| |
| TEST_F(ResamplerTest, SinglePointerDifferentDeviceIdBetweenMotionEvents) { |
| MotionEvent motionFromFirstDevice = |
| InputStream{{{4ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}, |
| {8ms, {{.id = 0, .x = 2.0f, .y = 2.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE, |
| .deviceId = 0}; |
| mResampler->resampleMotionEvent(10ms, motionFromFirstDevice, nullptr); |
| MotionEvent motionFromSecondDevice = |
| InputStream{{{11ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE, |
| .deviceId = 1}; |
| const MotionEvent originalMotionEvent = motionFromSecondDevice; |
| mResampler->resampleMotionEvent(12ms, motionFromSecondDevice, nullptr); |
| // The MotionEvent should not be resampled because the second event came from a different device |
| // than the previous event. |
| assertMotionEventIsNotResampled(originalMotionEvent, motionFromSecondDevice); |
| } |
| |
| // Increments of 16 ms for display refresh rate |
| // Increments of 6 ms for input frequency |
| // Resampling latency is known to be 5 ms |
| // Therefore, first resampling time will be 11 ms |
| |
| /** |
| * Timeline |
| * ----+----------------------+---------+---------+---------+---------- |
| * 0ms 10ms 11ms 15ms 16ms |
| * DOWN MOVE | MSG | |
| * resample frame |
| * Resampling occurs at 11ms. It is possible to interpolate because there is a sample available |
| * after the resample time. It is assumed that the InputMessage frequency is 100Hz, and the frame |
| * frequency is 60Hz. This means the time between InputMessage samples is 10ms, and the time between |
| * frames is ~16ms. Resample time is frameTime - RESAMPLE_LATENCY. The resampled sample must be the |
| * last one in the batch to consume. |
| */ |
| TEST_F(ResamplerTest, SinglePointerSingleSampleInterpolation) { |
| MotionEvent motionEvent = |
| InputStream{{{10ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| const InputMessage futureSample = |
| InputSample{15ms, {{.id = 0, .x = 2.0f, .y = 2.0f, .isResampled = false}}}; |
| |
| const MotionEvent originalMotionEvent = motionEvent; |
| |
| mResampler->resampleMotionEvent(11ms, motionEvent, &futureSample); |
| |
| assertMotionEventIsResampledAndCoordsNear(originalMotionEvent, motionEvent, |
| Pointer{.id = 0, |
| .x = 1.2f, |
| .y = 1.2f, |
| .isResampled = true}); |
| } |
| |
| TEST_F(ResamplerTest, SinglePointerDeltaTooSmallInterpolation) { |
| MotionEvent motionEvent = |
| InputStream{{{10ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| const InputMessage futureSample = |
| InputSample{11ms, {{.id = 0, .x = 2.0f, .y = 2.0f, .isResampled = false}}}; |
| |
| const MotionEvent originalMotionEvent = motionEvent; |
| |
| mResampler->resampleMotionEvent(10'500'000ns, motionEvent, &futureSample); |
| |
| assertMotionEventIsNotResampled(originalMotionEvent, motionEvent); |
| } |
| |
| /** |
| * Tests extrapolation given two MotionEvents with a single sample. |
| */ |
| TEST_F(ResamplerTest, SinglePointerSingleSampleExtrapolation) { |
| MotionEvent previousMotionEvent = |
| InputStream{{{5ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| |
| mResampler->resampleMotionEvent(10ms, previousMotionEvent, nullptr); |
| |
| MotionEvent motionEvent = |
| InputStream{{{10ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| |
| const MotionEvent originalMotionEvent = motionEvent; |
| |
| mResampler->resampleMotionEvent(11ms, motionEvent, nullptr); |
| |
| assertMotionEventIsResampledAndCoordsNear(originalMotionEvent, motionEvent, |
| Pointer{.id = 0, |
| .x = 1.0f, |
| .y = 1.0f, |
| .isResampled = true}); |
| // Integrity of the whole motionEvent |
| // History size should increment by 1 |
| // Check if the resampled value is the last one |
| // Check if the resampleTime is correct |
| // Check if the PointerCoords are consistent with the other computations |
| } |
| |
| TEST_F(ResamplerTest, SinglePointerMultipleSampleInterpolation) { |
| MotionEvent motionEvent = |
| InputStream{{{5ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}, |
| {10ms, {{.id = 0, .x = 2.0f, .y = 2.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| const InputMessage futureSample = |
| InputSample{15ms, {{.id = 0, .x = 3.0f, .y = 3.0f, .isResampled = false}}}; |
| |
| const MotionEvent originalMotionEvent = motionEvent; |
| |
| mResampler->resampleMotionEvent(11ms, motionEvent, &futureSample); |
| |
| assertMotionEventIsResampledAndCoordsNear(originalMotionEvent, motionEvent, |
| Pointer{.id = 0, |
| .x = 2.2f, |
| .y = 2.2f, |
| .isResampled = true}); |
| } |
| |
| TEST_F(ResamplerTest, SinglePointerMultipleSampleExtrapolation) { |
| MotionEvent motionEvent = |
| InputStream{{{5ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}, |
| {10ms, {{.id = 0, .x = 2.0f, .y = 2.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| |
| const MotionEvent originalMotionEvent = motionEvent; |
| |
| mResampler->resampleMotionEvent(11ms, motionEvent, nullptr); |
| |
| assertMotionEventIsResampledAndCoordsNear(originalMotionEvent, motionEvent, |
| Pointer{.id = 0, |
| .x = 2.2f, |
| .y = 2.2f, |
| .isResampled = true}); |
| } |
| |
| TEST_F(ResamplerTest, SinglePointerDeltaTooSmallExtrapolation) { |
| MotionEvent motionEvent = |
| InputStream{{{9ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}, |
| {10ms, {{.id = 0, .x = 2.0f, .y = 2.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| |
| const MotionEvent originalMotionEvent = motionEvent; |
| |
| mResampler->resampleMotionEvent(11ms, motionEvent, nullptr); |
| |
| assertMotionEventIsNotResampled(originalMotionEvent, motionEvent); |
| } |
| |
| TEST_F(ResamplerTest, SinglePointerDeltaTooLargeExtrapolation) { |
| MotionEvent motionEvent = |
| InputStream{{{5ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}, |
| {26ms, {{.id = 0, .x = 2.0f, .y = 2.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| |
| const MotionEvent originalMotionEvent = motionEvent; |
| |
| mResampler->resampleMotionEvent(27ms, motionEvent, nullptr); |
| |
| assertMotionEventIsNotResampled(originalMotionEvent, motionEvent); |
| } |
| |
| TEST_F(ResamplerTest, SinglePointerResampleTimeTooFarExtrapolation) { |
| MotionEvent motionEvent = |
| InputStream{{{5ms, {{.id = 0, .x = 1.0f, .y = 1.0f, .isResampled = false}}}, |
| {25ms, {{.id = 0, .x = 2.0f, .y = 2.0f, .isResampled = false}}}}, |
| AMOTION_EVENT_ACTION_MOVE}; |
| |
| const MotionEvent originalMotionEvent = motionEvent; |
| |
| mResampler->resampleMotionEvent(43ms, motionEvent, nullptr); |
| |
| assertMotionEventIsResampledAndCoordsNear(originalMotionEvent, motionEvent, |
| Pointer{.id = 0, |
| .x = 2.4f, |
| .y = 2.4f, |
| .isResampled = true}); |
| } |
| } // namespace android |