|  | // | 
|  | // Copyright 2010 The Android Open Source Project | 
|  | // | 
|  | // Provides a pipe-based transport for native events in the NDK. | 
|  | // | 
|  | #define LOG_TAG "Input" | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  |  | 
|  | // Log debug messages about keymap probing. | 
|  | #define DEBUG_PROBE 0 | 
|  |  | 
|  | // Log debug messages about velocity tracking. | 
|  | #define DEBUG_VELOCITY 0 | 
|  |  | 
|  | // Log debug messages about least squares fitting. | 
|  | #define DEBUG_LEAST_SQUARES 0 | 
|  |  | 
|  | // Log debug messages about acceleration. | 
|  | #define DEBUG_ACCELERATION 0 | 
|  |  | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <unistd.h> | 
|  | #include <ctype.h> | 
|  |  | 
|  | #include <ui/Input.h> | 
|  |  | 
|  | #include <math.h> | 
|  | #include <limits.h> | 
|  |  | 
|  | #ifdef HAVE_ANDROID_OS | 
|  | #include <binder/Parcel.h> | 
|  |  | 
|  | #include "SkPoint.h" | 
|  | #include "SkMatrix.h" | 
|  | #include "SkScalar.h" | 
|  | #endif | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | static const char* CONFIGURATION_FILE_DIR[] = { | 
|  | "idc/", | 
|  | "keylayout/", | 
|  | "keychars/", | 
|  | }; | 
|  |  | 
|  | static const char* CONFIGURATION_FILE_EXTENSION[] = { | 
|  | ".idc", | 
|  | ".kl", | 
|  | ".kcm", | 
|  | }; | 
|  |  | 
|  | static bool isValidNameChar(char ch) { | 
|  | return isascii(ch) && (isdigit(ch) || isalpha(ch) || ch == '-' || ch == '_'); | 
|  | } | 
|  |  | 
|  | static void appendInputDeviceConfigurationFileRelativePath(String8& path, | 
|  | const String8& name, InputDeviceConfigurationFileType type) { | 
|  | path.append(CONFIGURATION_FILE_DIR[type]); | 
|  | for (size_t i = 0; i < name.length(); i++) { | 
|  | char ch = name[i]; | 
|  | if (!isValidNameChar(ch)) { | 
|  | ch = '_'; | 
|  | } | 
|  | path.append(&ch, 1); | 
|  | } | 
|  | path.append(CONFIGURATION_FILE_EXTENSION[type]); | 
|  | } | 
|  |  | 
|  | String8 getInputDeviceConfigurationFilePathByDeviceIdentifier( | 
|  | const InputDeviceIdentifier& deviceIdentifier, | 
|  | InputDeviceConfigurationFileType type) { | 
|  | if (deviceIdentifier.vendor !=0 && deviceIdentifier.product != 0) { | 
|  | if (deviceIdentifier.version != 0) { | 
|  | // Try vendor product version. | 
|  | String8 versionPath(getInputDeviceConfigurationFilePathByName( | 
|  | String8::format("Vendor_%04x_Product_%04x_Version_%04x", | 
|  | deviceIdentifier.vendor, deviceIdentifier.product, | 
|  | deviceIdentifier.version), | 
|  | type)); | 
|  | if (!versionPath.isEmpty()) { | 
|  | return versionPath; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try vendor product. | 
|  | String8 productPath(getInputDeviceConfigurationFilePathByName( | 
|  | String8::format("Vendor_%04x_Product_%04x", | 
|  | deviceIdentifier.vendor, deviceIdentifier.product), | 
|  | type)); | 
|  | if (!productPath.isEmpty()) { | 
|  | return productPath; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try device name. | 
|  | return getInputDeviceConfigurationFilePathByName(deviceIdentifier.name, type); | 
|  | } | 
|  |  | 
|  | String8 getInputDeviceConfigurationFilePathByName( | 
|  | const String8& name, InputDeviceConfigurationFileType type) { | 
|  | // Search system repository. | 
|  | String8 path; | 
|  | path.setTo(getenv("ANDROID_ROOT")); | 
|  | path.append("/usr/"); | 
|  | appendInputDeviceConfigurationFileRelativePath(path, name, type); | 
|  | #if DEBUG_PROBE | 
|  | LOGD("Probing for system provided input device configuration file: path='%s'", path.string()); | 
|  | #endif | 
|  | if (!access(path.string(), R_OK)) { | 
|  | #if DEBUG_PROBE | 
|  | LOGD("Found"); | 
|  | #endif | 
|  | return path; | 
|  | } | 
|  |  | 
|  | // Search user repository. | 
|  | // TODO Should only look here if not in safe mode. | 
|  | path.setTo(getenv("ANDROID_DATA")); | 
|  | path.append("/system/devices/"); | 
|  | appendInputDeviceConfigurationFileRelativePath(path, name, type); | 
|  | #if DEBUG_PROBE | 
|  | LOGD("Probing for system user input device configuration file: path='%s'", path.string()); | 
|  | #endif | 
|  | if (!access(path.string(), R_OK)) { | 
|  | #if DEBUG_PROBE | 
|  | LOGD("Found"); | 
|  | #endif | 
|  | return path; | 
|  | } | 
|  |  | 
|  | // Not found. | 
|  | #if DEBUG_PROBE | 
|  | LOGD("Probe failed to find input device configuration file: name='%s', type=%d", | 
|  | name.string(), type); | 
|  | #endif | 
|  | return String8(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputEvent --- | 
|  |  | 
|  | void InputEvent::initialize(int32_t deviceId, int32_t source) { | 
|  | mDeviceId = deviceId; | 
|  | mSource = source; | 
|  | } | 
|  |  | 
|  | void InputEvent::initialize(const InputEvent& from) { | 
|  | mDeviceId = from.mDeviceId; | 
|  | mSource = from.mSource; | 
|  | } | 
|  |  | 
|  | // --- KeyEvent --- | 
|  |  | 
|  | bool KeyEvent::hasDefaultAction(int32_t keyCode) { | 
|  | switch (keyCode) { | 
|  | case AKEYCODE_HOME: | 
|  | case AKEYCODE_BACK: | 
|  | case AKEYCODE_CALL: | 
|  | case AKEYCODE_ENDCALL: | 
|  | case AKEYCODE_VOLUME_UP: | 
|  | case AKEYCODE_VOLUME_DOWN: | 
|  | case AKEYCODE_VOLUME_MUTE: | 
|  | case AKEYCODE_POWER: | 
|  | case AKEYCODE_CAMERA: | 
|  | case AKEYCODE_HEADSETHOOK: | 
|  | case AKEYCODE_MENU: | 
|  | case AKEYCODE_NOTIFICATION: | 
|  | case AKEYCODE_FOCUS: | 
|  | case AKEYCODE_SEARCH: | 
|  | case AKEYCODE_MEDIA_PLAY: | 
|  | case AKEYCODE_MEDIA_PAUSE: | 
|  | case AKEYCODE_MEDIA_PLAY_PAUSE: | 
|  | case AKEYCODE_MEDIA_STOP: | 
|  | case AKEYCODE_MEDIA_NEXT: | 
|  | case AKEYCODE_MEDIA_PREVIOUS: | 
|  | case AKEYCODE_MEDIA_REWIND: | 
|  | case AKEYCODE_MEDIA_RECORD: | 
|  | case AKEYCODE_MEDIA_FAST_FORWARD: | 
|  | case AKEYCODE_MUTE: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool KeyEvent::hasDefaultAction() const { | 
|  | return hasDefaultAction(getKeyCode()); | 
|  | } | 
|  |  | 
|  | bool KeyEvent::isSystemKey(int32_t keyCode) { | 
|  | switch (keyCode) { | 
|  | case AKEYCODE_MENU: | 
|  | case AKEYCODE_SOFT_RIGHT: | 
|  | case AKEYCODE_HOME: | 
|  | case AKEYCODE_BACK: | 
|  | case AKEYCODE_CALL: | 
|  | case AKEYCODE_ENDCALL: | 
|  | case AKEYCODE_VOLUME_UP: | 
|  | case AKEYCODE_VOLUME_DOWN: | 
|  | case AKEYCODE_VOLUME_MUTE: | 
|  | case AKEYCODE_MUTE: | 
|  | case AKEYCODE_POWER: | 
|  | case AKEYCODE_HEADSETHOOK: | 
|  | case AKEYCODE_MEDIA_PLAY: | 
|  | case AKEYCODE_MEDIA_PAUSE: | 
|  | case AKEYCODE_MEDIA_PLAY_PAUSE: | 
|  | case AKEYCODE_MEDIA_STOP: | 
|  | case AKEYCODE_MEDIA_NEXT: | 
|  | case AKEYCODE_MEDIA_PREVIOUS: | 
|  | case AKEYCODE_MEDIA_REWIND: | 
|  | case AKEYCODE_MEDIA_RECORD: | 
|  | case AKEYCODE_MEDIA_FAST_FORWARD: | 
|  | case AKEYCODE_CAMERA: | 
|  | case AKEYCODE_FOCUS: | 
|  | case AKEYCODE_SEARCH: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool KeyEvent::isSystemKey() const { | 
|  | return isSystemKey(getKeyCode()); | 
|  | } | 
|  |  | 
|  | void KeyEvent::initialize( | 
|  | int32_t deviceId, | 
|  | int32_t source, | 
|  | int32_t action, | 
|  | int32_t flags, | 
|  | int32_t keyCode, | 
|  | int32_t scanCode, | 
|  | int32_t metaState, | 
|  | int32_t repeatCount, | 
|  | nsecs_t downTime, | 
|  | nsecs_t eventTime) { | 
|  | InputEvent::initialize(deviceId, source); | 
|  | mAction = action; | 
|  | mFlags = flags; | 
|  | mKeyCode = keyCode; | 
|  | mScanCode = scanCode; | 
|  | mMetaState = metaState; | 
|  | mRepeatCount = repeatCount; | 
|  | mDownTime = downTime; | 
|  | mEventTime = eventTime; | 
|  | } | 
|  |  | 
|  | void KeyEvent::initialize(const KeyEvent& from) { | 
|  | InputEvent::initialize(from); | 
|  | mAction = from.mAction; | 
|  | mFlags = from.mFlags; | 
|  | mKeyCode = from.mKeyCode; | 
|  | mScanCode = from.mScanCode; | 
|  | mMetaState = from.mMetaState; | 
|  | mRepeatCount = from.mRepeatCount; | 
|  | mDownTime = from.mDownTime; | 
|  | mEventTime = from.mEventTime; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- PointerCoords --- | 
|  |  | 
|  | float PointerCoords::getAxisValue(int32_t axis) const { | 
|  | if (axis < 0 || axis > 63) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint64_t axisBit = 1LL << axis; | 
|  | if (!(bits & axisBit)) { | 
|  | return 0; | 
|  | } | 
|  | uint32_t index = __builtin_popcountll(bits & (axisBit - 1LL)); | 
|  | return values[index]; | 
|  | } | 
|  |  | 
|  | status_t PointerCoords::setAxisValue(int32_t axis, float value) { | 
|  | if (axis < 0 || axis > 63) { | 
|  | return NAME_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | uint64_t axisBit = 1LL << axis; | 
|  | uint32_t index = __builtin_popcountll(bits & (axisBit - 1LL)); | 
|  | if (!(bits & axisBit)) { | 
|  | if (value == 0) { | 
|  | return OK; // axes with value 0 do not need to be stored | 
|  | } | 
|  | uint32_t count = __builtin_popcountll(bits); | 
|  | if (count >= MAX_AXES) { | 
|  | tooManyAxes(axis); | 
|  | return NO_MEMORY; | 
|  | } | 
|  | bits |= axisBit; | 
|  | for (uint32_t i = count; i > index; i--) { | 
|  | values[i] = values[i - 1]; | 
|  | } | 
|  | } | 
|  | values[index] = value; | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | static inline void scaleAxisValue(PointerCoords& c, int axis, float scaleFactor) { | 
|  | float value = c.getAxisValue(axis); | 
|  | if (value != 0) { | 
|  | c.setAxisValue(axis, value * scaleFactor); | 
|  | } | 
|  | } | 
|  |  | 
|  | void PointerCoords::scale(float scaleFactor) { | 
|  | // No need to scale pressure or size since they are normalized. | 
|  | // No need to scale orientation since it is meaningless to do so. | 
|  | scaleAxisValue(*this, AMOTION_EVENT_AXIS_X, scaleFactor); | 
|  | scaleAxisValue(*this, AMOTION_EVENT_AXIS_Y, scaleFactor); | 
|  | scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MAJOR, scaleFactor); | 
|  | scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOUCH_MINOR, scaleFactor); | 
|  | scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MAJOR, scaleFactor); | 
|  | scaleAxisValue(*this, AMOTION_EVENT_AXIS_TOOL_MINOR, scaleFactor); | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_ANDROID_OS | 
|  | status_t PointerCoords::readFromParcel(Parcel* parcel) { | 
|  | bits = parcel->readInt64(); | 
|  |  | 
|  | uint32_t count = __builtin_popcountll(bits); | 
|  | if (count > MAX_AXES) { | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | for (uint32_t i = 0; i < count; i++) { | 
|  | values[i] = parcel->readInt32(); | 
|  | } | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | status_t PointerCoords::writeToParcel(Parcel* parcel) const { | 
|  | parcel->writeInt64(bits); | 
|  |  | 
|  | uint32_t count = __builtin_popcountll(bits); | 
|  | for (uint32_t i = 0; i < count; i++) { | 
|  | parcel->writeInt32(values[i]); | 
|  | } | 
|  | return OK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void PointerCoords::tooManyAxes(int axis) { | 
|  | LOGW("Could not set value for axis %d because the PointerCoords structure is full and " | 
|  | "cannot contain more than %d axis values.", axis, int(MAX_AXES)); | 
|  | } | 
|  |  | 
|  | bool PointerCoords::operator==(const PointerCoords& other) const { | 
|  | if (bits != other.bits) { | 
|  | return false; | 
|  | } | 
|  | uint32_t count = __builtin_popcountll(bits); | 
|  | for (uint32_t i = 0; i < count; i++) { | 
|  | if (values[i] != other.values[i]) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PointerCoords::copyFrom(const PointerCoords& other) { | 
|  | bits = other.bits; | 
|  | uint32_t count = __builtin_popcountll(bits); | 
|  | for (uint32_t i = 0; i < count; i++) { | 
|  | values[i] = other.values[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- PointerProperties --- | 
|  |  | 
|  | bool PointerProperties::operator==(const PointerProperties& other) const { | 
|  | return id == other.id | 
|  | && toolType == other.toolType; | 
|  | } | 
|  |  | 
|  | void PointerProperties::copyFrom(const PointerProperties& other) { | 
|  | id = other.id; | 
|  | toolType = other.toolType; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- MotionEvent --- | 
|  |  | 
|  | void MotionEvent::initialize( | 
|  | int32_t deviceId, | 
|  | int32_t source, | 
|  | int32_t action, | 
|  | int32_t flags, | 
|  | int32_t edgeFlags, | 
|  | int32_t metaState, | 
|  | int32_t buttonState, | 
|  | float xOffset, | 
|  | float yOffset, | 
|  | float xPrecision, | 
|  | float yPrecision, | 
|  | nsecs_t downTime, | 
|  | nsecs_t eventTime, | 
|  | size_t pointerCount, | 
|  | const PointerProperties* pointerProperties, | 
|  | const PointerCoords* pointerCoords) { | 
|  | InputEvent::initialize(deviceId, source); | 
|  | mAction = action; | 
|  | mFlags = flags; | 
|  | mEdgeFlags = edgeFlags; | 
|  | mMetaState = metaState; | 
|  | mButtonState = buttonState; | 
|  | mXOffset = xOffset; | 
|  | mYOffset = yOffset; | 
|  | mXPrecision = xPrecision; | 
|  | mYPrecision = yPrecision; | 
|  | mDownTime = downTime; | 
|  | mPointerProperties.clear(); | 
|  | mPointerProperties.appendArray(pointerProperties, pointerCount); | 
|  | mSampleEventTimes.clear(); | 
|  | mSamplePointerCoords.clear(); | 
|  | addSample(eventTime, pointerCoords); | 
|  | } | 
|  |  | 
|  | void MotionEvent::copyFrom(const MotionEvent* other, bool keepHistory) { | 
|  | InputEvent::initialize(other->mDeviceId, other->mSource); | 
|  | mAction = other->mAction; | 
|  | mFlags = other->mFlags; | 
|  | mEdgeFlags = other->mEdgeFlags; | 
|  | mMetaState = other->mMetaState; | 
|  | mButtonState = other->mButtonState; | 
|  | mXOffset = other->mXOffset; | 
|  | mYOffset = other->mYOffset; | 
|  | mXPrecision = other->mXPrecision; | 
|  | mYPrecision = other->mYPrecision; | 
|  | mDownTime = other->mDownTime; | 
|  | mPointerProperties = other->mPointerProperties; | 
|  |  | 
|  | if (keepHistory) { | 
|  | mSampleEventTimes = other->mSampleEventTimes; | 
|  | mSamplePointerCoords = other->mSamplePointerCoords; | 
|  | } else { | 
|  | mSampleEventTimes.clear(); | 
|  | mSampleEventTimes.push(other->getEventTime()); | 
|  | mSamplePointerCoords.clear(); | 
|  | size_t pointerCount = other->getPointerCount(); | 
|  | size_t historySize = other->getHistorySize(); | 
|  | mSamplePointerCoords.appendArray(other->mSamplePointerCoords.array() | 
|  | + (historySize * pointerCount), pointerCount); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MotionEvent::addSample( | 
|  | int64_t eventTime, | 
|  | const PointerCoords* pointerCoords) { | 
|  | mSampleEventTimes.push(eventTime); | 
|  | mSamplePointerCoords.appendArray(pointerCoords, getPointerCount()); | 
|  | } | 
|  |  | 
|  | const PointerCoords* MotionEvent::getRawPointerCoords(size_t pointerIndex) const { | 
|  | return &mSamplePointerCoords[getHistorySize() * getPointerCount() + pointerIndex]; | 
|  | } | 
|  |  | 
|  | float MotionEvent::getRawAxisValue(int32_t axis, size_t pointerIndex) const { | 
|  | return getRawPointerCoords(pointerIndex)->getAxisValue(axis); | 
|  | } | 
|  |  | 
|  | float MotionEvent::getAxisValue(int32_t axis, size_t pointerIndex) const { | 
|  | float value = getRawPointerCoords(pointerIndex)->getAxisValue(axis); | 
|  | switch (axis) { | 
|  | case AMOTION_EVENT_AXIS_X: | 
|  | return value + mXOffset; | 
|  | case AMOTION_EVENT_AXIS_Y: | 
|  | return value + mYOffset; | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  | const PointerCoords* MotionEvent::getHistoricalRawPointerCoords( | 
|  | size_t pointerIndex, size_t historicalIndex) const { | 
|  | return &mSamplePointerCoords[historicalIndex * getPointerCount() + pointerIndex]; | 
|  | } | 
|  |  | 
|  | float MotionEvent::getHistoricalRawAxisValue(int32_t axis, size_t pointerIndex, | 
|  | size_t historicalIndex) const { | 
|  | return getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis); | 
|  | } | 
|  |  | 
|  | float MotionEvent::getHistoricalAxisValue(int32_t axis, size_t pointerIndex, | 
|  | size_t historicalIndex) const { | 
|  | float value = getHistoricalRawPointerCoords(pointerIndex, historicalIndex)->getAxisValue(axis); | 
|  | switch (axis) { | 
|  | case AMOTION_EVENT_AXIS_X: | 
|  | return value + mXOffset; | 
|  | case AMOTION_EVENT_AXIS_Y: | 
|  | return value + mYOffset; | 
|  | } | 
|  | return value; | 
|  | } | 
|  |  | 
|  | ssize_t MotionEvent::findPointerIndex(int32_t pointerId) const { | 
|  | size_t pointerCount = mPointerProperties.size(); | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | if (mPointerProperties.itemAt(i).id == pointerId) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void MotionEvent::offsetLocation(float xOffset, float yOffset) { | 
|  | mXOffset += xOffset; | 
|  | mYOffset += yOffset; | 
|  | } | 
|  |  | 
|  | void MotionEvent::scale(float scaleFactor) { | 
|  | mXOffset *= scaleFactor; | 
|  | mYOffset *= scaleFactor; | 
|  | mXPrecision *= scaleFactor; | 
|  | mYPrecision *= scaleFactor; | 
|  |  | 
|  | size_t numSamples = mSamplePointerCoords.size(); | 
|  | for (size_t i = 0; i < numSamples; i++) { | 
|  | mSamplePointerCoords.editItemAt(i).scale(scaleFactor); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_ANDROID_OS | 
|  | static inline float transformAngle(const SkMatrix* matrix, float angleRadians) { | 
|  | // Construct and transform a vector oriented at the specified clockwise angle from vertical. | 
|  | // Coordinate system: down is increasing Y, right is increasing X. | 
|  | SkPoint vector; | 
|  | vector.fX = SkFloatToScalar(sinf(angleRadians)); | 
|  | vector.fY = SkFloatToScalar(-cosf(angleRadians)); | 
|  | matrix->mapVectors(& vector, 1); | 
|  |  | 
|  | // Derive the transformed vector's clockwise angle from vertical. | 
|  | float result = atan2f(SkScalarToFloat(vector.fX), SkScalarToFloat(-vector.fY)); | 
|  | if (result < - M_PI_2) { | 
|  | result += M_PI; | 
|  | } else if (result > M_PI_2) { | 
|  | result -= M_PI; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void MotionEvent::transform(const SkMatrix* matrix) { | 
|  | float oldXOffset = mXOffset; | 
|  | float oldYOffset = mYOffset; | 
|  |  | 
|  | // The tricky part of this implementation is to preserve the value of | 
|  | // rawX and rawY.  So we apply the transformation to the first point | 
|  | // then derive an appropriate new X/Y offset that will preserve rawX and rawY. | 
|  | SkPoint point; | 
|  | float rawX = getRawX(0); | 
|  | float rawY = getRawY(0); | 
|  | matrix->mapXY(SkFloatToScalar(rawX + oldXOffset), SkFloatToScalar(rawY + oldYOffset), | 
|  | & point); | 
|  | float newX = SkScalarToFloat(point.fX); | 
|  | float newY = SkScalarToFloat(point.fY); | 
|  | float newXOffset = newX - rawX; | 
|  | float newYOffset = newY - rawY; | 
|  |  | 
|  | mXOffset = newXOffset; | 
|  | mYOffset = newYOffset; | 
|  |  | 
|  | // Apply the transformation to all samples. | 
|  | size_t numSamples = mSamplePointerCoords.size(); | 
|  | for (size_t i = 0; i < numSamples; i++) { | 
|  | PointerCoords& c = mSamplePointerCoords.editItemAt(i); | 
|  | float x = c.getAxisValue(AMOTION_EVENT_AXIS_X) + oldXOffset; | 
|  | float y = c.getAxisValue(AMOTION_EVENT_AXIS_Y) + oldYOffset; | 
|  | matrix->mapXY(SkFloatToScalar(x), SkFloatToScalar(y), &point); | 
|  | c.setAxisValue(AMOTION_EVENT_AXIS_X, SkScalarToFloat(point.fX) - newXOffset); | 
|  | c.setAxisValue(AMOTION_EVENT_AXIS_Y, SkScalarToFloat(point.fY) - newYOffset); | 
|  |  | 
|  | float orientation = c.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION); | 
|  | c.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, transformAngle(matrix, orientation)); | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t MotionEvent::readFromParcel(Parcel* parcel) { | 
|  | size_t pointerCount = parcel->readInt32(); | 
|  | size_t sampleCount = parcel->readInt32(); | 
|  | if (pointerCount == 0 || pointerCount > MAX_POINTERS || sampleCount == 0) { | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | mDeviceId = parcel->readInt32(); | 
|  | mSource = parcel->readInt32(); | 
|  | mAction = parcel->readInt32(); | 
|  | mFlags = parcel->readInt32(); | 
|  | mEdgeFlags = parcel->readInt32(); | 
|  | mMetaState = parcel->readInt32(); | 
|  | mButtonState = parcel->readInt32(); | 
|  | mXOffset = parcel->readFloat(); | 
|  | mYOffset = parcel->readFloat(); | 
|  | mXPrecision = parcel->readFloat(); | 
|  | mYPrecision = parcel->readFloat(); | 
|  | mDownTime = parcel->readInt64(); | 
|  |  | 
|  | mPointerProperties.clear(); | 
|  | mPointerProperties.setCapacity(pointerCount); | 
|  | mSampleEventTimes.clear(); | 
|  | mSampleEventTimes.setCapacity(sampleCount); | 
|  | mSamplePointerCoords.clear(); | 
|  | mSamplePointerCoords.setCapacity(sampleCount * pointerCount); | 
|  |  | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | mPointerProperties.push(); | 
|  | PointerProperties& properties = mPointerProperties.editTop(); | 
|  | properties.id = parcel->readInt32(); | 
|  | properties.toolType = parcel->readInt32(); | 
|  | } | 
|  |  | 
|  | while (sampleCount-- > 0) { | 
|  | mSampleEventTimes.push(parcel->readInt64()); | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | mSamplePointerCoords.push(); | 
|  | status_t status = mSamplePointerCoords.editTop().readFromParcel(parcel); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  | } | 
|  | } | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | status_t MotionEvent::writeToParcel(Parcel* parcel) const { | 
|  | size_t pointerCount = mPointerProperties.size(); | 
|  | size_t sampleCount = mSampleEventTimes.size(); | 
|  |  | 
|  | parcel->writeInt32(pointerCount); | 
|  | parcel->writeInt32(sampleCount); | 
|  |  | 
|  | parcel->writeInt32(mDeviceId); | 
|  | parcel->writeInt32(mSource); | 
|  | parcel->writeInt32(mAction); | 
|  | parcel->writeInt32(mFlags); | 
|  | parcel->writeInt32(mEdgeFlags); | 
|  | parcel->writeInt32(mMetaState); | 
|  | parcel->writeInt32(mButtonState); | 
|  | parcel->writeFloat(mXOffset); | 
|  | parcel->writeFloat(mYOffset); | 
|  | parcel->writeFloat(mXPrecision); | 
|  | parcel->writeFloat(mYPrecision); | 
|  | parcel->writeInt64(mDownTime); | 
|  |  | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | const PointerProperties& properties = mPointerProperties.itemAt(i); | 
|  | parcel->writeInt32(properties.id); | 
|  | parcel->writeInt32(properties.toolType); | 
|  | } | 
|  |  | 
|  | const PointerCoords* pc = mSamplePointerCoords.array(); | 
|  | for (size_t h = 0; h < sampleCount; h++) { | 
|  | parcel->writeInt64(mSampleEventTimes.itemAt(h)); | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | status_t status = (pc++)->writeToParcel(parcel); | 
|  | if (status) { | 
|  | return status; | 
|  | } | 
|  | } | 
|  | } | 
|  | return OK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool MotionEvent::isTouchEvent(int32_t source, int32_t action) { | 
|  | if (source & AINPUT_SOURCE_CLASS_POINTER) { | 
|  | // Specifically excludes HOVER_MOVE and SCROLL. | 
|  | switch (action & AMOTION_EVENT_ACTION_MASK) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: | 
|  | case AMOTION_EVENT_ACTION_MOVE: | 
|  | case AMOTION_EVENT_ACTION_UP: | 
|  | case AMOTION_EVENT_ACTION_POINTER_DOWN: | 
|  | case AMOTION_EVENT_ACTION_POINTER_UP: | 
|  | case AMOTION_EVENT_ACTION_CANCEL: | 
|  | case AMOTION_EVENT_ACTION_OUTSIDE: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- VelocityTracker --- | 
|  |  | 
|  | const uint32_t VelocityTracker::DEFAULT_DEGREE; | 
|  | const nsecs_t VelocityTracker::DEFAULT_HORIZON; | 
|  | const uint32_t VelocityTracker::HISTORY_SIZE; | 
|  |  | 
|  | static inline float vectorDot(const float* a, const float* b, uint32_t m) { | 
|  | float r = 0; | 
|  | while (m--) { | 
|  | r += *(a++) * *(b++); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static inline float vectorNorm(const float* a, uint32_t m) { | 
|  | float r = 0; | 
|  | while (m--) { | 
|  | float t = *(a++); | 
|  | r += t * t; | 
|  | } | 
|  | return sqrtf(r); | 
|  | } | 
|  |  | 
|  | #if DEBUG_LEAST_SQUARES || DEBUG_VELOCITY | 
|  | static String8 vectorToString(const float* a, uint32_t m) { | 
|  | String8 str; | 
|  | str.append("["); | 
|  | while (m--) { | 
|  | str.appendFormat(" %f", *(a++)); | 
|  | if (m) { | 
|  | str.append(","); | 
|  | } | 
|  | } | 
|  | str.append(" ]"); | 
|  | return str; | 
|  | } | 
|  |  | 
|  | static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { | 
|  | String8 str; | 
|  | str.append("["); | 
|  | for (size_t i = 0; i < m; i++) { | 
|  | if (i) { | 
|  | str.append(","); | 
|  | } | 
|  | str.append(" ["); | 
|  | for (size_t j = 0; j < n; j++) { | 
|  | if (j) { | 
|  | str.append(","); | 
|  | } | 
|  | str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]); | 
|  | } | 
|  | str.append(" ]"); | 
|  | } | 
|  | str.append(" ]"); | 
|  | return str; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | VelocityTracker::VelocityTracker() { | 
|  | clear(); | 
|  | } | 
|  |  | 
|  | void VelocityTracker::clear() { | 
|  | mIndex = 0; | 
|  | mMovements[0].idBits.clear(); | 
|  | mActivePointerId = -1; | 
|  | } | 
|  |  | 
|  | void VelocityTracker::clearPointers(BitSet32 idBits) { | 
|  | BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); | 
|  | mMovements[mIndex].idBits = remainingIdBits; | 
|  |  | 
|  | if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { | 
|  | mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { | 
|  | if (++mIndex == HISTORY_SIZE) { | 
|  | mIndex = 0; | 
|  | } | 
|  |  | 
|  | while (idBits.count() > MAX_POINTERS) { | 
|  | idBits.clearLastMarkedBit(); | 
|  | } | 
|  |  | 
|  | Movement& movement = mMovements[mIndex]; | 
|  | movement.eventTime = eventTime; | 
|  | movement.idBits = idBits; | 
|  | uint32_t count = idBits.count(); | 
|  | for (uint32_t i = 0; i < count; i++) { | 
|  | movement.positions[i] = positions[i]; | 
|  | } | 
|  |  | 
|  | if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { | 
|  | mActivePointerId = count != 0 ? idBits.firstMarkedBit() : -1; | 
|  | } | 
|  |  | 
|  | #if DEBUG_VELOCITY | 
|  | LOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d", | 
|  | eventTime, idBits.value, mActivePointerId); | 
|  | for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { | 
|  | uint32_t id = iterBits.firstMarkedBit(); | 
|  | uint32_t index = idBits.getIndexOfBit(id); | 
|  | iterBits.clearBit(id); | 
|  | Estimator estimator; | 
|  | getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator); | 
|  | LOGD("  %d: position (%0.3f, %0.3f), " | 
|  | "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", | 
|  | id, positions[index].x, positions[index].y, | 
|  | int(estimator.degree), | 
|  | vectorToString(estimator.xCoeff, estimator.degree).string(), | 
|  | vectorToString(estimator.yCoeff, estimator.degree).string(), | 
|  | estimator.confidence); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void VelocityTracker::addMovement(const MotionEvent* event) { | 
|  | int32_t actionMasked = event->getActionMasked(); | 
|  |  | 
|  | switch (actionMasked) { | 
|  | case AMOTION_EVENT_ACTION_DOWN: | 
|  | case AMOTION_EVENT_ACTION_HOVER_ENTER: | 
|  | // Clear all pointers on down before adding the new movement. | 
|  | clear(); | 
|  | break; | 
|  | case AMOTION_EVENT_ACTION_POINTER_DOWN: { | 
|  | // Start a new movement trace for a pointer that just went down. | 
|  | // We do this on down instead of on up because the client may want to query the | 
|  | // final velocity for a pointer that just went up. | 
|  | BitSet32 downIdBits; | 
|  | downIdBits.markBit(event->getPointerId(event->getActionIndex())); | 
|  | clearPointers(downIdBits); | 
|  | break; | 
|  | } | 
|  | case AMOTION_EVENT_ACTION_MOVE: | 
|  | case AMOTION_EVENT_ACTION_HOVER_MOVE: | 
|  | break; | 
|  | default: | 
|  | // Ignore all other actions because they do not convey any new information about | 
|  | // pointer movement.  We also want to preserve the last known velocity of the pointers. | 
|  | // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position | 
|  | // of the pointers that went up.  ACTION_POINTER_UP does include the new position of | 
|  | // pointers that remained down but we will also receive an ACTION_MOVE with this | 
|  | // information if any of them actually moved.  Since we don't know how many pointers | 
|  | // will be going up at once it makes sense to just wait for the following ACTION_MOVE | 
|  | // before adding the movement. | 
|  | return; | 
|  | } | 
|  |  | 
|  | size_t pointerCount = event->getPointerCount(); | 
|  | if (pointerCount > MAX_POINTERS) { | 
|  | pointerCount = MAX_POINTERS; | 
|  | } | 
|  |  | 
|  | BitSet32 idBits; | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | idBits.markBit(event->getPointerId(i)); | 
|  | } | 
|  |  | 
|  | nsecs_t eventTime; | 
|  | Position positions[pointerCount]; | 
|  |  | 
|  | size_t historySize = event->getHistorySize(); | 
|  | for (size_t h = 0; h < historySize; h++) { | 
|  | eventTime = event->getHistoricalEventTime(h); | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | positions[i].x = event->getHistoricalX(i, h); | 
|  | positions[i].y = event->getHistoricalY(i, h); | 
|  | } | 
|  | addMovement(eventTime, idBits, positions); | 
|  | } | 
|  |  | 
|  | eventTime = event->getEventTime(); | 
|  | for (size_t i = 0; i < pointerCount; i++) { | 
|  | positions[i].x = event->getX(i); | 
|  | positions[i].y = event->getY(i); | 
|  | } | 
|  | addMovement(eventTime, idBits, positions); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Solves a linear least squares problem to obtain a N degree polynomial that fits | 
|  | * the specified input data as nearly as possible. | 
|  | * | 
|  | * Returns true if a solution is found, false otherwise. | 
|  | * | 
|  | * The input consists of two vectors of data points X and Y with indices 0..m-1. | 
|  | * The output is a vector B with indices 0..n-1 that describes a polynomial | 
|  | * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n)) | 
|  | * for all i between 0 and m-1 is minimized. | 
|  | * | 
|  | * That is to say, the function that generated the input data can be approximated | 
|  | * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. | 
|  | * | 
|  | * The coefficient of determination (R^2) is also returned to describe the goodness | 
|  | * of fit of the model for the given data.  It is a value between 0 and 1, where 1 | 
|  | * indicates perfect correspondence. | 
|  | * | 
|  | * This function first expands the X vector to a m by n matrix A such that | 
|  | * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n. | 
|  | * | 
|  | * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q | 
|  | * and an m by n upper triangular matrix R.  Because R is upper triangular (lower | 
|  | * part is all zeroes), we can simplify the decomposition into an m by n matrix | 
|  | * Q1 and a n by n matrix R1 such that A = Q1 R1. | 
|  | * | 
|  | * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y) | 
|  | * to find B. | 
|  | * | 
|  | * For efficiency, we lay out A and Q column-wise in memory because we frequently | 
|  | * operate on the column vectors.  Conversely, we lay out R row-wise. | 
|  | * | 
|  | * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares | 
|  | * http://en.wikipedia.org/wiki/Gram-Schmidt | 
|  | */ | 
|  | static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n, | 
|  | float* outB, float* outDet) { | 
|  | #if DEBUG_LEAST_SQUARES | 
|  | LOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n), | 
|  | vectorToString(x, m).string(), vectorToString(y, m).string()); | 
|  | #endif | 
|  |  | 
|  | // Expand the X vector to a matrix A. | 
|  | float a[n][m]; // column-major order | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | a[0][h] = 1; | 
|  | for (uint32_t i = 1; i < n; i++) { | 
|  | a[i][h] = a[i - 1][h] * x[h]; | 
|  | } | 
|  | } | 
|  | #if DEBUG_LEAST_SQUARES | 
|  | LOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string()); | 
|  | #endif | 
|  |  | 
|  | // Apply the Gram-Schmidt process to A to obtain its QR decomposition. | 
|  | float q[n][m]; // orthonormal basis, column-major order | 
|  | float r[n][n]; // upper triangular matrix, row-major order | 
|  | for (uint32_t j = 0; j < n; j++) { | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | q[j][h] = a[j][h]; | 
|  | } | 
|  | for (uint32_t i = 0; i < j; i++) { | 
|  | float dot = vectorDot(&q[j][0], &q[i][0], m); | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | q[j][h] -= dot * q[i][h]; | 
|  | } | 
|  | } | 
|  |  | 
|  | float norm = vectorNorm(&q[j][0], m); | 
|  | if (norm < 0.000001f) { | 
|  | // vectors are linearly dependent or zero so no solution | 
|  | #if DEBUG_LEAST_SQUARES | 
|  | LOGD("  - no solution, norm=%f", norm); | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  | float invNorm = 1.0f / norm; | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | q[j][h] *= invNorm; | 
|  | } | 
|  | for (uint32_t i = 0; i < n; i++) { | 
|  | r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); | 
|  | } | 
|  | } | 
|  | #if DEBUG_LEAST_SQUARES | 
|  | LOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string()); | 
|  | LOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string()); | 
|  |  | 
|  | // calculate QR, if we factored A correctly then QR should equal A | 
|  | float qr[n][m]; | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | for (uint32_t i = 0; i < n; i++) { | 
|  | qr[i][h] = 0; | 
|  | for (uint32_t j = 0; j < n; j++) { | 
|  | qr[i][h] += q[j][h] * r[j][i]; | 
|  | } | 
|  | } | 
|  | } | 
|  | LOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string()); | 
|  | #endif | 
|  |  | 
|  | // Solve R B = Qt Y to find B.  This is easy because R is upper triangular. | 
|  | // We just work from bottom-right to top-left calculating B's coefficients. | 
|  | for (uint32_t i = n; i-- != 0; ) { | 
|  | outB[i] = vectorDot(&q[i][0], y, m); | 
|  | for (uint32_t j = n - 1; j > i; j--) { | 
|  | outB[i] -= r[i][j] * outB[j]; | 
|  | } | 
|  | outB[i] /= r[i][i]; | 
|  | } | 
|  | #if DEBUG_LEAST_SQUARES | 
|  | LOGD("  - b=%s", vectorToString(outB, n).string()); | 
|  | #endif | 
|  |  | 
|  | // Calculate the coefficient of determination as 1 - (SSerr / SStot) where | 
|  | // SSerr is the residual sum of squares (squared variance of the error), | 
|  | // and SStot is the total sum of squares (squared variance of the data). | 
|  | float ymean = 0; | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | ymean += y[h]; | 
|  | } | 
|  | ymean /= m; | 
|  |  | 
|  | float sserr = 0; | 
|  | float sstot = 0; | 
|  | for (uint32_t h = 0; h < m; h++) { | 
|  | float err = y[h] - outB[0]; | 
|  | float term = 1; | 
|  | for (uint32_t i = 1; i < n; i++) { | 
|  | term *= x[h]; | 
|  | err -= term * outB[i]; | 
|  | } | 
|  | sserr += err * err; | 
|  | float var = y[h] - ymean; | 
|  | sstot += var * var; | 
|  | } | 
|  | *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; | 
|  | #if DEBUG_LEAST_SQUARES | 
|  | LOGD("  - sserr=%f", sserr); | 
|  | LOGD("  - sstot=%f", sstot); | 
|  | LOGD("  - det=%f", *outDet); | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { | 
|  | Estimator estimator; | 
|  | if (getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator)) { | 
|  | if (estimator.degree >= 1) { | 
|  | *outVx = estimator.xCoeff[1]; | 
|  | *outVy = estimator.yCoeff[1]; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | *outVx = 0; | 
|  | *outVy = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool VelocityTracker::getEstimator(uint32_t id, uint32_t degree, nsecs_t horizon, | 
|  | Estimator* outEstimator) const { | 
|  | outEstimator->clear(); | 
|  |  | 
|  | // Iterate over movement samples in reverse time order and collect samples. | 
|  | float x[HISTORY_SIZE]; | 
|  | float y[HISTORY_SIZE]; | 
|  | float time[HISTORY_SIZE]; | 
|  | uint32_t m = 0; | 
|  | uint32_t index = mIndex; | 
|  | const Movement& newestMovement = mMovements[mIndex]; | 
|  | do { | 
|  | const Movement& movement = mMovements[index]; | 
|  | if (!movement.idBits.hasBit(id)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | nsecs_t age = newestMovement.eventTime - movement.eventTime; | 
|  | if (age > horizon) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | const Position& position = movement.getPosition(id); | 
|  | x[m] = position.x; | 
|  | y[m] = position.y; | 
|  | time[m] = -age * 0.000000001f; | 
|  | index = (index == 0 ? HISTORY_SIZE : index) - 1; | 
|  | } while (++m < HISTORY_SIZE); | 
|  |  | 
|  | if (m == 0) { | 
|  | return false; // no data | 
|  | } | 
|  |  | 
|  | // Calculate a least squares polynomial fit. | 
|  | if (degree > Estimator::MAX_DEGREE) { | 
|  | degree = Estimator::MAX_DEGREE; | 
|  | } | 
|  | if (degree > m - 1) { | 
|  | degree = m - 1; | 
|  | } | 
|  | if (degree >= 1) { | 
|  | float xdet, ydet; | 
|  | uint32_t n = degree + 1; | 
|  | if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet) | 
|  | && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) { | 
|  | outEstimator->degree = degree; | 
|  | outEstimator->confidence = xdet * ydet; | 
|  | #if DEBUG_LEAST_SQUARES | 
|  | LOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", | 
|  | int(outEstimator->degree), | 
|  | vectorToString(outEstimator->xCoeff, n).string(), | 
|  | vectorToString(outEstimator->yCoeff, n).string(), | 
|  | outEstimator->confidence); | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No velocity data available for this pointer, but we do have its current position. | 
|  | outEstimator->xCoeff[0] = x[0]; | 
|  | outEstimator->yCoeff[0] = y[0]; | 
|  | outEstimator->degree = 0; | 
|  | outEstimator->confidence = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- VelocityControl --- | 
|  |  | 
|  | const nsecs_t VelocityControl::STOP_TIME; | 
|  |  | 
|  | VelocityControl::VelocityControl() { | 
|  | reset(); | 
|  | } | 
|  |  | 
|  | void VelocityControl::setParameters(const VelocityControlParameters& parameters) { | 
|  | mParameters = parameters; | 
|  | reset(); | 
|  | } | 
|  |  | 
|  | void VelocityControl::reset() { | 
|  | mLastMovementTime = LLONG_MIN; | 
|  | mRawPosition.x = 0; | 
|  | mRawPosition.y = 0; | 
|  | mVelocityTracker.clear(); | 
|  | } | 
|  |  | 
|  | void VelocityControl::move(nsecs_t eventTime, float* deltaX, float* deltaY) { | 
|  | if ((deltaX && *deltaX) || (deltaY && *deltaY)) { | 
|  | if (eventTime >= mLastMovementTime + STOP_TIME) { | 
|  | #if DEBUG_ACCELERATION | 
|  | LOGD("VelocityControl: stopped, last movement was %0.3fms ago", | 
|  | (eventTime - mLastMovementTime) * 0.000001f); | 
|  | #endif | 
|  | reset(); | 
|  | } | 
|  |  | 
|  | mLastMovementTime = eventTime; | 
|  | if (deltaX) { | 
|  | mRawPosition.x += *deltaX; | 
|  | } | 
|  | if (deltaY) { | 
|  | mRawPosition.y += *deltaY; | 
|  | } | 
|  | mVelocityTracker.addMovement(eventTime, BitSet32(BitSet32::valueForBit(0)), &mRawPosition); | 
|  |  | 
|  | float vx, vy; | 
|  | float scale = mParameters.scale; | 
|  | if (mVelocityTracker.getVelocity(0, &vx, &vy)) { | 
|  | float speed = hypotf(vx, vy) * scale; | 
|  | if (speed >= mParameters.highThreshold) { | 
|  | // Apply full acceleration above the high speed threshold. | 
|  | scale *= mParameters.acceleration; | 
|  | } else if (speed > mParameters.lowThreshold) { | 
|  | // Linearly interpolate the acceleration to apply between the low and high | 
|  | // speed thresholds. | 
|  | scale *= 1 + (speed - mParameters.lowThreshold) | 
|  | / (mParameters.highThreshold - mParameters.lowThreshold) | 
|  | * (mParameters.acceleration - 1); | 
|  | } | 
|  |  | 
|  | #if DEBUG_ACCELERATION | 
|  | LOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): " | 
|  | "vx=%0.3f, vy=%0.3f, speed=%0.3f, accel=%0.3f", | 
|  | mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold, | 
|  | mParameters.acceleration, | 
|  | vx, vy, speed, scale / mParameters.scale); | 
|  | #endif | 
|  | } else { | 
|  | #if DEBUG_ACCELERATION | 
|  | LOGD("VelocityControl(%0.3f, %0.3f, %0.3f, %0.3f): unknown velocity", | 
|  | mParameters.scale, mParameters.lowThreshold, mParameters.highThreshold, | 
|  | mParameters.acceleration); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (deltaX) { | 
|  | *deltaX *= scale; | 
|  | } | 
|  | if (deltaY) { | 
|  | *deltaY *= scale; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // --- InputDeviceInfo --- | 
|  |  | 
|  | InputDeviceInfo::InputDeviceInfo() { | 
|  | initialize(-1, String8("uninitialized device info")); | 
|  | } | 
|  |  | 
|  | InputDeviceInfo::InputDeviceInfo(const InputDeviceInfo& other) : | 
|  | mId(other.mId), mName(other.mName), mSources(other.mSources), | 
|  | mKeyboardType(other.mKeyboardType), | 
|  | mMotionRanges(other.mMotionRanges) { | 
|  | } | 
|  |  | 
|  | InputDeviceInfo::~InputDeviceInfo() { | 
|  | } | 
|  |  | 
|  | void InputDeviceInfo::initialize(int32_t id, const String8& name) { | 
|  | mId = id; | 
|  | mName = name; | 
|  | mSources = 0; | 
|  | mKeyboardType = AINPUT_KEYBOARD_TYPE_NONE; | 
|  | mMotionRanges.clear(); | 
|  | } | 
|  |  | 
|  | const InputDeviceInfo::MotionRange* InputDeviceInfo::getMotionRange( | 
|  | int32_t axis, uint32_t source) const { | 
|  | size_t numRanges = mMotionRanges.size(); | 
|  | for (size_t i = 0; i < numRanges; i++) { | 
|  | const MotionRange& range = mMotionRanges.itemAt(i); | 
|  | if (range.axis == axis && range.source == source) { | 
|  | return ⦥ | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void InputDeviceInfo::addSource(uint32_t source) { | 
|  | mSources |= source; | 
|  | } | 
|  |  | 
|  | void InputDeviceInfo::addMotionRange(int32_t axis, uint32_t source, float min, float max, | 
|  | float flat, float fuzz) { | 
|  | MotionRange range = { axis, source, min, max, flat, fuzz }; | 
|  | mMotionRanges.add(range); | 
|  | } | 
|  |  | 
|  | void InputDeviceInfo::addMotionRange(const MotionRange& range) { | 
|  | mMotionRanges.add(range); | 
|  | } | 
|  |  | 
|  | } // namespace android |