| /* | 
 |  * Copyright 2013 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
 |  | 
 | #include "ProgramCache.h" | 
 |  | 
 | #include <GLES2/gl2.h> | 
 | #include <GLES2/gl2ext.h> | 
 | #include <log/log.h> | 
 | #include <renderengine/private/Description.h> | 
 | #include <utils/String8.h> | 
 | #include <utils/Trace.h> | 
 | #include "Program.h" | 
 |  | 
 | ANDROID_SINGLETON_STATIC_INSTANCE(android::renderengine::gl::ProgramCache) | 
 |  | 
 | namespace android { | 
 | namespace renderengine { | 
 | namespace gl { | 
 |  | 
 | /* | 
 |  * A simple formatter class to automatically add the endl and | 
 |  * manage the indentation. | 
 |  */ | 
 |  | 
 | class Formatter; | 
 | static Formatter& indent(Formatter& f); | 
 | static Formatter& dedent(Formatter& f); | 
 |  | 
 | class Formatter { | 
 |     String8 mString; | 
 |     int mIndent; | 
 |     typedef Formatter& (*FormaterManipFunc)(Formatter&); | 
 |     friend Formatter& indent(Formatter& f); | 
 |     friend Formatter& dedent(Formatter& f); | 
 |  | 
 | public: | 
 |     Formatter() : mIndent(0) {} | 
 |  | 
 |     String8 getString() const { return mString; } | 
 |  | 
 |     friend Formatter& operator<<(Formatter& out, const char* in) { | 
 |         for (int i = 0; i < out.mIndent; i++) { | 
 |             out.mString.append("    "); | 
 |         } | 
 |         out.mString.append(in); | 
 |         out.mString.append("\n"); | 
 |         return out; | 
 |     } | 
 |     friend inline Formatter& operator<<(Formatter& out, const String8& in) { | 
 |         return operator<<(out, in.string()); | 
 |     } | 
 |     friend inline Formatter& operator<<(Formatter& to, FormaterManipFunc func) { | 
 |         return (*func)(to); | 
 |     } | 
 | }; | 
 | Formatter& indent(Formatter& f) { | 
 |     f.mIndent++; | 
 |     return f; | 
 | } | 
 | Formatter& dedent(Formatter& f) { | 
 |     f.mIndent--; | 
 |     return f; | 
 | } | 
 |  | 
 | void ProgramCache::primeCache( | 
 |         EGLContext context, bool useColorManagement, bool toneMapperShaderOnly) { | 
 |     auto& cache = mCaches[context]; | 
 |     uint32_t shaderCount = 0; | 
 |  | 
 |     if (toneMapperShaderOnly) { | 
 |         Key shaderKey; | 
 |         // base settings used by HDR->SDR tonemap only | 
 |         shaderKey.set(Key::BLEND_MASK | Key::INPUT_TRANSFORM_MATRIX_MASK | | 
 |                       Key::OUTPUT_TRANSFORM_MATRIX_MASK | Key::OUTPUT_TF_MASK | | 
 |                       Key::OPACITY_MASK | Key::ALPHA_MASK | | 
 |                       Key::ROUNDED_CORNERS_MASK | Key::TEXTURE_MASK, | 
 |                       Key::BLEND_NORMAL | Key::INPUT_TRANSFORM_MATRIX_ON | | 
 |                       Key::OUTPUT_TRANSFORM_MATRIX_ON | Key::OUTPUT_TF_SRGB | | 
 |                       Key::OPACITY_OPAQUE | Key::ALPHA_EQ_ONE | | 
 |                       Key::ROUNDED_CORNERS_OFF | Key::TEXTURE_EXT); | 
 |         for (int i = 0; i < 4; i++) { | 
 |             // Cache input transfer for HLG & ST2084 | 
 |             shaderKey.set(Key::INPUT_TF_MASK, (i & 1) ? | 
 |                     Key::INPUT_TF_HLG : Key::INPUT_TF_ST2084); | 
 |  | 
 |             // Cache Y410 input on or off | 
 |             shaderKey.set(Key::Y410_BT2020_MASK, (i & 2) ? | 
 |                     Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF); | 
 |             if (cache.count(shaderKey) == 0) { | 
 |                 cache.emplace(shaderKey, generateProgram(shaderKey)); | 
 |                 shaderCount++; | 
 |             } | 
 |         } | 
 |         return; | 
 |     } | 
 |  | 
 |     uint32_t keyMask = Key::BLEND_MASK | Key::OPACITY_MASK | Key::ALPHA_MASK | Key::TEXTURE_MASK | 
 |         | Key::ROUNDED_CORNERS_MASK; | 
 |     // Prime the cache for all combinations of the above masks, | 
 |     // leaving off the experimental color matrix mask options. | 
 |  | 
 |     nsecs_t timeBefore = systemTime(); | 
 |     for (uint32_t keyVal = 0; keyVal <= keyMask; keyVal++) { | 
 |         Key shaderKey; | 
 |         shaderKey.set(keyMask, keyVal); | 
 |         uint32_t tex = shaderKey.getTextureTarget(); | 
 |         if (tex != Key::TEXTURE_OFF && tex != Key::TEXTURE_EXT && tex != Key::TEXTURE_2D) { | 
 |             continue; | 
 |         } | 
 |         if (cache.count(shaderKey) == 0) { | 
 |             cache.emplace(shaderKey, generateProgram(shaderKey)); | 
 |             shaderCount++; | 
 |         } | 
 |     } | 
 |  | 
 |     // Prime for sRGB->P3 conversion | 
 |     if (useColorManagement) { | 
 |         Key shaderKey; | 
 |         shaderKey.set(Key::BLEND_MASK | Key::OUTPUT_TRANSFORM_MATRIX_MASK | Key::INPUT_TF_MASK | | 
 |                               Key::OUTPUT_TF_MASK, | 
 |                       Key::BLEND_PREMULT | Key::OUTPUT_TRANSFORM_MATRIX_ON | Key::INPUT_TF_SRGB | | 
 |                               Key::OUTPUT_TF_SRGB); | 
 |         for (int i = 0; i < 16; i++) { | 
 |             shaderKey.set(Key::OPACITY_MASK, | 
 |                           (i & 1) ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT); | 
 |             shaderKey.set(Key::ALPHA_MASK, (i & 2) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE); | 
 |  | 
 |             // Cache rounded corners | 
 |             shaderKey.set(Key::ROUNDED_CORNERS_MASK, | 
 |                           (i & 4) ? Key::ROUNDED_CORNERS_ON : Key::ROUNDED_CORNERS_OFF); | 
 |  | 
 |             // Cache texture off option for window transition | 
 |             shaderKey.set(Key::TEXTURE_MASK, (i & 8) ? Key::TEXTURE_EXT : Key::TEXTURE_OFF); | 
 |             if (cache.count(shaderKey) == 0) { | 
 |                 cache.emplace(shaderKey, generateProgram(shaderKey)); | 
 |                 shaderCount++; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     nsecs_t timeAfter = systemTime(); | 
 |     float compileTimeMs = static_cast<float>(timeAfter - timeBefore) / 1.0E6; | 
 |     ALOGD("shader cache generated - %u shaders in %f ms\n", shaderCount, compileTimeMs); | 
 | } | 
 |  | 
 | ProgramCache::Key ProgramCache::computeKey(const Description& description) { | 
 |     Key needs; | 
 |     needs.set(Key::TEXTURE_MASK, | 
 |               !description.textureEnabled | 
 |                       ? Key::TEXTURE_OFF | 
 |                       : description.texture.getTextureTarget() == GL_TEXTURE_EXTERNAL_OES | 
 |                               ? Key::TEXTURE_EXT | 
 |                               : description.texture.getTextureTarget() == GL_TEXTURE_2D | 
 |                                       ? Key::TEXTURE_2D | 
 |                                       : Key::TEXTURE_OFF) | 
 |             .set(Key::ALPHA_MASK, (description.color.a < 1) ? Key::ALPHA_LT_ONE : Key::ALPHA_EQ_ONE) | 
 |             .set(Key::BLEND_MASK, | 
 |                  description.isPremultipliedAlpha ? Key::BLEND_PREMULT : Key::BLEND_NORMAL) | 
 |             .set(Key::OPACITY_MASK, | 
 |                  description.isOpaque ? Key::OPACITY_OPAQUE : Key::OPACITY_TRANSLUCENT) | 
 |             .set(Key::Key::INPUT_TRANSFORM_MATRIX_MASK, | 
 |                  description.hasInputTransformMatrix() ? Key::INPUT_TRANSFORM_MATRIX_ON | 
 |                                                        : Key::INPUT_TRANSFORM_MATRIX_OFF) | 
 |             .set(Key::Key::OUTPUT_TRANSFORM_MATRIX_MASK, | 
 |                  description.hasOutputTransformMatrix() || description.hasColorMatrix() | 
 |                          ? Key::OUTPUT_TRANSFORM_MATRIX_ON | 
 |                          : Key::OUTPUT_TRANSFORM_MATRIX_OFF) | 
 |             .set(Key::Key::DISPLAY_COLOR_TRANSFORM_MATRIX_MASK, | 
 |                  description.hasDisplayColorMatrix() ? Key::DISPLAY_COLOR_TRANSFORM_MATRIX_ON | 
 |                                                      : Key::DISPLAY_COLOR_TRANSFORM_MATRIX_OFF) | 
 |             .set(Key::ROUNDED_CORNERS_MASK, | 
 |                  description.cornerRadius > 0 ? Key::ROUNDED_CORNERS_ON : Key::ROUNDED_CORNERS_OFF) | 
 |             .set(Key::SHADOW_MASK, description.drawShadows ? Key::SHADOW_ON : Key::SHADOW_OFF); | 
 |     needs.set(Key::Y410_BT2020_MASK, | 
 |               description.isY410BT2020 ? Key::Y410_BT2020_ON : Key::Y410_BT2020_OFF); | 
 |  | 
 |     if (needs.hasTransformMatrix() || | 
 |         (description.inputTransferFunction != description.outputTransferFunction)) { | 
 |         switch (description.inputTransferFunction) { | 
 |             case Description::TransferFunction::LINEAR: | 
 |             default: | 
 |                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_LINEAR); | 
 |                 break; | 
 |             case Description::TransferFunction::SRGB: | 
 |                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_SRGB); | 
 |                 break; | 
 |             case Description::TransferFunction::ST2084: | 
 |                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_ST2084); | 
 |                 break; | 
 |             case Description::TransferFunction::HLG: | 
 |                 needs.set(Key::INPUT_TF_MASK, Key::INPUT_TF_HLG); | 
 |                 break; | 
 |         } | 
 |  | 
 |         switch (description.outputTransferFunction) { | 
 |             case Description::TransferFunction::LINEAR: | 
 |             default: | 
 |                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_LINEAR); | 
 |                 break; | 
 |             case Description::TransferFunction::SRGB: | 
 |                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_SRGB); | 
 |                 break; | 
 |             case Description::TransferFunction::ST2084: | 
 |                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_ST2084); | 
 |                 break; | 
 |             case Description::TransferFunction::HLG: | 
 |                 needs.set(Key::OUTPUT_TF_MASK, Key::OUTPUT_TF_HLG); | 
 |                 break; | 
 |         } | 
 |     } | 
 |  | 
 |     return needs; | 
 | } | 
 |  | 
 | // Generate EOTF that converts signal values to relative display light, | 
 | // both normalized to [0, 1]. | 
 | void ProgramCache::generateEOTF(Formatter& fs, const Key& needs) { | 
 |     switch (needs.getInputTF()) { | 
 |         case Key::INPUT_TF_SRGB: | 
 |             fs << R"__SHADER__( | 
 |                 float EOTF_sRGB(float srgb) { | 
 |                     return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4); | 
 |                 } | 
 |  | 
 |                 vec3 EOTF_sRGB(const vec3 srgb) { | 
 |                     return vec3(EOTF_sRGB(srgb.r), EOTF_sRGB(srgb.g), EOTF_sRGB(srgb.b)); | 
 |                 } | 
 |  | 
 |                 vec3 EOTF(const vec3 srgb) { | 
 |                     return sign(srgb.rgb) * EOTF_sRGB(abs(srgb.rgb)); | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         case Key::INPUT_TF_ST2084: | 
 |             fs << R"__SHADER__( | 
 |                 vec3 EOTF(const highp vec3 color) { | 
 |                     const highp float m1 = (2610.0 / 4096.0) / 4.0; | 
 |                     const highp float m2 = (2523.0 / 4096.0) * 128.0; | 
 |                     const highp float c1 = (3424.0 / 4096.0); | 
 |                     const highp float c2 = (2413.0 / 4096.0) * 32.0; | 
 |                     const highp float c3 = (2392.0 / 4096.0) * 32.0; | 
 |  | 
 |                     highp vec3 tmp = pow(clamp(color, 0.0, 1.0), 1.0 / vec3(m2)); | 
 |                     tmp = max(tmp - c1, 0.0) / (c2 - c3 * tmp); | 
 |                     return pow(tmp, 1.0 / vec3(m1)); | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         case Key::INPUT_TF_HLG: | 
 |             fs << R"__SHADER__( | 
 |                 highp float EOTF_channel(const highp float channel) { | 
 |                     const highp float a = 0.17883277; | 
 |                     const highp float b = 0.28466892; | 
 |                     const highp float c = 0.55991073; | 
 |                     return channel <= 0.5 ? channel * channel / 3.0 : | 
 |                             (exp((channel - c) / a) + b) / 12.0; | 
 |                 } | 
 |  | 
 |                 vec3 EOTF(const highp vec3 color) { | 
 |                     return vec3(EOTF_channel(color.r), EOTF_channel(color.g), | 
 |                             EOTF_channel(color.b)); | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         default: | 
 |             fs << R"__SHADER__( | 
 |                 vec3 EOTF(const vec3 linear) { | 
 |                     return linear; | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |     } | 
 | } | 
 |  | 
 | void ProgramCache::generateToneMappingProcess(Formatter& fs, const Key& needs) { | 
 |     // Convert relative light to absolute light. | 
 |     switch (needs.getInputTF()) { | 
 |         case Key::INPUT_TF_ST2084: | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 ScaleLuminance(highp vec3 color) { | 
 |                     return color * 10000.0; | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         case Key::INPUT_TF_HLG: | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 ScaleLuminance(highp vec3 color) { | 
 |                     // The formula is: | 
 |                     // alpha * pow(Y, gamma - 1.0) * color + beta; | 
 |                     // where alpha is 1000.0, gamma is 1.2, beta is 0.0. | 
 |                     return color * 1000.0 * pow(color.y, 0.2); | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         default: | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 ScaleLuminance(highp vec3 color) { | 
 |                     return color * displayMaxLuminance; | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |     } | 
 |  | 
 |     // Tone map absolute light to display luminance range. | 
 |     switch (needs.getInputTF()) { | 
 |         case Key::INPUT_TF_ST2084: | 
 |         case Key::INPUT_TF_HLG: | 
 |             switch (needs.getOutputTF()) { | 
 |                 case Key::OUTPUT_TF_HLG: | 
 |                     // Right now when mixed PQ and HLG contents are presented, | 
 |                     // HLG content will always be converted to PQ. However, for | 
 |                     // completeness, we simply clamp the value to [0.0, 1000.0]. | 
 |                     fs << R"__SHADER__( | 
 |                         highp vec3 ToneMap(highp vec3 color) { | 
 |                             return clamp(color, 0.0, 1000.0); | 
 |                         } | 
 |                     )__SHADER__"; | 
 |                     break; | 
 |                 case Key::OUTPUT_TF_ST2084: | 
 |                     fs << R"__SHADER__( | 
 |                         highp vec3 ToneMap(highp vec3 color) { | 
 |                             return color; | 
 |                         } | 
 |                     )__SHADER__"; | 
 |                     break; | 
 |                 default: | 
 |                     fs << R"__SHADER__( | 
 |                         highp vec3 ToneMap(highp vec3 color) { | 
 |                             float maxMasteringLumi = maxMasteringLuminance; | 
 |                             float maxContentLumi = maxContentLuminance; | 
 |                             float maxInLumi = min(maxMasteringLumi, maxContentLumi); | 
 |                             float maxOutLumi = displayMaxLuminance; | 
 |  | 
 |                             float nits = color.y; | 
 |  | 
 |                             // clamp to max input luminance | 
 |                             nits = clamp(nits, 0.0, maxInLumi); | 
 |  | 
 |                             // scale [0.0, maxInLumi] to [0.0, maxOutLumi] | 
 |                             if (maxInLumi <= maxOutLumi) { | 
 |                                 return color * (maxOutLumi / maxInLumi); | 
 |                             } else { | 
 |                                 // three control points | 
 |                                 const float x0 = 10.0; | 
 |                                 const float y0 = 17.0; | 
 |                                 float x1 = maxOutLumi * 0.75; | 
 |                                 float y1 = x1; | 
 |                                 float x2 = x1 + (maxInLumi - x1) / 2.0; | 
 |                                 float y2 = y1 + (maxOutLumi - y1) * 0.75; | 
 |  | 
 |                                 // horizontal distances between the last three control points | 
 |                                 float h12 = x2 - x1; | 
 |                                 float h23 = maxInLumi - x2; | 
 |                                 // tangents at the last three control points | 
 |                                 float m1 = (y2 - y1) / h12; | 
 |                                 float m3 = (maxOutLumi - y2) / h23; | 
 |                                 float m2 = (m1 + m3) / 2.0; | 
 |  | 
 |                                 if (nits < x0) { | 
 |                                     // scale [0.0, x0] to [0.0, y0] linearly | 
 |                                     float slope = y0 / x0; | 
 |                                     return color * slope; | 
 |                                 } else if (nits < x1) { | 
 |                                     // scale [x0, x1] to [y0, y1] linearly | 
 |                                     float slope = (y1 - y0) / (x1 - x0); | 
 |                                     nits = y0 + (nits - x0) * slope; | 
 |                                 } else if (nits < x2) { | 
 |                                     // scale [x1, x2] to [y1, y2] using Hermite interp | 
 |                                     float t = (nits - x1) / h12; | 
 |                                     nits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * (1.0 - t) * (1.0 - t) + | 
 |                                             (y2 * (3.0 - 2.0 * t) + h12 * m2 * (t - 1.0)) * t * t; | 
 |                                 } else { | 
 |                                     // scale [x2, maxInLumi] to [y2, maxOutLumi] using Hermite interp | 
 |                                     float t = (nits - x2) / h23; | 
 |                                     nits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * (1.0 - t) * (1.0 - t) + | 
 |                                             (maxOutLumi * (3.0 - 2.0 * t) + h23 * m3 * (t - 1.0)) * t * t; | 
 |                                 } | 
 |                             } | 
 |  | 
 |                             // color.y is greater than x0 and is thus non-zero | 
 |                             return color * (nits / color.y); | 
 |                         } | 
 |                     )__SHADER__"; | 
 |                     break; | 
 |             } | 
 |             break; | 
 |         default: | 
 |             // inverse tone map; the output luminance can be up to maxOutLumi. | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 ToneMap(highp vec3 color) { | 
 |                     const float maxOutLumi = 3000.0; | 
 |  | 
 |                     const float x0 = 5.0; | 
 |                     const float y0 = 2.5; | 
 |                     float x1 = displayMaxLuminance * 0.7; | 
 |                     float y1 = maxOutLumi * 0.15; | 
 |                     float x2 = displayMaxLuminance * 0.9; | 
 |                     float y2 = maxOutLumi * 0.45; | 
 |                     float x3 = displayMaxLuminance; | 
 |                     float y3 = maxOutLumi; | 
 |  | 
 |                     float c1 = y1 / 3.0; | 
 |                     float c2 = y2 / 2.0; | 
 |                     float c3 = y3 / 1.5; | 
 |  | 
 |                     float nits = color.y; | 
 |  | 
 |                     float scale; | 
 |                     if (nits <= x0) { | 
 |                         // scale [0.0, x0] to [0.0, y0] linearly | 
 |                         const float slope = y0 / x0; | 
 |                         return color * slope; | 
 |                     } else if (nits <= x1) { | 
 |                         // scale [x0, x1] to [y0, y1] using a curve | 
 |                         float t = (nits - x0) / (x1 - x0); | 
 |                         nits = (1.0 - t) * (1.0 - t) * y0 + 2.0 * (1.0 - t) * t * c1 + t * t * y1; | 
 |                     } else if (nits <= x2) { | 
 |                         // scale [x1, x2] to [y1, y2] using a curve | 
 |                         float t = (nits - x1) / (x2 - x1); | 
 |                         nits = (1.0 - t) * (1.0 - t) * y1 + 2.0 * (1.0 - t) * t * c2 + t * t * y2; | 
 |                     } else { | 
 |                         // scale [x2, x3] to [y2, y3] using a curve | 
 |                         float t = (nits - x2) / (x3 - x2); | 
 |                         nits = (1.0 - t) * (1.0 - t) * y2 + 2.0 * (1.0 - t) * t * c3 + t * t * y3; | 
 |                     } | 
 |  | 
 |                     // color.y is greater than x0 and is thus non-zero | 
 |                     return color * (nits / color.y); | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |     } | 
 |  | 
 |     // convert absolute light to relative light. | 
 |     switch (needs.getOutputTF()) { | 
 |         case Key::OUTPUT_TF_ST2084: | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 NormalizeLuminance(highp vec3 color) { | 
 |                     return color / 10000.0; | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         case Key::OUTPUT_TF_HLG: | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 NormalizeLuminance(highp vec3 color) { | 
 |                     return color / 1000.0 * pow(color.y / 1000.0, -0.2 / 1.2); | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         default: | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 NormalizeLuminance(highp vec3 color) { | 
 |                     return color / displayMaxLuminance; | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |     } | 
 | } | 
 |  | 
 | // Generate OOTF that modifies the relative scence light to relative display light. | 
 | void ProgramCache::generateOOTF(Formatter& fs, const ProgramCache::Key& needs) { | 
 |     if (!needs.needsToneMapping()) { | 
 |         fs << R"__SHADER__( | 
 |             highp vec3 OOTF(const highp vec3 color) { | 
 |                 return color; | 
 |             } | 
 |         )__SHADER__"; | 
 |     } else { | 
 |         generateToneMappingProcess(fs, needs); | 
 |         fs << R"__SHADER__( | 
 |             highp vec3 OOTF(const highp vec3 color) { | 
 |                 return NormalizeLuminance(ToneMap(ScaleLuminance(color))); | 
 |             } | 
 |         )__SHADER__"; | 
 |     } | 
 | } | 
 |  | 
 | // Generate OETF that converts relative display light to signal values, | 
 | // both normalized to [0, 1] | 
 | void ProgramCache::generateOETF(Formatter& fs, const Key& needs) { | 
 |     switch (needs.getOutputTF()) { | 
 |         case Key::OUTPUT_TF_SRGB: | 
 |             fs << R"__SHADER__( | 
 |                 float OETF_sRGB(const float linear) { | 
 |                     return linear <= 0.0031308 ? | 
 |                             linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055; | 
 |                 } | 
 |  | 
 |                 vec3 OETF_sRGB(const vec3 linear) { | 
 |                     return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b)); | 
 |                 } | 
 |  | 
 |                 vec3 OETF(const vec3 linear) { | 
 |                     return sign(linear.rgb) * OETF_sRGB(abs(linear.rgb)); | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         case Key::OUTPUT_TF_ST2084: | 
 |             fs << R"__SHADER__( | 
 |                 vec3 OETF(const vec3 linear) { | 
 |                     const highp float m1 = (2610.0 / 4096.0) / 4.0; | 
 |                     const highp float m2 = (2523.0 / 4096.0) * 128.0; | 
 |                     const highp float c1 = (3424.0 / 4096.0); | 
 |                     const highp float c2 = (2413.0 / 4096.0) * 32.0; | 
 |                     const highp float c3 = (2392.0 / 4096.0) * 32.0; | 
 |  | 
 |                     highp vec3 tmp = pow(linear, vec3(m1)); | 
 |                     tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp); | 
 |                     return pow(tmp, vec3(m2)); | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         case Key::OUTPUT_TF_HLG: | 
 |             fs << R"__SHADER__( | 
 |                 highp float OETF_channel(const highp float channel) { | 
 |                     const highp float a = 0.17883277; | 
 |                     const highp float b = 0.28466892; | 
 |                     const highp float c = 0.55991073; | 
 |                     return channel <= 1.0 / 12.0 ? sqrt(3.0 * channel) : | 
 |                             a * log(12.0 * channel - b) + c; | 
 |                 } | 
 |  | 
 |                 vec3 OETF(const highp vec3 color) { | 
 |                     return vec3(OETF_channel(color.r), OETF_channel(color.g), | 
 |                             OETF_channel(color.b)); | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |         default: | 
 |             fs << R"__SHADER__( | 
 |                 vec3 OETF(const vec3 linear) { | 
 |                     return linear; | 
 |                 } | 
 |             )__SHADER__"; | 
 |             break; | 
 |     } | 
 | } | 
 |  | 
 | String8 ProgramCache::generateVertexShader(const Key& needs) { | 
 |     Formatter vs; | 
 |     if (needs.hasTextureCoords()) { | 
 |         vs << "attribute vec4 texCoords;" | 
 |            << "varying vec2 outTexCoords;"; | 
 |     } | 
 |     if (needs.hasRoundedCorners()) { | 
 |         vs << "attribute lowp vec4 cropCoords;"; | 
 |         vs << "varying lowp vec2 outCropCoords;"; | 
 |     } | 
 |     if (needs.drawShadows()) { | 
 |         vs << "attribute lowp vec4 shadowColor;"; | 
 |         vs << "varying lowp vec4 outShadowColor;"; | 
 |         vs << "attribute lowp vec4 shadowParams;"; | 
 |         vs << "varying lowp vec3 outShadowParams;"; | 
 |     } | 
 |     vs << "attribute vec4 position;" | 
 |        << "uniform mat4 projection;" | 
 |        << "uniform mat4 texture;" | 
 |        << "void main(void) {" << indent << "gl_Position = projection * position;"; | 
 |     if (needs.hasTextureCoords()) { | 
 |         vs << "outTexCoords = (texture * texCoords).st;"; | 
 |     } | 
 |     if (needs.hasRoundedCorners()) { | 
 |         vs << "outCropCoords = cropCoords.st;"; | 
 |     } | 
 |     if (needs.drawShadows()) { | 
 |         vs << "outShadowColor = shadowColor;"; | 
 |         vs << "outShadowParams = shadowParams.xyz;"; | 
 |     } | 
 |     vs << dedent << "}"; | 
 |     return vs.getString(); | 
 | } | 
 |  | 
 | String8 ProgramCache::generateFragmentShader(const Key& needs) { | 
 |     Formatter fs; | 
 |     if (needs.getTextureTarget() == Key::TEXTURE_EXT) { | 
 |         fs << "#extension GL_OES_EGL_image_external : require"; | 
 |     } | 
 |  | 
 |     // default precision is required-ish in fragment shaders | 
 |     fs << "precision mediump float;"; | 
 |  | 
 |     if (needs.getTextureTarget() == Key::TEXTURE_EXT) { | 
 |         fs << "uniform samplerExternalOES sampler;"; | 
 |     } else if (needs.getTextureTarget() == Key::TEXTURE_2D) { | 
 |         fs << "uniform sampler2D sampler;"; | 
 |     } | 
 |  | 
 |     if (needs.hasTextureCoords()) { | 
 |         fs << "varying vec2 outTexCoords;"; | 
 |     } | 
 |  | 
 |     if (needs.hasRoundedCorners()) { | 
 |         // Rounded corners implementation using a signed distance function. | 
 |         fs << R"__SHADER__( | 
 |             uniform float cornerRadius; | 
 |             uniform vec2 cropCenter; | 
 |             varying vec2 outCropCoords; | 
 |  | 
 |             /** | 
 |              * This function takes the current crop coordinates and calculates an alpha value based | 
 |              * on the corner radius and distance from the crop center. | 
 |              */ | 
 |             float applyCornerRadius(vec2 cropCoords) | 
 |             { | 
 |                 vec2 position = cropCoords - cropCenter; | 
 |                 // Scale down the dist vector here, as otherwise large corner | 
 |                 // radii can cause floating point issues when computing the norm | 
 |                 vec2 dist = (abs(position) - cropCenter + vec2(cornerRadius)) / 16.0; | 
 |                 // Once we've found the norm, then scale back up. | 
 |                 float plane = length(max(dist, vec2(0.0))) * 16.0; | 
 |                 return 1.0 - clamp(plane - cornerRadius, 0.0, 1.0); | 
 |             } | 
 |             )__SHADER__"; | 
 |     } | 
 |  | 
 |     if (needs.drawShadows()) { | 
 |         fs << R"__SHADER__( | 
 |             varying lowp vec4 outShadowColor; | 
 |             varying lowp vec3 outShadowParams; | 
 |  | 
 |             /** | 
 |              * Returns the shadow color. | 
 |              */ | 
 |             vec4 getShadowColor() | 
 |             { | 
 |                 lowp float d = length(outShadowParams.xy); | 
 |                 vec2 uv = vec2(outShadowParams.z * (1.0 - d), 0.5); | 
 |                 lowp float factor = texture2D(sampler, uv).a; | 
 |                 return outShadowColor * factor; | 
 |             } | 
 |             )__SHADER__"; | 
 |     } | 
 |  | 
 |     if (needs.getTextureTarget() == Key::TEXTURE_OFF || needs.hasAlpha()) { | 
 |         fs << "uniform vec4 color;"; | 
 |     } | 
 |  | 
 |     if (needs.isY410BT2020()) { | 
 |         fs << R"__SHADER__( | 
 |             vec3 convertY410BT2020(const vec3 color) { | 
 |                 const vec3 offset = vec3(0.0625, 0.5, 0.5); | 
 |                 const mat3 transform = mat3( | 
 |                     vec3(1.1678,  1.1678, 1.1678), | 
 |                     vec3(   0.0, -0.1878, 2.1481), | 
 |                     vec3(1.6836, -0.6523,   0.0)); | 
 |                 // Y is in G, U is in R, and V is in B | 
 |                 return clamp(transform * (color.grb - offset), 0.0, 1.0); | 
 |             } | 
 |             )__SHADER__"; | 
 |     } | 
 |  | 
 |     if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF()) || | 
 |         needs.hasDisplayColorMatrix()) { | 
 |         if (needs.needsToneMapping()) { | 
 |             fs << "uniform float displayMaxLuminance;"; | 
 |             fs << "uniform float maxMasteringLuminance;"; | 
 |             fs << "uniform float maxContentLuminance;"; | 
 |         } | 
 |  | 
 |         if (needs.hasInputTransformMatrix()) { | 
 |             fs << "uniform mat4 inputTransformMatrix;"; | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 InputTransform(const highp vec3 color) { | 
 |                     return clamp(vec3(inputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0); | 
 |                 } | 
 |             )__SHADER__"; | 
 |         } else { | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 InputTransform(const highp vec3 color) { | 
 |                     return color; | 
 |                 } | 
 |             )__SHADER__"; | 
 |         } | 
 |  | 
 |         // the transformation from a wider colorspace to a narrower one can | 
 |         // result in >1.0 or <0.0 pixel values | 
 |         if (needs.hasOutputTransformMatrix()) { | 
 |             fs << "uniform mat4 outputTransformMatrix;"; | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 OutputTransform(const highp vec3 color) { | 
 |                     return clamp(vec3(outputTransformMatrix * vec4(color, 1.0)), 0.0, 1.0); | 
 |                 } | 
 |             )__SHADER__"; | 
 |         } else { | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 OutputTransform(const highp vec3 color) { | 
 |                     return clamp(color, 0.0, 1.0); | 
 |                 } | 
 |             )__SHADER__"; | 
 |         } | 
 |  | 
 |         if (needs.hasDisplayColorMatrix()) { | 
 |             fs << "uniform mat4 displayColorMatrix;"; | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 DisplayColorMatrix(const highp vec3 color) { | 
 |                     return clamp(vec3(displayColorMatrix * vec4(color, 1.0)), 0.0, 1.0); | 
 |                 } | 
 |             )__SHADER__"; | 
 |         } else { | 
 |             fs << R"__SHADER__( | 
 |                 highp vec3 DisplayColorMatrix(const highp vec3 color) { | 
 |                     return color; | 
 |                 } | 
 |             )__SHADER__"; | 
 |         } | 
 |  | 
 |         generateEOTF(fs, needs); | 
 |         generateOOTF(fs, needs); | 
 |         generateOETF(fs, needs); | 
 |     } | 
 |  | 
 |     fs << "void main(void) {" << indent; | 
 |     if (needs.drawShadows()) { | 
 |         fs << "gl_FragColor = getShadowColor();"; | 
 |     } else { | 
 |         if (needs.isTexturing()) { | 
 |             fs << "gl_FragColor = texture2D(sampler, outTexCoords);"; | 
 |             if (needs.isY410BT2020()) { | 
 |                 fs << "gl_FragColor.rgb = convertY410BT2020(gl_FragColor.rgb);"; | 
 |             } | 
 |         } else { | 
 |             fs << "gl_FragColor.rgb = color.rgb;"; | 
 |             fs << "gl_FragColor.a = 1.0;"; | 
 |         } | 
 |         if (needs.isOpaque()) { | 
 |             fs << "gl_FragColor.a = 1.0;"; | 
 |         } | 
 |     } | 
 |  | 
 |     if (needs.hasTransformMatrix() || (needs.getInputTF() != needs.getOutputTF()) || | 
 |         needs.hasDisplayColorMatrix()) { | 
 |         if (!needs.isOpaque() && needs.isPremultiplied()) { | 
 |             // un-premultiply if needed before linearization | 
 |             // avoid divide by 0 by adding 0.5/256 to the alpha channel | 
 |             fs << "gl_FragColor.rgb = gl_FragColor.rgb / (gl_FragColor.a + 0.0019);"; | 
 |         } | 
 |         fs << "gl_FragColor.rgb = " | 
 |               "DisplayColorMatrix(OETF(OutputTransform(OOTF(InputTransform(EOTF(gl_FragColor.rgb)))" | 
 |               ")));"; | 
 |  | 
 |         if (!needs.isOpaque() && needs.isPremultiplied()) { | 
 |             // and re-premultiply if needed after gamma correction | 
 |             fs << "gl_FragColor.rgb = gl_FragColor.rgb * (gl_FragColor.a + 0.0019);"; | 
 |         } | 
 |     } | 
 |  | 
 |     /* | 
 |      * Whether applying layer alpha before or after color transform doesn't matter, | 
 |      * as long as we can undo premultiplication. But we cannot un-premultiply | 
 |      * for color transform if the layer alpha = 0, e.g. 0 / (0 + 0.0019) = 0. | 
 |      */ | 
 |     if (!needs.drawShadows()) { | 
 |         if (needs.hasAlpha()) { | 
 |             // modulate the current alpha value with alpha set | 
 |             if (needs.isPremultiplied()) { | 
 |                 // ... and the color too if we're premultiplied | 
 |                 fs << "gl_FragColor *= color.a;"; | 
 |             } else { | 
 |                 fs << "gl_FragColor.a *= color.a;"; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (needs.hasRoundedCorners()) { | 
 |         if (needs.isPremultiplied()) { | 
 |             fs << "gl_FragColor *= vec4(applyCornerRadius(outCropCoords));"; | 
 |         } else { | 
 |             fs << "gl_FragColor.a *= applyCornerRadius(outCropCoords);"; | 
 |         } | 
 |     } | 
 |  | 
 |     fs << dedent << "}"; | 
 |     return fs.getString(); | 
 | } | 
 |  | 
 | std::unique_ptr<Program> ProgramCache::generateProgram(const Key& needs) { | 
 |     ATRACE_CALL(); | 
 |  | 
 |     // vertex shader | 
 |     String8 vs = generateVertexShader(needs); | 
 |  | 
 |     // fragment shader | 
 |     String8 fs = generateFragmentShader(needs); | 
 |  | 
 |     return std::make_unique<Program>(needs, vs.string(), fs.string()); | 
 | } | 
 |  | 
 | void ProgramCache::useProgram(EGLContext context, const Description& description) { | 
 |     // generate the key for the shader based on the description | 
 |     Key needs(computeKey(description)); | 
 |  | 
 |     // look-up the program in the cache | 
 |     auto& cache = mCaches[context]; | 
 |     auto it = cache.find(needs); | 
 |     if (it == cache.end()) { | 
 |         // we didn't find our program, so generate one... | 
 |         nsecs_t time = systemTime(); | 
 |         it = cache.emplace(needs, generateProgram(needs)).first; | 
 |         time = systemTime() - time; | 
 |  | 
 |         ALOGV(">>> generated new program for context %p: needs=%08X, time=%u ms (%zu programs)", | 
 |               context, needs.mKey, uint32_t(ns2ms(time)), cache.size()); | 
 |     } | 
 |  | 
 |     // here we have a suitable program for this description | 
 |     std::unique_ptr<Program>& program = it->second; | 
 |     if (program->isValid()) { | 
 |         program->use(); | 
 |         program->setUniforms(description); | 
 |     } | 
 | } | 
 |  | 
 | } // namespace gl | 
 | } // namespace renderengine | 
 | } // namespace android |