blob: 40af6ee575455ce1cb66571bb3c211d1384521c4 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wextra"
#include <chrono>
#include <cmath>
#include <deque>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <ftl/enum.h>
#include <ftl/fake_guard.h>
#include <ftl/match.h>
#include <utils/Trace.h>
#include "../SurfaceFlingerProperties.h"
#include "RefreshRateSelector.h"
#undef LOG_TAG
#define LOG_TAG "RefreshRateSelector"
namespace android::scheduler {
namespace {
struct RefreshRateScore {
DisplayModeIterator modeIt;
float overallScore;
struct {
float modeBelowThreshold;
float modeAboveThreshold;
} fixedRateBelowThresholdLayersScore;
};
constexpr RefreshRateSelector::GlobalSignals kNoSignals;
std::string formatLayerInfo(const RefreshRateSelector::LayerRequirement& layer, float weight) {
return base::StringPrintf("%s (type=%s, weight=%.2f, seamlessness=%s) %s", layer.name.c_str(),
ftl::enum_string(layer.vote).c_str(), weight,
ftl::enum_string(layer.seamlessness).c_str(),
to_string(layer.desiredRefreshRate).c_str());
}
std::vector<Fps> constructKnownFrameRates(const DisplayModes& modes) {
std::vector<Fps> knownFrameRates = {24_Hz, 30_Hz, 45_Hz, 60_Hz, 72_Hz};
knownFrameRates.reserve(knownFrameRates.size() + modes.size());
// Add all supported refresh rates.
for (const auto& [id, mode] : modes) {
knownFrameRates.push_back(mode->getFps());
}
// Sort and remove duplicates.
std::sort(knownFrameRates.begin(), knownFrameRates.end(), isStrictlyLess);
knownFrameRates.erase(std::unique(knownFrameRates.begin(), knownFrameRates.end(),
isApproxEqual),
knownFrameRates.end());
return knownFrameRates;
}
// The Filter is a `bool(const DisplayMode&)` predicate.
template <typename Filter>
std::vector<DisplayModeIterator> sortByRefreshRate(const DisplayModes& modes, Filter&& filter) {
std::vector<DisplayModeIterator> sortedModes;
sortedModes.reserve(modes.size());
for (auto it = modes.begin(); it != modes.end(); ++it) {
const auto& [id, mode] = *it;
if (filter(*mode)) {
ALOGV("%s: including mode %d", __func__, id.value());
sortedModes.push_back(it);
}
}
std::sort(sortedModes.begin(), sortedModes.end(), [](auto it1, auto it2) {
const auto& mode1 = it1->second;
const auto& mode2 = it2->second;
if (mode1->getVsyncPeriod() == mode2->getVsyncPeriod()) {
return mode1->getGroup() > mode2->getGroup();
}
return mode1->getVsyncPeriod() > mode2->getVsyncPeriod();
});
return sortedModes;
}
bool canModesSupportFrameRateOverride(const std::vector<DisplayModeIterator>& sortedModes) {
for (const auto it1 : sortedModes) {
const auto& mode1 = it1->second;
for (const auto it2 : sortedModes) {
const auto& mode2 = it2->second;
if (RefreshRateSelector::getFrameRateDivisor(mode1->getFps(), mode2->getFps()) >= 2) {
return true;
}
}
}
return false;
}
std::string toString(const RefreshRateSelector::PolicyVariant& policy) {
using namespace std::string_literals;
return ftl::match(
policy,
[](const RefreshRateSelector::DisplayManagerPolicy& policy) {
return "DisplayManagerPolicy"s + policy.toString();
},
[](const RefreshRateSelector::OverridePolicy& policy) {
return "OverridePolicy"s + policy.toString();
},
[](RefreshRateSelector::NoOverridePolicy) { return "NoOverridePolicy"s; });
}
} // namespace
struct RefreshRateSelector::RefreshRateScoreComparator {
bool operator()(const RefreshRateScore& lhs, const RefreshRateScore& rhs) const {
const auto& [modeIt, overallScore, _] = lhs;
std::string name = to_string(modeIt->second->getFps());
ALOGV("%s sorting scores %.2f", name.c_str(), overallScore);
ATRACE_INT(name.c_str(), static_cast<int>(std::round(overallScore * 100)));
if (!ScoredRefreshRate::scoresEqual(overallScore, rhs.overallScore)) {
return overallScore > rhs.overallScore;
}
// If overallScore tie we will pick the higher refresh rate if
// high refresh rate is the priority else the lower refresh rate.
if (refreshRateOrder == RefreshRateOrder::Descending) {
using fps_approx_ops::operator>;
return modeIt->second->getFps() > rhs.modeIt->second->getFps();
} else {
using fps_approx_ops::operator<;
return modeIt->second->getFps() < rhs.modeIt->second->getFps();
}
}
const RefreshRateOrder refreshRateOrder;
};
std::string RefreshRateSelector::Policy::toString() const {
return base::StringPrintf("{defaultModeId=%d, allowGroupSwitching=%s"
", primaryRange=%s, appRequestRange=%s}",
defaultMode.value(), allowGroupSwitching ? "true" : "false",
to_string(primaryRange).c_str(), to_string(appRequestRange).c_str());
}
std::pair<nsecs_t, nsecs_t> RefreshRateSelector::getDisplayFrames(nsecs_t layerPeriod,
nsecs_t displayPeriod) const {
auto [quotient, remainder] = std::div(layerPeriod, displayPeriod);
if (remainder <= MARGIN_FOR_PERIOD_CALCULATION ||
std::abs(remainder - displayPeriod) <= MARGIN_FOR_PERIOD_CALCULATION) {
quotient++;
remainder = 0;
}
return {quotient, remainder};
}
float RefreshRateSelector::calculateNonExactMatchingLayerScoreLocked(const LayerRequirement& layer,
Fps refreshRate) const {
constexpr float kScoreForFractionalPairs = .8f;
const auto displayPeriod = refreshRate.getPeriodNsecs();
const auto layerPeriod = layer.desiredRefreshRate.getPeriodNsecs();
if (layer.vote == LayerVoteType::ExplicitDefault) {
// Find the actual rate the layer will render, assuming
// that layerPeriod is the minimal period to render a frame.
// For example if layerPeriod is 20ms and displayPeriod is 16ms,
// then the actualLayerPeriod will be 32ms, because it is the
// smallest multiple of the display period which is >= layerPeriod.
auto actualLayerPeriod = displayPeriod;
int multiplier = 1;
while (layerPeriod > actualLayerPeriod + MARGIN_FOR_PERIOD_CALCULATION) {
multiplier++;
actualLayerPeriod = displayPeriod * multiplier;
}
// Because of the threshold we used above it's possible that score is slightly
// above 1.
return std::min(1.0f,
static_cast<float>(layerPeriod) / static_cast<float>(actualLayerPeriod));
}
if (layer.vote == LayerVoteType::ExplicitExactOrMultiple ||
layer.vote == LayerVoteType::Heuristic) {
if (isFractionalPairOrMultiple(refreshRate, layer.desiredRefreshRate)) {
return kScoreForFractionalPairs;
}
// Calculate how many display vsyncs we need to present a single frame for this
// layer
const auto [displayFramesQuotient, displayFramesRemainder] =
getDisplayFrames(layerPeriod, displayPeriod);
static constexpr size_t MAX_FRAMES_TO_FIT = 10; // Stop calculating when score < 0.1
if (displayFramesRemainder == 0) {
// Layer desired refresh rate matches the display rate.
return 1.0f;
}
if (displayFramesQuotient == 0) {
// Layer desired refresh rate is higher than the display rate.
return (static_cast<float>(layerPeriod) / static_cast<float>(displayPeriod)) *
(1.0f / (MAX_FRAMES_TO_FIT + 1));
}
// Layer desired refresh rate is lower than the display rate. Check how well it fits
// the cadence.
auto diff = std::abs(displayFramesRemainder - (displayPeriod - displayFramesRemainder));
int iter = 2;
while (diff > MARGIN_FOR_PERIOD_CALCULATION && iter < MAX_FRAMES_TO_FIT) {
diff = diff - (displayPeriod - diff);
iter++;
}
return (1.0f / iter);
}
return 0;
}
float RefreshRateSelector::calculateRefreshRateScoreForFps(Fps refreshRate) const {
const float ratio =
refreshRate.getValue() / mAppRequestRefreshRates.back()->second->getFps().getValue();
// Use ratio^2 to get a lower score the more we get further from peak
return ratio * ratio;
}
float RefreshRateSelector::calculateLayerScoreLocked(const LayerRequirement& layer, Fps refreshRate,
bool isSeamlessSwitch) const {
// Slightly prefer seamless switches.
constexpr float kSeamedSwitchPenalty = 0.95f;
const float seamlessness = isSeamlessSwitch ? 1.0f : kSeamedSwitchPenalty;
// If the layer wants Max, give higher score to the higher refresh rate
if (layer.vote == LayerVoteType::Max) {
return calculateRefreshRateScoreForFps(refreshRate);
}
if (layer.vote == LayerVoteType::ExplicitExact) {
const int divisor = getFrameRateDivisor(refreshRate, layer.desiredRefreshRate);
if (mSupportsFrameRateOverrideByContent) {
// Since we support frame rate override, allow refresh rates which are
// multiples of the layer's request, as those apps would be throttled
// down to run at the desired refresh rate.
return divisor > 0;
}
return divisor == 1;
}
// If the layer frame rate is a divisor of the refresh rate it should score
// the highest score.
if (getFrameRateDivisor(refreshRate, layer.desiredRefreshRate) > 0) {
return 1.0f * seamlessness;
}
// The layer frame rate is not a divisor of the refresh rate,
// there is a small penalty attached to the score to favor the frame rates
// the exactly matches the display refresh rate or a multiple.
constexpr float kNonExactMatchingPenalty = 0.95f;
return calculateNonExactMatchingLayerScoreLocked(layer, refreshRate) * seamlessness *
kNonExactMatchingPenalty;
}
auto RefreshRateSelector::getRankedRefreshRates(const std::vector<LayerRequirement>& layers,
GlobalSignals signals) const -> RankedRefreshRates {
std::lock_guard lock(mLock);
if (mGetRankedRefreshRatesCache &&
mGetRankedRefreshRatesCache->arguments == std::make_pair(layers, signals)) {
return mGetRankedRefreshRatesCache->result;
}
const auto result = getRankedRefreshRatesLocked(layers, signals);
mGetRankedRefreshRatesCache = GetRankedRefreshRatesCache{{layers, signals}, result};
return result;
}
auto RefreshRateSelector::getRankedRefreshRatesLocked(const std::vector<LayerRequirement>& layers,
GlobalSignals signals) const
-> RankedRefreshRates {
using namespace fps_approx_ops;
ATRACE_CALL();
ALOGV("%s: %zu layers", __func__, layers.size());
const auto& activeMode = *getActiveModeItLocked()->second;
// Keep the display at max refresh rate for the duration of powering on the display.
if (signals.powerOnImminent) {
ALOGV("Power On Imminent");
return {rankRefreshRates(activeMode.getGroup(), RefreshRateOrder::Descending),
GlobalSignals{.powerOnImminent = true}};
}
int noVoteLayers = 0;
int minVoteLayers = 0;
int maxVoteLayers = 0;
int explicitDefaultVoteLayers = 0;
int explicitExactOrMultipleVoteLayers = 0;
int explicitExact = 0;
int seamedFocusedLayers = 0;
for (const auto& layer : layers) {
switch (layer.vote) {
case LayerVoteType::NoVote:
noVoteLayers++;
break;
case LayerVoteType::Min:
minVoteLayers++;
break;
case LayerVoteType::Max:
maxVoteLayers++;
break;
case LayerVoteType::ExplicitDefault:
explicitDefaultVoteLayers++;
break;
case LayerVoteType::ExplicitExactOrMultiple:
explicitExactOrMultipleVoteLayers++;
break;
case LayerVoteType::ExplicitExact:
explicitExact++;
break;
case LayerVoteType::Heuristic:
break;
}
if (layer.seamlessness == Seamlessness::SeamedAndSeamless && layer.focused) {
seamedFocusedLayers++;
}
}
const bool hasExplicitVoteLayers = explicitDefaultVoteLayers > 0 ||
explicitExactOrMultipleVoteLayers > 0 || explicitExact > 0;
const Policy* policy = getCurrentPolicyLocked();
const auto& defaultMode = mDisplayModes.get(policy->defaultMode)->get();
// If the default mode group is different from the group of current mode,
// this means a layer requesting a seamed mode switch just disappeared and
// we should switch back to the default group.
// However if a seamed layer is still present we anchor around the group
// of the current mode, in order to prevent unnecessary seamed mode switches
// (e.g. when pausing a video playback).
const auto anchorGroup =
seamedFocusedLayers > 0 ? activeMode.getGroup() : defaultMode->getGroup();
// Consider the touch event if there are no Explicit* layers. Otherwise wait until after we've
// selected a refresh rate to see if we should apply touch boost.
if (signals.touch && !hasExplicitVoteLayers) {
ALOGV("Touch Boost");
return {rankRefreshRates(anchorGroup, RefreshRateOrder::Descending),
GlobalSignals{.touch = true}};
}
// If the primary range consists of a single refresh rate then we can only
// move out the of range if layers explicitly request a different refresh
// rate.
const bool primaryRangeIsSingleRate =
isApproxEqual(policy->primaryRange.min, policy->primaryRange.max);
if (!signals.touch && signals.idle && !(primaryRangeIsSingleRate && hasExplicitVoteLayers)) {
ALOGV("Idle");
return {rankRefreshRates(activeMode.getGroup(), RefreshRateOrder::Ascending),
GlobalSignals{.idle = true}};
}
if (layers.empty() || noVoteLayers == layers.size()) {
ALOGV("No layers with votes");
return {rankRefreshRates(anchorGroup, RefreshRateOrder::Descending), kNoSignals};
}
// Only if all layers want Min we should return Min
if (noVoteLayers + minVoteLayers == layers.size()) {
ALOGV("All layers Min");
return {rankRefreshRates(activeMode.getGroup(), RefreshRateOrder::Ascending), kNoSignals};
}
// Find the best refresh rate based on score
std::vector<RefreshRateScore> scores;
scores.reserve(mAppRequestRefreshRates.size());
for (const DisplayModeIterator modeIt : mAppRequestRefreshRates) {
scores.emplace_back(RefreshRateScore{modeIt, 0.0f});
}
for (const auto& layer : layers) {
ALOGV("Calculating score for %s (%s, weight %.2f, desired %.2f) ", layer.name.c_str(),
ftl::enum_string(layer.vote).c_str(), layer.weight,
layer.desiredRefreshRate.getValue());
if (layer.vote == LayerVoteType::NoVote || layer.vote == LayerVoteType::Min) {
continue;
}
const auto weight = layer.weight;
for (auto& [modeIt, overallScore, fixedRateBelowThresholdLayersScore] : scores) {
const auto& [id, mode] = *modeIt;
const bool isSeamlessSwitch = mode->getGroup() == activeMode.getGroup();
if (layer.seamlessness == Seamlessness::OnlySeamless && !isSeamlessSwitch) {
ALOGV("%s ignores %s to avoid non-seamless switch. Current mode = %s",
formatLayerInfo(layer, weight).c_str(), to_string(*mode).c_str(),
to_string(activeMode).c_str());
continue;
}
if (layer.seamlessness == Seamlessness::SeamedAndSeamless && !isSeamlessSwitch &&
!layer.focused) {
ALOGV("%s ignores %s because it's not focused and the switch is going to be seamed."
" Current mode = %s",
formatLayerInfo(layer, weight).c_str(), to_string(*mode).c_str(),
to_string(activeMode).c_str());
continue;
}
// Layers with default seamlessness vote for the current mode group if
// there are layers with seamlessness=SeamedAndSeamless and for the default
// mode group otherwise. In second case, if the current mode group is different
// from the default, this means a layer with seamlessness=SeamedAndSeamless has just
// disappeared.
const bool isInPolicyForDefault = mode->getGroup() == anchorGroup;
if (layer.seamlessness == Seamlessness::Default && !isInPolicyForDefault) {
ALOGV("%s ignores %s. Current mode = %s", formatLayerInfo(layer, weight).c_str(),
to_string(*mode).c_str(), to_string(activeMode).c_str());
continue;
}
const bool inPrimaryRange = policy->primaryRange.includes(mode->getFps());
if ((primaryRangeIsSingleRate || !inPrimaryRange) &&
!(layer.focused &&
(layer.vote == LayerVoteType::ExplicitDefault ||
layer.vote == LayerVoteType::ExplicitExact))) {
// Only focused layers with ExplicitDefault frame rate settings are allowed to score
// refresh rates outside the primary range.
continue;
}
const float layerScore =
calculateLayerScoreLocked(layer, mode->getFps(), isSeamlessSwitch);
const float weightedLayerScore = weight * layerScore;
// Layer with fixed source has a special consideration which depends on the
// mConfig.frameRateMultipleThreshold. We don't want these layers to score
// refresh rates above the threshold, but we also don't want to favor the lower
// ones by having a greater number of layers scoring them. Instead, we calculate
// the score independently for these layers and later decide which
// refresh rates to add it. For example, desired 24 fps with 120 Hz threshold should not
// score 120 Hz, but desired 60 fps should contribute to the score.
const bool fixedSourceLayer = [](LayerVoteType vote) {
switch (vote) {
case LayerVoteType::ExplicitExactOrMultiple:
case LayerVoteType::Heuristic:
return true;
case LayerVoteType::NoVote:
case LayerVoteType::Min:
case LayerVoteType::Max:
case LayerVoteType::ExplicitDefault:
case LayerVoteType::ExplicitExact:
return false;
}
}(layer.vote);
const bool layerBelowThreshold = mConfig.frameRateMultipleThreshold != 0 &&
layer.desiredRefreshRate <
Fps::fromValue(mConfig.frameRateMultipleThreshold / 2);
if (fixedSourceLayer && layerBelowThreshold) {
const bool modeAboveThreshold =
mode->getFps() >= Fps::fromValue(mConfig.frameRateMultipleThreshold);
if (modeAboveThreshold) {
ALOGV("%s gives %s fixed source (above threshold) score of %.4f",
formatLayerInfo(layer, weight).c_str(), to_string(mode->getFps()).c_str(),
layerScore);
fixedRateBelowThresholdLayersScore.modeAboveThreshold += weightedLayerScore;
} else {
ALOGV("%s gives %s fixed source (below threshold) score of %.4f",
formatLayerInfo(layer, weight).c_str(), to_string(mode->getFps()).c_str(),
layerScore);
fixedRateBelowThresholdLayersScore.modeBelowThreshold += weightedLayerScore;
}
} else {
ALOGV("%s gives %s score of %.4f", formatLayerInfo(layer, weight).c_str(),
to_string(mode->getFps()).c_str(), layerScore);
overallScore += weightedLayerScore;
}
}
}
// We want to find the best refresh rate without the fixed source layers,
// so we could know whether we should add the modeAboveThreshold scores or not.
// If the best refresh rate is already above the threshold, it means that
// some non-fixed source layers already scored it, so we can just add the score
// for all fixed source layers, even the ones that are above the threshold.
const bool maxScoreAboveThreshold = [&] {
if (mConfig.frameRateMultipleThreshold == 0 || scores.empty()) {
return false;
}
const auto maxScoreIt =
std::max_element(scores.begin(), scores.end(),
[](RefreshRateScore max, RefreshRateScore current) {
const auto& [modeIt, overallScore, _] = current;
return overallScore > max.overallScore;
});
ALOGV("%s is the best refresh rate without fixed source layers. It is %s the threshold for "
"refresh rate multiples",
to_string(maxScoreIt->modeIt->second->getFps()).c_str(),
maxScoreAboveThreshold ? "above" : "below");
return maxScoreIt->modeIt->second->getFps() >=
Fps::fromValue(mConfig.frameRateMultipleThreshold);
}();
// Now we can add the fixed rate layers score
for (auto& [modeIt, overallScore, fixedRateBelowThresholdLayersScore] : scores) {
overallScore += fixedRateBelowThresholdLayersScore.modeBelowThreshold;
if (maxScoreAboveThreshold) {
overallScore += fixedRateBelowThresholdLayersScore.modeAboveThreshold;
}
ALOGV("%s adjusted overallScore is %.4f", to_string(modeIt->second->getFps()).c_str(),
overallScore);
}
// Now that we scored all the refresh rates we need to pick the one that got the highest
// overallScore. Sort the scores based on their overallScore in descending order of priority.
const RefreshRateOrder refreshRateOrder =
maxVoteLayers > 0 ? RefreshRateOrder::Descending : RefreshRateOrder::Ascending;
std::sort(scores.begin(), scores.end(),
RefreshRateScoreComparator{.refreshRateOrder = refreshRateOrder});
RefreshRateRanking ranking;
ranking.reserve(scores.size());
std::transform(scores.begin(), scores.end(), back_inserter(ranking),
[](const RefreshRateScore& score) {
return ScoredRefreshRate{score.modeIt->second, score.overallScore};
});
const bool noLayerScore = std::all_of(scores.begin(), scores.end(), [](RefreshRateScore score) {
return score.overallScore == 0;
});
if (primaryRangeIsSingleRate) {
// If we never scored any layers, then choose the rate from the primary
// range instead of picking a random score from the app range.
if (noLayerScore) {
ALOGV("Layers not scored");
return {rankRefreshRates(anchorGroup, RefreshRateOrder::Descending), kNoSignals};
} else {
return {ranking, kNoSignals};
}
}
// Consider the touch event if there are no ExplicitDefault layers. ExplicitDefault are mostly
// interactive (as opposed to ExplicitExactOrMultiple) and therefore if those posted an explicit
// vote we should not change it if we get a touch event. Only apply touch boost if it will
// actually increase the refresh rate over the normal selection.
const bool touchBoostForExplicitExact = [&] {
if (mSupportsFrameRateOverrideByContent) {
// Enable touch boost if there are other layers besides exact
return explicitExact + noVoteLayers != layers.size();
} else {
// Enable touch boost if there are no exact layers
return explicitExact == 0;
}
}();
const auto touchRefreshRates = rankRefreshRates(anchorGroup, RefreshRateOrder::Descending);
using fps_approx_ops::operator<;
if (signals.touch && explicitDefaultVoteLayers == 0 && touchBoostForExplicitExact &&
scores.front().modeIt->second->getFps() < touchRefreshRates.front().modePtr->getFps()) {
ALOGV("Touch Boost");
return {touchRefreshRates, GlobalSignals{.touch = true}};
}
// If we never scored any layers, and we don't favor high refresh rates, prefer to stay with the
// current config
if (noLayerScore && refreshRateOrder == RefreshRateOrder::Ascending) {
const auto preferredDisplayMode = activeMode.getId();
return {rankRefreshRates(anchorGroup, RefreshRateOrder::Ascending, preferredDisplayMode),
kNoSignals};
}
return {ranking, kNoSignals};
}
using LayerRequirementPtrs = std::vector<const RefreshRateSelector::LayerRequirement*>;
using PerUidLayerRequirements = std::unordered_map<uid_t, LayerRequirementPtrs>;
PerUidLayerRequirements groupLayersByUid(
const std::vector<RefreshRateSelector::LayerRequirement>& layers) {
PerUidLayerRequirements layersByUid;
for (const auto& layer : layers) {
const auto it = layersByUid.emplace(layer.ownerUid, LayerRequirementPtrs()).first;
auto& layersWithSameUid = it->second;
layersWithSameUid.push_back(&layer);
}
// Remove uids that can't have a frame rate override
for (auto it = layersByUid.begin(); it != layersByUid.end();) {
const auto& layersWithSameUid = it->second;
bool skipUid = false;
for (const auto& layer : layersWithSameUid) {
using LayerVoteType = RefreshRateSelector::LayerVoteType;
if (layer->vote == LayerVoteType::Max || layer->vote == LayerVoteType::Heuristic) {
skipUid = true;
break;
}
}
if (skipUid) {
it = layersByUid.erase(it);
} else {
++it;
}
}
return layersByUid;
}
auto RefreshRateSelector::getFrameRateOverrides(const std::vector<LayerRequirement>& layers,
Fps displayRefreshRate,
GlobalSignals globalSignals) const
-> UidToFrameRateOverride {
ATRACE_CALL();
ALOGV("%s: %zu layers", __func__, layers.size());
std::lock_guard lock(mLock);
std::vector<RefreshRateScore> scores;
scores.reserve(mDisplayModes.size());
for (auto it = mDisplayModes.begin(); it != mDisplayModes.end(); ++it) {
scores.emplace_back(RefreshRateScore{it, 0.0f});
}
std::sort(scores.begin(), scores.end(), [](const auto& lhs, const auto& rhs) {
const auto& mode1 = lhs.modeIt->second;
const auto& mode2 = rhs.modeIt->second;
return isStrictlyLess(mode1->getFps(), mode2->getFps());
});
const auto layersByUid = groupLayersByUid(layers);
UidToFrameRateOverride frameRateOverrides;
for (const auto& [uid, layersWithSameUid] : layersByUid) {
// Layers with ExplicitExactOrMultiple expect touch boost
const bool hasExplicitExactOrMultiple =
std::any_of(layersWithSameUid.cbegin(), layersWithSameUid.cend(),
[](const auto& layer) {
return layer->vote == LayerVoteType::ExplicitExactOrMultiple;
});
if (globalSignals.touch && hasExplicitExactOrMultiple) {
continue;
}
for (auto& [_, score, _1] : scores) {
score = 0;
}
for (const auto& layer : layersWithSameUid) {
if (layer->vote == LayerVoteType::NoVote || layer->vote == LayerVoteType::Min) {
continue;
}
LOG_ALWAYS_FATAL_IF(layer->vote != LayerVoteType::ExplicitDefault &&
layer->vote != LayerVoteType::ExplicitExactOrMultiple &&
layer->vote != LayerVoteType::ExplicitExact);
for (auto& [modeIt, score, _] : scores) {
constexpr bool isSeamlessSwitch = true;
const auto layerScore = calculateLayerScoreLocked(*layer, modeIt->second->getFps(),
isSeamlessSwitch);
score += layer->weight * layerScore;
}
}
// We just care about the refresh rates which are a divisor of the
// display refresh rate
const auto it = std::remove_if(scores.begin(), scores.end(), [&](RefreshRateScore score) {
const auto& [id, mode] = *score.modeIt;
return getFrameRateDivisor(displayRefreshRate, mode->getFps()) == 0;
});
scores.erase(it, scores.end());
// If we never scored any layers, we don't have a preferred frame rate
if (std::all_of(scores.begin(), scores.end(),
[](RefreshRateScore score) { return score.overallScore == 0; })) {
continue;
}
// Now that we scored all the refresh rates we need to pick the lowest refresh rate
// that got the highest score.
const DisplayModePtr& bestRefreshRate =
std::min_element(scores.begin(), scores.end(),
RefreshRateScoreComparator{.refreshRateOrder =
RefreshRateOrder::Ascending})
->modeIt->second;
frameRateOverrides.emplace(uid, bestRefreshRate->getFps());
}
return frameRateOverrides;
}
std::optional<Fps> RefreshRateSelector::onKernelTimerChanged(
std::optional<DisplayModeId> desiredActiveModeId, bool timerExpired) const {
std::lock_guard lock(mLock);
const DisplayModePtr& current = desiredActiveModeId
? mDisplayModes.get(*desiredActiveModeId)->get()
: getActiveModeItLocked()->second;
const DisplayModePtr& min = mMinRefreshRateModeIt->second;
if (current == min) {
return {};
}
const auto& mode = timerExpired ? min : current;
return mode->getFps();
}
const DisplayModePtr& RefreshRateSelector::getMinRefreshRateByPolicyLocked() const {
const auto& activeMode = *getActiveModeItLocked()->second;
for (const DisplayModeIterator modeIt : mPrimaryRefreshRates) {
const auto& mode = modeIt->second;
if (activeMode.getGroup() == mode->getGroup()) {
return mode;
}
}
ALOGE("Can't find min refresh rate by policy with the same mode group as the current mode %s",
to_string(activeMode).c_str());
// Default to the lowest refresh rate.
return mPrimaryRefreshRates.front()->second;
}
const DisplayModePtr& RefreshRateSelector::getMaxRefreshRateByPolicyLocked(int anchorGroup) const {
for (auto it = mPrimaryRefreshRates.rbegin(); it != mPrimaryRefreshRates.rend(); ++it) {
const auto& mode = (*it)->second;
if (anchorGroup == mode->getGroup()) {
return mode;
}
}
ALOGE("Can't find max refresh rate by policy with the same group %d", anchorGroup);
// Default to the highest refresh rate.
return mPrimaryRefreshRates.back()->second;
}
auto RefreshRateSelector::rankRefreshRates(
std::optional<int> anchorGroupOpt, RefreshRateOrder refreshRateOrder,
std::optional<DisplayModeId> preferredDisplayModeOpt) const -> RefreshRateRanking {
std::deque<ScoredRefreshRate> ranking;
const auto rankRefreshRate = [&](DisplayModeIterator it) REQUIRES(mLock) {
const auto& mode = it->second;
if (anchorGroupOpt && mode->getGroup() != anchorGroupOpt) {
return;
}
float score = calculateRefreshRateScoreForFps(mode->getFps());
const bool inverseScore = (refreshRateOrder == RefreshRateOrder::Ascending);
if (inverseScore) {
score = 1.0f / score;
}
if (preferredDisplayModeOpt) {
if (*preferredDisplayModeOpt == mode->getId()) {
constexpr float kScore = std::numeric_limits<float>::max();
ranking.push_front(ScoredRefreshRate{mode, kScore});
return;
}
constexpr float kNonPreferredModePenalty = 0.95f;
score *= kNonPreferredModePenalty;
}
ranking.push_back(ScoredRefreshRate{mode, score});
};
if (refreshRateOrder == RefreshRateOrder::Ascending) {
std::for_each(mPrimaryRefreshRates.begin(), mPrimaryRefreshRates.end(), rankRefreshRate);
} else {
std::for_each(mPrimaryRefreshRates.rbegin(), mPrimaryRefreshRates.rend(), rankRefreshRate);
}
if (!ranking.empty() || !anchorGroupOpt) {
return {ranking.begin(), ranking.end()};
}
ALOGW("Can't find %s refresh rate by policy with the same mode group"
" as the mode group %d",
refreshRateOrder == RefreshRateOrder::Ascending ? "min" : "max", anchorGroupOpt.value());
constexpr std::optional<int> kNoAnchorGroup = std::nullopt;
return rankRefreshRates(kNoAnchorGroup, refreshRateOrder, preferredDisplayModeOpt);
}
DisplayModePtr RefreshRateSelector::getActiveModePtr() const {
std::lock_guard lock(mLock);
return getActiveModeItLocked()->second;
}
const DisplayMode& RefreshRateSelector::getActiveMode() const {
// Reads from kMainThreadContext do not require mLock.
ftl::FakeGuard guard(mLock);
return *mActiveModeIt->second;
}
DisplayModeIterator RefreshRateSelector::getActiveModeItLocked() const {
// Reads under mLock do not require kMainThreadContext.
return FTL_FAKE_GUARD(kMainThreadContext, mActiveModeIt);
}
void RefreshRateSelector::setActiveModeId(DisplayModeId modeId) {
std::lock_guard lock(mLock);
// Invalidate the cached invocation to getRankedRefreshRates. This forces
// the refresh rate to be recomputed on the next call to getRankedRefreshRates.
mGetRankedRefreshRatesCache.reset();
mActiveModeIt = mDisplayModes.find(modeId);
LOG_ALWAYS_FATAL_IF(mActiveModeIt == mDisplayModes.end());
}
RefreshRateSelector::RefreshRateSelector(DisplayModes modes, DisplayModeId activeModeId,
Config config)
: mKnownFrameRates(constructKnownFrameRates(modes)), mConfig(config) {
initializeIdleTimer();
FTL_FAKE_GUARD(kMainThreadContext, updateDisplayModes(std::move(modes), activeModeId));
}
void RefreshRateSelector::initializeIdleTimer() {
if (mConfig.idleTimerTimeout > 0ms) {
mIdleTimer.emplace(
"IdleTimer", mConfig.idleTimerTimeout,
[this] {
std::scoped_lock lock(mIdleTimerCallbacksMutex);
if (const auto callbacks = getIdleTimerCallbacks()) {
callbacks->onReset();
}
},
[this] {
std::scoped_lock lock(mIdleTimerCallbacksMutex);
if (const auto callbacks = getIdleTimerCallbacks()) {
callbacks->onExpired();
}
});
}
}
void RefreshRateSelector::updateDisplayModes(DisplayModes modes, DisplayModeId activeModeId) {
std::lock_guard lock(mLock);
// Invalidate the cached invocation to getRankedRefreshRates. This forces
// the refresh rate to be recomputed on the next call to getRankedRefreshRates.
mGetRankedRefreshRatesCache.reset();
mDisplayModes = std::move(modes);
mActiveModeIt = mDisplayModes.find(activeModeId);
LOG_ALWAYS_FATAL_IF(mActiveModeIt == mDisplayModes.end());
const auto sortedModes =
sortByRefreshRate(mDisplayModes, [](const DisplayMode&) { return true; });
mMinRefreshRateModeIt = sortedModes.front();
mMaxRefreshRateModeIt = sortedModes.back();
// Reset the policy because the old one may no longer be valid.
mDisplayManagerPolicy = {};
mDisplayManagerPolicy.defaultMode = activeModeId;
mSupportsFrameRateOverrideByContent =
mConfig.enableFrameRateOverride && canModesSupportFrameRateOverride(sortedModes);
constructAvailableRefreshRates();
}
bool RefreshRateSelector::isPolicyValidLocked(const Policy& policy) const {
// defaultMode must be a valid mode, and within the given refresh rate range.
if (const auto mode = mDisplayModes.get(policy.defaultMode)) {
if (!policy.primaryRange.includes(mode->get()->getFps())) {
ALOGE("Default mode is not in the primary range.");
return false;
}
} else {
ALOGE("Default mode is not found.");
return false;
}
using namespace fps_approx_ops;
return policy.appRequestRange.min <= policy.primaryRange.min &&
policy.appRequestRange.max >= policy.primaryRange.max;
}
auto RefreshRateSelector::setPolicy(const PolicyVariant& policy) -> SetPolicyResult {
Policy oldPolicy;
{
std::lock_guard lock(mLock);
oldPolicy = *getCurrentPolicyLocked();
const bool valid = ftl::match(
policy,
[this](const auto& policy) {
ftl::FakeGuard guard(mLock);
if (!isPolicyValidLocked(policy)) {
ALOGE("Invalid policy: %s", policy.toString().c_str());
return false;
}
using T = std::decay_t<decltype(policy)>;
if constexpr (std::is_same_v<T, DisplayManagerPolicy>) {
mDisplayManagerPolicy = policy;
} else {
static_assert(std::is_same_v<T, OverridePolicy>);
mOverridePolicy = policy;
}
return true;
},
[this](NoOverridePolicy) {
ftl::FakeGuard guard(mLock);
mOverridePolicy.reset();
return true;
});
if (!valid) {
return SetPolicyResult::Invalid;
}
mGetRankedRefreshRatesCache.reset();
if (*getCurrentPolicyLocked() == oldPolicy) {
return SetPolicyResult::Unchanged;
}
constructAvailableRefreshRates();
}
const auto displayId = getActiveMode().getPhysicalDisplayId();
const unsigned numModeChanges = std::exchange(mNumModeSwitchesInPolicy, 0u);
ALOGI("Display %s policy changed\n"
"Previous: %s\n"
"Current: %s\n"
"%u mode changes were performed under the previous policy",
to_string(displayId).c_str(), oldPolicy.toString().c_str(), toString(policy).c_str(),
numModeChanges);
return SetPolicyResult::Changed;
}
auto RefreshRateSelector::getCurrentPolicyLocked() const -> const Policy* {
return mOverridePolicy ? &mOverridePolicy.value() : &mDisplayManagerPolicy;
}
auto RefreshRateSelector::getCurrentPolicy() const -> Policy {
std::lock_guard lock(mLock);
return *getCurrentPolicyLocked();
}
auto RefreshRateSelector::getDisplayManagerPolicy() const -> Policy {
std::lock_guard lock(mLock);
return mDisplayManagerPolicy;
}
bool RefreshRateSelector::isModeAllowed(DisplayModeId modeId) const {
std::lock_guard lock(mLock);
return std::any_of(mAppRequestRefreshRates.begin(), mAppRequestRefreshRates.end(),
[modeId](DisplayModeIterator modeIt) {
return modeIt->second->getId() == modeId;
});
}
void RefreshRateSelector::constructAvailableRefreshRates() {
// Filter modes based on current policy and sort on refresh rate.
const Policy* policy = getCurrentPolicyLocked();
ALOGV("%s: %s ", __func__, policy->toString().c_str());
const auto& defaultMode = mDisplayModes.get(policy->defaultMode)->get();
const auto filterRefreshRates = [&](FpsRange range, const char* rangeName) REQUIRES(mLock) {
const auto filter = [&](const DisplayMode& mode) {
return mode.getResolution() == defaultMode->getResolution() &&
mode.getDpi() == defaultMode->getDpi() &&
(policy->allowGroupSwitching || mode.getGroup() == defaultMode->getGroup()) &&
range.includes(mode.getFps());
};
const auto modes = sortByRefreshRate(mDisplayModes, filter);
LOG_ALWAYS_FATAL_IF(modes.empty(), "No matching modes for %s range %s", rangeName,
to_string(range).c_str());
const auto stringifyModes = [&] {
std::string str;
for (const auto modeIt : modes) {
str += to_string(modeIt->second->getFps());
str.push_back(' ');
}
return str;
};
ALOGV("%s refresh rates: %s", rangeName, stringifyModes().c_str());
return modes;
};
mPrimaryRefreshRates = filterRefreshRates(policy->primaryRange, "primary");
mAppRequestRefreshRates = filterRefreshRates(policy->appRequestRange, "app request");
}
Fps RefreshRateSelector::findClosestKnownFrameRate(Fps frameRate) const {
using namespace fps_approx_ops;
if (frameRate <= mKnownFrameRates.front()) {
return mKnownFrameRates.front();
}
if (frameRate >= mKnownFrameRates.back()) {
return mKnownFrameRates.back();
}
auto lowerBound = std::lower_bound(mKnownFrameRates.begin(), mKnownFrameRates.end(), frameRate,
isStrictlyLess);
const auto distance1 = std::abs(frameRate.getValue() - lowerBound->getValue());
const auto distance2 = std::abs(frameRate.getValue() - std::prev(lowerBound)->getValue());
return distance1 < distance2 ? *lowerBound : *std::prev(lowerBound);
}
auto RefreshRateSelector::getIdleTimerAction() const -> KernelIdleTimerAction {
std::lock_guard lock(mLock);
const Fps deviceMinFps = mMinRefreshRateModeIt->second->getFps();
const DisplayModePtr& minByPolicy = getMinRefreshRateByPolicyLocked();
// Kernel idle timer will set the refresh rate to the device min. If DisplayManager says that
// the min allowed refresh rate is higher than the device min, we do not want to enable the
// timer.
if (isStrictlyLess(deviceMinFps, minByPolicy->getFps())) {
return KernelIdleTimerAction::TurnOff;
}
const DisplayModePtr& maxByPolicy =
getMaxRefreshRateByPolicyLocked(getActiveModeItLocked()->second->getGroup());
if (minByPolicy == maxByPolicy) {
// Turn on the timer when the min of the primary range is below the device min.
if (const Policy* currentPolicy = getCurrentPolicyLocked();
isApproxLess(currentPolicy->primaryRange.min, deviceMinFps)) {
return KernelIdleTimerAction::TurnOn;
}
return KernelIdleTimerAction::TurnOff;
}
// Turn on the timer in all other cases.
return KernelIdleTimerAction::TurnOn;
}
int RefreshRateSelector::getFrameRateDivisor(Fps displayRefreshRate, Fps layerFrameRate) {
// This calculation needs to be in sync with the java code
// in DisplayManagerService.getDisplayInfoForFrameRateOverride
// The threshold must be smaller than 0.001 in order to differentiate
// between the fractional pairs (e.g. 59.94 and 60).
constexpr float kThreshold = 0.0009f;
const auto numPeriods = displayRefreshRate.getValue() / layerFrameRate.getValue();
const auto numPeriodsRounded = std::round(numPeriods);
if (std::abs(numPeriods - numPeriodsRounded) > kThreshold) {
return 0;
}
return static_cast<int>(numPeriodsRounded);
}
bool RefreshRateSelector::isFractionalPairOrMultiple(Fps smaller, Fps bigger) {
if (isStrictlyLess(bigger, smaller)) {
return isFractionalPairOrMultiple(bigger, smaller);
}
const auto multiplier = std::round(bigger.getValue() / smaller.getValue());
constexpr float kCoef = 1000.f / 1001.f;
return isApproxEqual(bigger, Fps::fromValue(smaller.getValue() * multiplier / kCoef)) ||
isApproxEqual(bigger, Fps::fromValue(smaller.getValue() * multiplier * kCoef));
}
void RefreshRateSelector::dump(utils::Dumper& dumper) const {
using namespace std::string_view_literals;
std::lock_guard lock(mLock);
const auto activeModeId = getActiveModeItLocked()->first;
dumper.dump("activeModeId"sv, std::to_string(activeModeId.value()));
dumper.dump("displayModes"sv);
{
utils::Dumper::Indent indent(dumper);
for (const auto& [id, mode] : mDisplayModes) {
dumper.dump({}, to_string(*mode));
}
}
dumper.dump("displayManagerPolicy"sv, mDisplayManagerPolicy.toString());
if (const Policy& currentPolicy = *getCurrentPolicyLocked();
mOverridePolicy && currentPolicy != mDisplayManagerPolicy) {
dumper.dump("overridePolicy"sv, currentPolicy.toString());
}
dumper.dump("supportsFrameRateOverrideByContent"sv, mSupportsFrameRateOverrideByContent);
std::string idleTimer;
if (mIdleTimer) {
idleTimer = mIdleTimer->dump();
} else {
idleTimer = "off"sv;
}
if (const auto controller = mConfig.kernelIdleTimerController) {
base::StringAppendF(&idleTimer, " (kernel via %s)", ftl::enum_string(*controller).c_str());
} else {
idleTimer += " (platform)"sv;
}
dumper.dump("idleTimer"sv, idleTimer);
}
std::chrono::milliseconds RefreshRateSelector::getIdleTimerTimeout() {
return mConfig.idleTimerTimeout;
}
} // namespace android::scheduler
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wextra"