| /* | 
 |  * Copyright 2019 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <thread> | 
 |  | 
 | #include <android-base/stringprintf.h> | 
 | #include <compositionengine/CompositionEngine.h> | 
 | #include <compositionengine/CompositionRefreshArgs.h> | 
 | #include <compositionengine/DisplayColorProfile.h> | 
 | #include <compositionengine/Layer.h> | 
 | #include <compositionengine/LayerFE.h> | 
 | #include <compositionengine/LayerFECompositionState.h> | 
 | #include <compositionengine/RenderSurface.h> | 
 | #include <compositionengine/impl/Output.h> | 
 | #include <compositionengine/impl/OutputCompositionState.h> | 
 | #include <compositionengine/impl/OutputLayer.h> | 
 | #include <compositionengine/impl/OutputLayerCompositionState.h> | 
 | #include <renderengine/DisplaySettings.h> | 
 | #include <renderengine/RenderEngine.h> | 
 | #include <ui/DebugUtils.h> | 
 | #include <ui/HdrCapabilities.h> | 
 | #include <utils/Trace.h> | 
 |  | 
 | #include "TracedOrdinal.h" | 
 |  | 
 | namespace android::compositionengine { | 
 |  | 
 | Output::~Output() = default; | 
 |  | 
 | namespace impl { | 
 |  | 
 | namespace { | 
 |  | 
 | template <typename T> | 
 | class Reversed { | 
 | public: | 
 |     explicit Reversed(const T& container) : mContainer(container) {} | 
 |     auto begin() { return mContainer.rbegin(); } | 
 |     auto end() { return mContainer.rend(); } | 
 |  | 
 | private: | 
 |     const T& mContainer; | 
 | }; | 
 |  | 
 | // Helper for enumerating over a container in reverse order | 
 | template <typename T> | 
 | Reversed<T> reversed(const T& c) { | 
 |     return Reversed<T>(c); | 
 | } | 
 |  | 
 | } // namespace | 
 |  | 
 | std::shared_ptr<Output> createOutput( | 
 |         const compositionengine::CompositionEngine& compositionEngine) { | 
 |     return createOutputTemplated<Output>(compositionEngine); | 
 | } | 
 |  | 
 | Output::~Output() = default; | 
 |  | 
 | bool Output::isValid() const { | 
 |     return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface && | 
 |             mRenderSurface->isValid(); | 
 | } | 
 |  | 
 | std::optional<DisplayId> Output::getDisplayId() const { | 
 |     return {}; | 
 | } | 
 |  | 
 | const std::string& Output::getName() const { | 
 |     return mName; | 
 | } | 
 |  | 
 | void Output::setName(const std::string& name) { | 
 |     mName = name; | 
 | } | 
 |  | 
 | void Output::setCompositionEnabled(bool enabled) { | 
 |     auto& outputState = editState(); | 
 |     if (outputState.isEnabled == enabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     outputState.isEnabled = enabled; | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setProjection(const ui::Transform& transform, int32_t orientation, const Rect& frame, | 
 |                            const Rect& viewport, const Rect& scissor, bool needsFiltering) { | 
 |     auto& outputState = editState(); | 
 |     outputState.transform = transform; | 
 |     outputState.orientation = orientation; | 
 |     outputState.scissor = scissor; | 
 |     outputState.frame = frame; | 
 |     outputState.viewport = viewport; | 
 |     outputState.needsFiltering = needsFiltering; | 
 |  | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | // TODO(b/121291683): Rename setSize() once more is moved. | 
 | void Output::setBounds(const ui::Size& size) { | 
 |     mRenderSurface->setDisplaySize(size); | 
 |     // TODO(b/121291683): Rename outputState.size once more is moved. | 
 |     editState().bounds = Rect(mRenderSurface->getSize()); | 
 |  | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setLayerStackFilter(uint32_t layerStackId, bool isInternal) { | 
 |     auto& outputState = editState(); | 
 |     outputState.layerStackId = layerStackId; | 
 |     outputState.layerStackInternal = isInternal; | 
 |  | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) { | 
 |     auto& colorTransformMatrix = editState().colorTransformMatrix; | 
 |     if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) { | 
 |         return; | 
 |     } | 
 |  | 
 |     colorTransformMatrix = *args.colorTransformMatrix; | 
 |  | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setColorProfile(const ColorProfile& colorProfile) { | 
 |     ui::Dataspace targetDataspace = | 
 |             getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace, | 
 |                                                          colorProfile.colorSpaceAgnosticDataspace); | 
 |  | 
 |     auto& outputState = editState(); | 
 |     if (outputState.colorMode == colorProfile.mode && | 
 |         outputState.dataspace == colorProfile.dataspace && | 
 |         outputState.renderIntent == colorProfile.renderIntent && | 
 |         outputState.targetDataspace == targetDataspace) { | 
 |         return; | 
 |     } | 
 |  | 
 |     outputState.colorMode = colorProfile.mode; | 
 |     outputState.dataspace = colorProfile.dataspace; | 
 |     outputState.renderIntent = colorProfile.renderIntent; | 
 |     outputState.targetDataspace = targetDataspace; | 
 |  | 
 |     mRenderSurface->setBufferDataspace(colorProfile.dataspace); | 
 |  | 
 |     ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)", | 
 |           decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode, | 
 |           decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent); | 
 |  | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::dump(std::string& out) const { | 
 |     using android::base::StringAppendF; | 
 |  | 
 |     StringAppendF(&out, "   Composition Output State: [\"%s\"]", mName.c_str()); | 
 |  | 
 |     out.append("\n   "); | 
 |  | 
 |     dumpBase(out); | 
 | } | 
 |  | 
 | void Output::dumpBase(std::string& out) const { | 
 |     dumpState(out); | 
 |  | 
 |     if (mDisplayColorProfile) { | 
 |         mDisplayColorProfile->dump(out); | 
 |     } else { | 
 |         out.append("    No display color profile!\n"); | 
 |     } | 
 |  | 
 |     if (mRenderSurface) { | 
 |         mRenderSurface->dump(out); | 
 |     } else { | 
 |         out.append("    No render surface!\n"); | 
 |     } | 
 |  | 
 |     android::base::StringAppendF(&out, "\n   %zu Layers\n", getOutputLayerCount()); | 
 |     for (const auto* outputLayer : getOutputLayersOrderedByZ()) { | 
 |         if (!outputLayer) { | 
 |             continue; | 
 |         } | 
 |         outputLayer->dump(out); | 
 |     } | 
 | } | 
 |  | 
 | compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const { | 
 |     return mDisplayColorProfile.get(); | 
 | } | 
 |  | 
 | void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) { | 
 |     mDisplayColorProfile = std::move(mode); | 
 | } | 
 |  | 
 | const Output::ReleasedLayers& Output::getReleasedLayersForTest() const { | 
 |     return mReleasedLayers; | 
 | } | 
 |  | 
 | void Output::setDisplayColorProfileForTest( | 
 |         std::unique_ptr<compositionengine::DisplayColorProfile> mode) { | 
 |     mDisplayColorProfile = std::move(mode); | 
 | } | 
 |  | 
 | compositionengine::RenderSurface* Output::getRenderSurface() const { | 
 |     return mRenderSurface.get(); | 
 | } | 
 |  | 
 | void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) { | 
 |     mRenderSurface = std::move(surface); | 
 |     editState().bounds = Rect(mRenderSurface->getSize()); | 
 |  | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) { | 
 |     mRenderSurface = std::move(surface); | 
 | } | 
 |  | 
 | Region Output::getDirtyRegion(bool repaintEverything) const { | 
 |     const auto& outputState = getState(); | 
 |     Region dirty(outputState.viewport); | 
 |     if (!repaintEverything) { | 
 |         dirty.andSelf(outputState.dirtyRegion); | 
 |     } | 
 |     return dirty; | 
 | } | 
 |  | 
 | bool Output::belongsInOutput(std::optional<uint32_t> layerStackId, bool internalOnly) const { | 
 |     // The layerStackId's must match, and also the layer must not be internal | 
 |     // only when not on an internal output. | 
 |     const auto& outputState = getState(); | 
 |     return layerStackId && (*layerStackId == outputState.layerStackId) && | 
 |             (!internalOnly || outputState.layerStackInternal); | 
 | } | 
 |  | 
 | bool Output::belongsInOutput(const compositionengine::Layer* layer) const { | 
 |     if (!layer) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     const auto& layerFEState = layer->getFEState(); | 
 |     return belongsInOutput(layerFEState.layerStackId, layerFEState.internalOnly); | 
 | } | 
 |  | 
 | std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer( | 
 |         const std::shared_ptr<compositionengine::Layer>& layer, const sp<LayerFE>& layerFE) const { | 
 |     return impl::createOutputLayer(*this, layer, layerFE); | 
 | } | 
 |  | 
 | compositionengine::OutputLayer* Output::getOutputLayerForLayer( | 
 |         compositionengine::Layer* layer) const { | 
 |     auto index = findCurrentOutputLayerForLayer(layer); | 
 |     return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr; | 
 | } | 
 |  | 
 | std::optional<size_t> Output::findCurrentOutputLayerForLayer( | 
 |         compositionengine::Layer* layer) const { | 
 |     for (size_t i = 0; i < getOutputLayerCount(); i++) { | 
 |         auto outputLayer = getOutputLayerOrderedByZByIndex(i); | 
 |         if (outputLayer && &outputLayer->getLayer() == layer) { | 
 |             return i; | 
 |         } | 
 |     } | 
 |     return std::nullopt; | 
 | } | 
 |  | 
 | void Output::setReleasedLayers(Output::ReleasedLayers&& layers) { | 
 |     mReleasedLayers = std::move(layers); | 
 | } | 
 |  | 
 | void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs, | 
 |                      LayerFESet& geomSnapshots) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     rebuildLayerStacks(refreshArgs, geomSnapshots); | 
 | } | 
 |  | 
 | void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     updateColorProfile(refreshArgs); | 
 |     updateAndWriteCompositionState(refreshArgs); | 
 |     setColorTransform(refreshArgs); | 
 |     beginFrame(); | 
 |     prepareFrame(); | 
 |     devOptRepaintFlash(refreshArgs); | 
 |     finishFrame(refreshArgs); | 
 |     postFramebuffer(); | 
 | } | 
 |  | 
 | void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs, | 
 |                                 LayerFESet& layerFESet) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     auto& outputState = editState(); | 
 |  | 
 |     // Do nothing if this output is not enabled or there is no need to perform this update | 
 |     if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Process the layers to determine visibility and coverage | 
 |     compositionengine::Output::CoverageState coverage{layerFESet}; | 
 |     collectVisibleLayers(refreshArgs, coverage); | 
 |  | 
 |     // Compute the resulting coverage for this output, and store it for later | 
 |     const ui::Transform& tr = outputState.transform; | 
 |     Region undefinedRegion{outputState.bounds}; | 
 |     undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers)); | 
 |  | 
 |     outputState.undefinedRegion = undefinedRegion; | 
 |     outputState.dirtyRegion.orSelf(coverage.dirtyRegion); | 
 | } | 
 |  | 
 | void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs, | 
 |                                   compositionengine::Output::CoverageState& coverage) { | 
 |     // Evaluate the layers from front to back to determine what is visible. This | 
 |     // also incrementally calculates the coverage information for each layer as | 
 |     // well as the entire output. | 
 |     for (auto& layer : reversed(refreshArgs.layers)) { | 
 |         // Incrementally process the coverage for each layer | 
 |         ensureOutputLayerIfVisible(layer, coverage); | 
 |  | 
 |         // TODO(b/121291683): Stop early if the output is completely covered and | 
 |         // no more layers could even be visible underneath the ones on top. | 
 |     } | 
 |  | 
 |     setReleasedLayers(refreshArgs); | 
 |  | 
 |     finalizePendingOutputLayers(); | 
 |  | 
 |     // Generate a simple Z-order values to each visible output layer | 
 |     uint32_t zOrder = 0; | 
 |     for (auto* outputLayer : getOutputLayersOrderedByZ()) { | 
 |         outputLayer->editState().z = zOrder++; | 
 |     } | 
 | } | 
 |  | 
 | void Output::ensureOutputLayerIfVisible(std::shared_ptr<compositionengine::Layer> layer, | 
 |                                         compositionengine::Output::CoverageState& coverage) { | 
 |     // Note: Converts a wp<LayerFE> to a sp<LayerFE> | 
 |     auto layerFE = layer->getLayerFE(); | 
 |     if (layerFE == nullptr) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Ensure we have a snapshot of the basic geometry layer state. Limit the | 
 |     // snapshots to once per frame for each candidate layer, as layers may | 
 |     // appear on multiple outputs. | 
 |     if (!coverage.latchedLayers.count(layerFE)) { | 
 |         coverage.latchedLayers.insert(layerFE); | 
 |         layerFE->latchCompositionState(layer->editFEState(), | 
 |                                        compositionengine::LayerFE::StateSubset::BasicGeometry); | 
 |     } | 
 |  | 
 |     // Obtain a read-only reference to the front-end layer state | 
 |     const auto& layerFEState = layer->getFEState(); | 
 |  | 
 |     // Only consider the layers on the given layer stack | 
 |     if (!belongsInOutput(layer.get())) { | 
 |         return; | 
 |     } | 
 |  | 
 |     /* | 
 |      * opaqueRegion: area of a surface that is fully opaque. | 
 |      */ | 
 |     Region opaqueRegion; | 
 |  | 
 |     /* | 
 |      * visibleRegion: area of a surface that is visible on screen and not fully | 
 |      * transparent. This is essentially the layer's footprint minus the opaque | 
 |      * regions above it. Areas covered by a translucent surface are considered | 
 |      * visible. | 
 |      */ | 
 |     Region visibleRegion; | 
 |  | 
 |     /* | 
 |      * coveredRegion: area of a surface that is covered by all visible regions | 
 |      * above it (which includes the translucent areas). | 
 |      */ | 
 |     Region coveredRegion; | 
 |  | 
 |     /* | 
 |      * transparentRegion: area of a surface that is hinted to be completely | 
 |      * transparent. This is only used to tell when the layer has no visible non- | 
 |      * transparent regions and can be removed from the layer list. It does not | 
 |      * affect the visibleRegion of this layer or any layers beneath it. The hint | 
 |      * may not be correct if apps don't respect the SurfaceView restrictions | 
 |      * (which, sadly, some don't). | 
 |      */ | 
 |     Region transparentRegion; | 
 |  | 
 |     // handle hidden surfaces by setting the visible region to empty | 
 |     if (CC_UNLIKELY(!layerFEState.isVisible)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     const ui::Transform& tr = layerFEState.geomLayerTransform; | 
 |  | 
 |     // Get the visible region | 
 |     // TODO(b/121291683): Is it worth creating helper methods on LayerFEState | 
 |     // for computations like this? | 
 |     visibleRegion.set(Rect(tr.transform(layerFEState.geomLayerBounds))); | 
 |  | 
 |     if (visibleRegion.isEmpty()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Remove the transparent area from the visible region | 
 |     if (!layerFEState.isOpaque) { | 
 |         if (tr.preserveRects()) { | 
 |             // transform the transparent region | 
 |             transparentRegion = tr.transform(layerFEState.transparentRegionHint); | 
 |         } else { | 
 |             // transformation too complex, can't do the | 
 |             // transparent region optimization. | 
 |             transparentRegion.clear(); | 
 |         } | 
 |     } | 
 |  | 
 |     // compute the opaque region | 
 |     const int32_t layerOrientation = tr.getOrientation(); | 
 |     if (layerFEState.isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) { | 
 |         // If we one of the simple category of transforms (0/90/180/270 rotation | 
 |         // + any flip), then the opaque region is the layer's footprint. | 
 |         // Otherwise we don't try and compute the opaque region since there may | 
 |         // be errors at the edges, and we treat the entire layer as | 
 |         // translucent. | 
 |         opaqueRegion = visibleRegion; | 
 |     } | 
 |  | 
 |     // Clip the covered region to the visible region | 
 |     coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion); | 
 |  | 
 |     // Update accumAboveCoveredLayers for next (lower) layer | 
 |     coverage.aboveCoveredLayers.orSelf(visibleRegion); | 
 |  | 
 |     // subtract the opaque region covered by the layers above us | 
 |     visibleRegion.subtractSelf(coverage.aboveOpaqueLayers); | 
 |  | 
 |     if (visibleRegion.isEmpty()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Get coverage information for the layer as previously displayed, | 
 |     // also taking over ownership from mOutputLayersorderedByZ. | 
 |     auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layer.get()); | 
 |     auto prevOutputLayer = | 
 |             prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr; | 
 |  | 
 |     //  Get coverage information for the layer as previously displayed | 
 |     // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h | 
 |     const Region kEmptyRegion; | 
 |     const Region& oldVisibleRegion = | 
 |             prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion; | 
 |     const Region& oldCoveredRegion = | 
 |             prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion; | 
 |  | 
 |     // compute this layer's dirty region | 
 |     Region dirty; | 
 |     if (layerFEState.contentDirty) { | 
 |         // we need to invalidate the whole region | 
 |         dirty = visibleRegion; | 
 |         // as well, as the old visible region | 
 |         dirty.orSelf(oldVisibleRegion); | 
 |     } else { | 
 |         /* compute the exposed region: | 
 |          *   the exposed region consists of two components: | 
 |          *   1) what's VISIBLE now and was COVERED before | 
 |          *   2) what's EXPOSED now less what was EXPOSED before | 
 |          * | 
 |          * note that (1) is conservative, we start with the whole visible region | 
 |          * but only keep what used to be covered by something -- which mean it | 
 |          * may have been exposed. | 
 |          * | 
 |          * (2) handles areas that were not covered by anything but got exposed | 
 |          * because of a resize. | 
 |          * | 
 |          */ | 
 |         const Region newExposed = visibleRegion - coveredRegion; | 
 |         const Region oldExposed = oldVisibleRegion - oldCoveredRegion; | 
 |         dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed); | 
 |     } | 
 |     dirty.subtractSelf(coverage.aboveOpaqueLayers); | 
 |  | 
 |     // accumulate to the screen dirty region | 
 |     coverage.dirtyRegion.orSelf(dirty); | 
 |  | 
 |     // Update accumAboveOpaqueLayers for next (lower) layer | 
 |     coverage.aboveOpaqueLayers.orSelf(opaqueRegion); | 
 |  | 
 |     // Compute the visible non-transparent region | 
 |     Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion); | 
 |  | 
 |     // Peform the final check to see if this layer is visible on this output | 
 |     // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below) | 
 |     const auto& outputState = getState(); | 
 |     Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion)); | 
 |     drawRegion.andSelf(outputState.bounds); | 
 |     if (drawRegion.isEmpty()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // The layer is visible. Either reuse the existing outputLayer if we have | 
 |     // one, or create a new one if we do not. | 
 |     auto result = ensureOutputLayer(prevOutputLayerIndex, layer, layerFE); | 
 |  | 
 |     // Store the layer coverage information into the layer state as some of it | 
 |     // is useful later. | 
 |     auto& outputLayerState = result->editState(); | 
 |     outputLayerState.visibleRegion = visibleRegion; | 
 |     outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion; | 
 |     outputLayerState.coveredRegion = coveredRegion; | 
 |     outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform( | 
 |             outputLayerState.visibleRegion.intersect(outputState.viewport)); | 
 | } | 
 |  | 
 | void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) { | 
 |     // The base class does nothing with this call. | 
 | } | 
 |  | 
 | void Output::updateLayerStateFromFE(const CompositionRefreshArgs& args) const { | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         layer->getLayerFE().latchCompositionState(layer->getLayer().editFEState(), | 
 |                                                   args.updatingGeometryThisFrame | 
 |                                                           ? LayerFE::StateSubset::GeometryAndContent | 
 |                                                           : LayerFE::StateSubset::Content); | 
 |     } | 
 | } | 
 |  | 
 | void Output::updateAndWriteCompositionState( | 
 |         const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame, | 
 |                                       refreshArgs.devOptForceClientComposition); | 
 |  | 
 |         // Send the updated state to the HWC, if appropriate. | 
 |         layer->writeStateToHWC(refreshArgs.updatingGeometryThisFrame); | 
 |     } | 
 | } | 
 |  | 
 | void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     setColorProfile(pickColorProfile(refreshArgs)); | 
 | } | 
 |  | 
 | // Returns a data space that fits all visible layers.  The returned data space | 
 | // can only be one of | 
 | //  - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced) | 
 | //  - Dataspace::DISPLAY_P3 | 
 | //  - Dataspace::DISPLAY_BT2020 | 
 | // The returned HDR data space is one of | 
 | //  - Dataspace::UNKNOWN | 
 | //  - Dataspace::BT2020_HLG | 
 | //  - Dataspace::BT2020_PQ | 
 | ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace, | 
 |                                        bool* outIsHdrClientComposition) const { | 
 |     ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB; | 
 |     *outHdrDataSpace = ui::Dataspace::UNKNOWN; | 
 |  | 
 |     for (const auto* layer : getOutputLayersOrderedByZ()) { | 
 |         switch (layer->getLayer().getFEState().dataspace) { | 
 |             case ui::Dataspace::V0_SCRGB: | 
 |             case ui::Dataspace::V0_SCRGB_LINEAR: | 
 |             case ui::Dataspace::BT2020: | 
 |             case ui::Dataspace::BT2020_ITU: | 
 |             case ui::Dataspace::BT2020_LINEAR: | 
 |             case ui::Dataspace::DISPLAY_BT2020: | 
 |                 bestDataSpace = ui::Dataspace::DISPLAY_BT2020; | 
 |                 break; | 
 |             case ui::Dataspace::DISPLAY_P3: | 
 |                 bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
 |                 break; | 
 |             case ui::Dataspace::BT2020_PQ: | 
 |             case ui::Dataspace::BT2020_ITU_PQ: | 
 |                 bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
 |                 *outHdrDataSpace = ui::Dataspace::BT2020_PQ; | 
 |                 *outIsHdrClientComposition = layer->getLayer().getFEState().forceClientComposition; | 
 |                 break; | 
 |             case ui::Dataspace::BT2020_HLG: | 
 |             case ui::Dataspace::BT2020_ITU_HLG: | 
 |                 bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
 |                 // When there's mixed PQ content and HLG content, we set the HDR | 
 |                 // data space to be BT2020_PQ and convert HLG to PQ. | 
 |                 if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) { | 
 |                     *outHdrDataSpace = ui::Dataspace::BT2020_HLG; | 
 |                 } | 
 |                 break; | 
 |             default: | 
 |                 break; | 
 |         } | 
 |     } | 
 |  | 
 |     return bestDataSpace; | 
 | } | 
 |  | 
 | compositionengine::Output::ColorProfile Output::pickColorProfile( | 
 |         const compositionengine::CompositionRefreshArgs& refreshArgs) const { | 
 |     if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) { | 
 |         return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN, | 
 |                             ui::RenderIntent::COLORIMETRIC, | 
 |                             refreshArgs.colorSpaceAgnosticDataspace}; | 
 |     } | 
 |  | 
 |     ui::Dataspace hdrDataSpace; | 
 |     bool isHdrClientComposition = false; | 
 |     ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition); | 
 |  | 
 |     switch (refreshArgs.forceOutputColorMode) { | 
 |         case ui::ColorMode::SRGB: | 
 |             bestDataSpace = ui::Dataspace::V0_SRGB; | 
 |             break; | 
 |         case ui::ColorMode::DISPLAY_P3: | 
 |             bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
 |             break; | 
 |         default: | 
 |             break; | 
 |     } | 
 |  | 
 |     // respect hdrDataSpace only when there is no legacy HDR support | 
 |     const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN && | 
 |             !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition; | 
 |     if (isHdr) { | 
 |         bestDataSpace = hdrDataSpace; | 
 |     } | 
 |  | 
 |     ui::RenderIntent intent; | 
 |     switch (refreshArgs.outputColorSetting) { | 
 |         case OutputColorSetting::kManaged: | 
 |         case OutputColorSetting::kUnmanaged: | 
 |             intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC | 
 |                            : ui::RenderIntent::COLORIMETRIC; | 
 |             break; | 
 |         case OutputColorSetting::kEnhanced: | 
 |             intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE; | 
 |             break; | 
 |         default: // vendor display color setting | 
 |             intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting); | 
 |             break; | 
 |     } | 
 |  | 
 |     ui::ColorMode outMode; | 
 |     ui::Dataspace outDataSpace; | 
 |     ui::RenderIntent outRenderIntent; | 
 |     mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode, | 
 |                                            &outRenderIntent); | 
 |  | 
 |     return ColorProfile{outMode, outDataSpace, outRenderIntent, | 
 |                         refreshArgs.colorSpaceAgnosticDataspace}; | 
 | } | 
 |  | 
 | void Output::beginFrame() { | 
 |     auto& outputState = editState(); | 
 |     const bool dirty = !getDirtyRegion(false).isEmpty(); | 
 |     const bool empty = getOutputLayerCount() == 0; | 
 |     const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers; | 
 |  | 
 |     // If nothing has changed (!dirty), don't recompose. | 
 |     // If something changed, but we don't currently have any visible layers, | 
 |     //   and didn't when we last did a composition, then skip it this time. | 
 |     // The second rule does two things: | 
 |     // - When all layers are removed from a display, we'll emit one black | 
 |     //   frame, then nothing more until we get new layers. | 
 |     // - When a display is created with a private layer stack, we won't | 
 |     //   emit any black frames until a layer is added to the layer stack. | 
 |     const bool mustRecompose = dirty && !(empty && wasEmpty); | 
 |  | 
 |     const char flagPrefix[] = {'-', '+'}; | 
 |     static_cast<void>(flagPrefix); | 
 |     ALOGV_IF("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __FUNCTION__, | 
 |              mustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty], | 
 |              flagPrefix[empty], flagPrefix[wasEmpty]); | 
 |  | 
 |     mRenderSurface->beginFrame(mustRecompose); | 
 |  | 
 |     if (mustRecompose) { | 
 |         outputState.lastCompositionHadVisibleLayers = !empty; | 
 |     } | 
 | } | 
 |  | 
 | void Output::prepareFrame() { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     const auto& outputState = getState(); | 
 |     if (!outputState.isEnabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     chooseCompositionStrategy(); | 
 |  | 
 |     mRenderSurface->prepareFrame(outputState.usesClientComposition, | 
 |                                  outputState.usesDeviceComposition); | 
 | } | 
 |  | 
 | void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (getState().isEnabled) { | 
 |         // transform the dirty region into this screen's coordinate space | 
 |         const Region dirtyRegion = getDirtyRegion(refreshArgs.repaintEverything); | 
 |         if (!dirtyRegion.isEmpty()) { | 
 |             base::unique_fd readyFence; | 
 |             // redraw the whole screen | 
 |             static_cast<void>(composeSurfaces(dirtyRegion)); | 
 |  | 
 |             mRenderSurface->queueBuffer(std::move(readyFence)); | 
 |         } | 
 |     } | 
 |  | 
 |     postFramebuffer(); | 
 |  | 
 |     std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay); | 
 |  | 
 |     prepareFrame(); | 
 | } | 
 |  | 
 | void Output::finishFrame(const compositionengine::CompositionRefreshArgs&) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     if (!getState().isEnabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Repaint the framebuffer (if needed), getting the optional fence for when | 
 |     // the composition completes. | 
 |     auto optReadyFence = composeSurfaces(Region::INVALID_REGION); | 
 |     if (!optReadyFence) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // swap buffers (presentation) | 
 |     mRenderSurface->queueBuffer(std::move(*optReadyFence)); | 
 | } | 
 |  | 
 | std::optional<base::unique_fd> Output::composeSurfaces(const Region& debugRegion) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     const auto& outputState = getState(); | 
 |     const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition", | 
 |                                                       outputState.usesClientComposition}; | 
 |     base::unique_fd readyFence; | 
 |     if (!hasClientComposition) { | 
 |         return readyFence; | 
 |     } | 
 |  | 
 |     ALOGV("hasClientComposition"); | 
 |  | 
 |     auto& renderEngine = getCompositionEngine().getRenderEngine(); | 
 |     const bool supportsProtectedContent = renderEngine.supportsProtectedContent(); | 
 |  | 
 |     renderengine::DisplaySettings clientCompositionDisplay; | 
 |     clientCompositionDisplay.physicalDisplay = outputState.scissor; | 
 |     clientCompositionDisplay.clip = outputState.scissor; | 
 |     clientCompositionDisplay.globalTransform = outputState.transform.asMatrix4(); | 
 |     clientCompositionDisplay.orientation = outputState.orientation; | 
 |     clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut() | 
 |             ? outputState.dataspace | 
 |             : ui::Dataspace::UNKNOWN; | 
 |     clientCompositionDisplay.maxLuminance = | 
 |             mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance(); | 
 |  | 
 |     // Compute the global color transform matrix. | 
 |     if (!outputState.usesDeviceComposition && !getSkipColorTransform()) { | 
 |         clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix; | 
 |     } | 
 |  | 
 |     // Note: Updated by generateClientCompositionRequests | 
 |     clientCompositionDisplay.clearRegion = Region::INVALID_REGION; | 
 |  | 
 |     // Generate the client composition requests for the layers on this output. | 
 |     std::vector<renderengine::LayerSettings> clientCompositionLayers = | 
 |             generateClientCompositionRequests(supportsProtectedContent, | 
 |                                               clientCompositionDisplay.clearRegion); | 
 |     appendRegionFlashRequests(debugRegion, clientCompositionLayers); | 
 |  | 
 |     // If we the display is secure, protected content support is enabled, and at | 
 |     // least one layer has protected content, we need to use a secure back | 
 |     // buffer. | 
 |     if (outputState.isSecure && supportsProtectedContent) { | 
 |         auto layers = getOutputLayersOrderedByZ(); | 
 |         bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) { | 
 |             return layer->getLayer().getFEState().hasProtectedContent; | 
 |         }); | 
 |         if (needsProtected != renderEngine.isProtected()) { | 
 |             renderEngine.useProtectedContext(needsProtected); | 
 |         } | 
 |         if (needsProtected != mRenderSurface->isProtected() && | 
 |             needsProtected == renderEngine.isProtected()) { | 
 |             mRenderSurface->setProtected(needsProtected); | 
 |         } | 
 |     } | 
 |  | 
 |     base::unique_fd fd; | 
 |     sp<GraphicBuffer> buf = mRenderSurface->dequeueBuffer(&fd); | 
 |     if (buf == nullptr) { | 
 |         ALOGW("Dequeuing buffer for display [%s] failed, bailing out of " | 
 |               "client composition for this frame", | 
 |               mName.c_str()); | 
 |         return std::nullopt; | 
 |     } | 
 |  | 
 |     // We boost GPU frequency here because there will be color spaces conversion | 
 |     // and it's expensive. We boost the GPU frequency so that GPU composition can | 
 |     // finish in time. We must reset GPU frequency afterwards, because high frequency | 
 |     // consumes extra battery. | 
 |     const bool expensiveRenderingExpected = | 
 |             clientCompositionDisplay.outputDataspace == ui::Dataspace::DISPLAY_P3; | 
 |     if (expensiveRenderingExpected) { | 
 |         setExpensiveRenderingExpected(true); | 
 |     } | 
 |  | 
 |     renderEngine.drawLayers(clientCompositionDisplay, clientCompositionLayers, | 
 |                             buf->getNativeBuffer(), /*useFramebufferCache=*/true, std::move(fd), | 
 |                             &readyFence); | 
 |  | 
 |     if (expensiveRenderingExpected) { | 
 |         setExpensiveRenderingExpected(false); | 
 |     } | 
 |  | 
 |     return readyFence; | 
 | } | 
 |  | 
 | std::vector<renderengine::LayerSettings> Output::generateClientCompositionRequests( | 
 |         bool supportsProtectedContent, Region& clearRegion) { | 
 |     std::vector<renderengine::LayerSettings> clientCompositionLayers; | 
 |     ALOGV("Rendering client layers"); | 
 |  | 
 |     const auto& outputState = getState(); | 
 |     const Region viewportRegion(outputState.viewport); | 
 |     const bool useIdentityTransform = false; | 
 |     bool firstLayer = true; | 
 |     // Used when a layer clears part of the buffer. | 
 |     Region dummyRegion; | 
 |  | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         const auto& layerState = layer->getState(); | 
 |         const auto& layerFEState = layer->getLayer().getFEState(); | 
 |         auto& layerFE = layer->getLayerFE(); | 
 |  | 
 |         const Region clip(viewportRegion.intersect(layerState.visibleRegion)); | 
 |         ALOGV("Layer: %s", layerFE.getDebugName()); | 
 |         if (clip.isEmpty()) { | 
 |             ALOGV("  Skipping for empty clip"); | 
 |             firstLayer = false; | 
 |             continue; | 
 |         } | 
 |  | 
 |         bool clientComposition = layer->requiresClientComposition(); | 
 |  | 
 |         // We clear the client target for non-client composed layers if | 
 |         // requested by the HWC. We skip this if the layer is not an opaque | 
 |         // rectangle, as by definition the layer must blend with whatever is | 
 |         // underneath. We also skip the first layer as the buffer target is | 
 |         // guaranteed to start out cleared. | 
 |         bool clearClientComposition = | 
 |                 layerState.clearClientTarget && layerFEState.isOpaque && !firstLayer; | 
 |  | 
 |         ALOGV("  Composition type: client %d clear %d", clientComposition, clearClientComposition); | 
 |  | 
 |         if (clientComposition || clearClientComposition) { | 
 |             compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{ | 
 |                     clip, | 
 |                     useIdentityTransform, | 
 |                     layer->needsFiltering() || outputState.needsFiltering, | 
 |                     outputState.isSecure, | 
 |                     supportsProtectedContent, | 
 |                     clientComposition ? clearRegion : dummyRegion, | 
 |             }; | 
 |             if (auto result = layerFE.prepareClientComposition(targetSettings)) { | 
 |                 if (!clientComposition) { | 
 |                     auto& layerSettings = *result; | 
 |                     layerSettings.source.buffer.buffer = nullptr; | 
 |                     layerSettings.source.solidColor = half3(0.0, 0.0, 0.0); | 
 |                     layerSettings.alpha = half(0.0); | 
 |                     layerSettings.disableBlending = true; | 
 |                 } | 
 |  | 
 |                 clientCompositionLayers.push_back(*result); | 
 |             } | 
 |         } | 
 |  | 
 |         firstLayer = false; | 
 |     } | 
 |  | 
 |     return clientCompositionLayers; | 
 | } | 
 |  | 
 | void Output::appendRegionFlashRequests( | 
 |         const Region& flashRegion, | 
 |         std::vector<renderengine::LayerSettings>& clientCompositionLayers) { | 
 |     if (flashRegion.isEmpty()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     renderengine::LayerSettings layerSettings; | 
 |     layerSettings.source.buffer.buffer = nullptr; | 
 |     layerSettings.source.solidColor = half3(1.0, 0.0, 1.0); | 
 |     layerSettings.alpha = half(1.0); | 
 |  | 
 |     for (const auto& rect : flashRegion) { | 
 |         layerSettings.geometry.boundaries = rect.toFloatRect(); | 
 |         clientCompositionLayers.push_back(layerSettings); | 
 |     } | 
 | } | 
 |  | 
 | void Output::setExpensiveRenderingExpected(bool) { | 
 |     // The base class does nothing with this call. | 
 | } | 
 |  | 
 | void Output::postFramebuffer() { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     if (!getState().isEnabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     auto& outputState = editState(); | 
 |     outputState.dirtyRegion.clear(); | 
 |     mRenderSurface->flip(); | 
 |  | 
 |     auto frame = presentAndGetFrameFences(); | 
 |  | 
 |     mRenderSurface->onPresentDisplayCompleted(); | 
 |  | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         // The layer buffer from the previous frame (if any) is released | 
 |         // by HWC only when the release fence from this frame (if any) is | 
 |         // signaled.  Always get the release fence from HWC first. | 
 |         sp<Fence> releaseFence = Fence::NO_FENCE; | 
 |  | 
 |         if (auto hwcLayer = layer->getHwcLayer()) { | 
 |             if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) { | 
 |                 releaseFence = f->second; | 
 |             } | 
 |         } | 
 |  | 
 |         // If the layer was client composited in the previous frame, we | 
 |         // need to merge with the previous client target acquire fence. | 
 |         // Since we do not track that, always merge with the current | 
 |         // client target acquire fence when it is available, even though | 
 |         // this is suboptimal. | 
 |         // TODO(b/121291683): Track previous frame client target acquire fence. | 
 |         if (outputState.usesClientComposition) { | 
 |             releaseFence = | 
 |                     Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence); | 
 |         } | 
 |  | 
 |         layer->getLayerFE().onLayerDisplayed(releaseFence); | 
 |     } | 
 |  | 
 |     // We've got a list of layers needing fences, that are disjoint with | 
 |     // OutputLayersOrderedByZ.  The best we can do is to | 
 |     // supply them with the present fence. | 
 |     for (auto& weakLayer : mReleasedLayers) { | 
 |         if (auto layer = weakLayer.promote(); layer != nullptr) { | 
 |             layer->onLayerDisplayed(frame.presentFence); | 
 |         } | 
 |     } | 
 |  | 
 |     // Clear out the released layers now that we're done with them. | 
 |     mReleasedLayers.clear(); | 
 | } | 
 |  | 
 | void Output::dirtyEntireOutput() { | 
 |     auto& outputState = editState(); | 
 |     outputState.dirtyRegion.set(outputState.bounds); | 
 | } | 
 |  | 
 | void Output::chooseCompositionStrategy() { | 
 |     // The base output implementation can only do client composition | 
 |     auto& outputState = editState(); | 
 |     outputState.usesClientComposition = true; | 
 |     outputState.usesDeviceComposition = false; | 
 | } | 
 |  | 
 | bool Output::getSkipColorTransform() const { | 
 |     return true; | 
 | } | 
 |  | 
 | compositionengine::Output::FrameFences Output::presentAndGetFrameFences() { | 
 |     compositionengine::Output::FrameFences result; | 
 |     if (getState().usesClientComposition) { | 
 |         result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence(); | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | } // namespace impl | 
 | } // namespace android::compositionengine |