|  | /* | 
|  | * Copyright (C) 2019 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | // clang-format off | 
|  | #include "../Macros.h" | 
|  | // clang-format on | 
|  |  | 
|  | #include "TouchInputMapper.h" | 
|  |  | 
|  | #include <ftl/enum.h> | 
|  |  | 
|  | #include "CursorButtonAccumulator.h" | 
|  | #include "CursorScrollAccumulator.h" | 
|  | #include "TouchButtonAccumulator.h" | 
|  | #include "TouchCursorInputMapperCommon.h" | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // --- Constants --- | 
|  |  | 
|  | // Maximum amount of latency to add to touch events while waiting for data from an | 
|  | // external stylus. | 
|  | static constexpr nsecs_t EXTERNAL_STYLUS_DATA_TIMEOUT = ms2ns(72); | 
|  |  | 
|  | // Maximum amount of time to wait on touch data before pushing out new pressure data. | 
|  | static constexpr nsecs_t TOUCH_DATA_TIMEOUT = ms2ns(20); | 
|  |  | 
|  | // Artificial latency on synthetic events created from stylus data without corresponding touch | 
|  | // data. | 
|  | static constexpr nsecs_t STYLUS_DATA_LATENCY = ms2ns(10); | 
|  |  | 
|  | // Minimum width between two pointers to determine a gesture as freeform gesture in mm | 
|  | static const float MIN_FREEFORM_GESTURE_WIDTH_IN_MILLIMETER = 30; | 
|  | // --- Static Definitions --- | 
|  |  | 
|  | static const DisplayViewport kUninitializedViewport; | 
|  |  | 
|  | template <typename T> | 
|  | inline static void swap(T& a, T& b) { | 
|  | T temp = a; | 
|  | a = b; | 
|  | b = temp; | 
|  | } | 
|  |  | 
|  | static float calculateCommonVector(float a, float b) { | 
|  | if (a > 0 && b > 0) { | 
|  | return a < b ? a : b; | 
|  | } else if (a < 0 && b < 0) { | 
|  | return a > b ? a : b; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | inline static float distance(float x1, float y1, float x2, float y2) { | 
|  | return hypotf(x1 - x2, y1 - y2); | 
|  | } | 
|  |  | 
|  | inline static int32_t signExtendNybble(int32_t value) { | 
|  | return value >= 8 ? value - 16 : value; | 
|  | } | 
|  |  | 
|  | // --- RawPointerData --- | 
|  |  | 
|  | void RawPointerData::getCentroidOfTouchingPointers(float* outX, float* outY) const { | 
|  | float x = 0, y = 0; | 
|  | uint32_t count = touchingIdBits.count(); | 
|  | if (count) { | 
|  | for (BitSet32 idBits(touchingIdBits); !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | const Pointer& pointer = pointerForId(id); | 
|  | x += pointer.x; | 
|  | y += pointer.y; | 
|  | } | 
|  | x /= count; | 
|  | y /= count; | 
|  | } | 
|  | *outX = x; | 
|  | *outY = y; | 
|  | } | 
|  |  | 
|  | // --- TouchInputMapper --- | 
|  |  | 
|  | TouchInputMapper::TouchInputMapper(InputDeviceContext& deviceContext) | 
|  | : InputMapper(deviceContext), | 
|  | mTouchButtonAccumulator(deviceContext), | 
|  | mSource(0), | 
|  | mDeviceMode(DeviceMode::DISABLED), | 
|  | mDisplayWidth(-1), | 
|  | mDisplayHeight(-1), | 
|  | mPhysicalWidth(-1), | 
|  | mPhysicalHeight(-1), | 
|  | mPhysicalLeft(0), | 
|  | mPhysicalTop(0), | 
|  | mInputDeviceOrientation(DISPLAY_ORIENTATION_0) {} | 
|  |  | 
|  | TouchInputMapper::~TouchInputMapper() {} | 
|  |  | 
|  | uint32_t TouchInputMapper::getSources() const { | 
|  | return mSource; | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) { | 
|  | InputMapper::populateDeviceInfo(info); | 
|  |  | 
|  | if (mDeviceMode == DeviceMode::DISABLED) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | info->addMotionRange(mOrientedRanges.x); | 
|  | info->addMotionRange(mOrientedRanges.y); | 
|  | info->addMotionRange(mOrientedRanges.pressure); | 
|  |  | 
|  | if (mDeviceMode == DeviceMode::UNSCALED && mSource == AINPUT_SOURCE_TOUCHPAD) { | 
|  | // Populate RELATIVE_X and RELATIVE_Y motion ranges for touchpad capture mode. | 
|  | // | 
|  | // RELATIVE_X and RELATIVE_Y motion ranges should be the largest possible relative | 
|  | // motion, i.e. the hardware dimensions, as the finger could move completely across the | 
|  | // touchpad in one sample cycle. | 
|  | const InputDeviceInfo::MotionRange& x = mOrientedRanges.x; | 
|  | const InputDeviceInfo::MotionRange& y = mOrientedRanges.y; | 
|  | info->addMotionRange(AMOTION_EVENT_AXIS_RELATIVE_X, mSource, -x.max, x.max, x.flat, x.fuzz, | 
|  | x.resolution); | 
|  | info->addMotionRange(AMOTION_EVENT_AXIS_RELATIVE_Y, mSource, -y.max, y.max, y.flat, y.fuzz, | 
|  | y.resolution); | 
|  | } | 
|  |  | 
|  | if (mOrientedRanges.size) { | 
|  | info->addMotionRange(*mOrientedRanges.size); | 
|  | } | 
|  |  | 
|  | if (mOrientedRanges.touchMajor) { | 
|  | info->addMotionRange(*mOrientedRanges.touchMajor); | 
|  | info->addMotionRange(*mOrientedRanges.touchMinor); | 
|  | } | 
|  |  | 
|  | if (mOrientedRanges.toolMajor) { | 
|  | info->addMotionRange(*mOrientedRanges.toolMajor); | 
|  | info->addMotionRange(*mOrientedRanges.toolMinor); | 
|  | } | 
|  |  | 
|  | if (mOrientedRanges.orientation) { | 
|  | info->addMotionRange(*mOrientedRanges.orientation); | 
|  | } | 
|  |  | 
|  | if (mOrientedRanges.distance) { | 
|  | info->addMotionRange(*mOrientedRanges.distance); | 
|  | } | 
|  |  | 
|  | if (mOrientedRanges.tilt) { | 
|  | info->addMotionRange(*mOrientedRanges.tilt); | 
|  | } | 
|  |  | 
|  | if (mCursorScrollAccumulator.haveRelativeVWheel()) { | 
|  | info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); | 
|  | } | 
|  | if (mCursorScrollAccumulator.haveRelativeHWheel()) { | 
|  | info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f); | 
|  | } | 
|  | if (mCalibration.coverageCalibration == Calibration::CoverageCalibration::BOX) { | 
|  | const InputDeviceInfo::MotionRange& x = mOrientedRanges.x; | 
|  | const InputDeviceInfo::MotionRange& y = mOrientedRanges.y; | 
|  | info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_1, mSource, x.min, x.max, x.flat, x.fuzz, | 
|  | x.resolution); | 
|  | info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_2, mSource, y.min, y.max, y.flat, y.fuzz, | 
|  | y.resolution); | 
|  | info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_3, mSource, x.min, x.max, x.flat, x.fuzz, | 
|  | x.resolution); | 
|  | info->addMotionRange(AMOTION_EVENT_AXIS_GENERIC_4, mSource, y.min, y.max, y.flat, y.fuzz, | 
|  | y.resolution); | 
|  | } | 
|  | info->setButtonUnderPad(mParameters.hasButtonUnderPad); | 
|  | info->setSupportsUsi(mParameters.supportsUsi); | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::dump(std::string& dump) { | 
|  | dump += StringPrintf(INDENT2 "Touch Input Mapper (mode - %s):\n", | 
|  | ftl::enum_string(mDeviceMode).c_str()); | 
|  | dumpParameters(dump); | 
|  | dumpVirtualKeys(dump); | 
|  | dumpRawPointerAxes(dump); | 
|  | dumpCalibration(dump); | 
|  | dumpAffineTransformation(dump); | 
|  | dumpDisplay(dump); | 
|  |  | 
|  | dump += StringPrintf(INDENT3 "Translation and Scaling Factors:\n"); | 
|  | dump += StringPrintf(INDENT4 "XScale: %0.3f\n", mXScale); | 
|  | dump += StringPrintf(INDENT4 "YScale: %0.3f\n", mYScale); | 
|  | dump += StringPrintf(INDENT4 "XPrecision: %0.3f\n", mXPrecision); | 
|  | dump += StringPrintf(INDENT4 "YPrecision: %0.3f\n", mYPrecision); | 
|  | dump += StringPrintf(INDENT4 "GeometricScale: %0.3f\n", mGeometricScale); | 
|  | dump += StringPrintf(INDENT4 "PressureScale: %0.3f\n", mPressureScale); | 
|  | dump += StringPrintf(INDENT4 "SizeScale: %0.3f\n", mSizeScale); | 
|  | dump += StringPrintf(INDENT4 "OrientationScale: %0.3f\n", mOrientationScale); | 
|  | dump += StringPrintf(INDENT4 "DistanceScale: %0.3f\n", mDistanceScale); | 
|  | dump += StringPrintf(INDENT4 "HaveTilt: %s\n", toString(mHaveTilt)); | 
|  | dump += StringPrintf(INDENT4 "TiltXCenter: %0.3f\n", mTiltXCenter); | 
|  | dump += StringPrintf(INDENT4 "TiltXScale: %0.3f\n", mTiltXScale); | 
|  | dump += StringPrintf(INDENT4 "TiltYCenter: %0.3f\n", mTiltYCenter); | 
|  | dump += StringPrintf(INDENT4 "TiltYScale: %0.3f\n", mTiltYScale); | 
|  |  | 
|  | dump += StringPrintf(INDENT3 "Last Raw Button State: 0x%08x\n", mLastRawState.buttonState); | 
|  | dump += StringPrintf(INDENT3 "Last Raw Touch: pointerCount=%d\n", | 
|  | mLastRawState.rawPointerData.pointerCount); | 
|  | for (uint32_t i = 0; i < mLastRawState.rawPointerData.pointerCount; i++) { | 
|  | const RawPointerData::Pointer& pointer = mLastRawState.rawPointerData.pointers[i]; | 
|  | dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%d, y=%d, pressure=%d, " | 
|  | "touchMajor=%d, touchMinor=%d, toolMajor=%d, toolMinor=%d, " | 
|  | "orientation=%d, tiltX=%d, tiltY=%d, distance=%d, " | 
|  | "toolType=%d, isHovering=%s\n", | 
|  | i, pointer.id, pointer.x, pointer.y, pointer.pressure, | 
|  | pointer.touchMajor, pointer.touchMinor, pointer.toolMajor, | 
|  | pointer.toolMinor, pointer.orientation, pointer.tiltX, pointer.tiltY, | 
|  | pointer.distance, pointer.toolType, toString(pointer.isHovering)); | 
|  | } | 
|  |  | 
|  | dump += StringPrintf(INDENT3 "Last Cooked Button State: 0x%08x\n", | 
|  | mLastCookedState.buttonState); | 
|  | dump += StringPrintf(INDENT3 "Last Cooked Touch: pointerCount=%d\n", | 
|  | mLastCookedState.cookedPointerData.pointerCount); | 
|  | for (uint32_t i = 0; i < mLastCookedState.cookedPointerData.pointerCount; i++) { | 
|  | const PointerProperties& pointerProperties = | 
|  | mLastCookedState.cookedPointerData.pointerProperties[i]; | 
|  | const PointerCoords& pointerCoords = mLastCookedState.cookedPointerData.pointerCoords[i]; | 
|  | dump += StringPrintf(INDENT4 "[%d]: id=%d, x=%0.3f, y=%0.3f, dx=%0.3f, dy=%0.3f, " | 
|  | "pressure=%0.3f, touchMajor=%0.3f, touchMinor=%0.3f, " | 
|  | "toolMajor=%0.3f, toolMinor=%0.3f, " | 
|  | "orientation=%0.3f, tilt=%0.3f, distance=%0.3f, " | 
|  | "toolType=%d, isHovering=%s\n", | 
|  | i, pointerProperties.id, pointerCoords.getX(), pointerCoords.getY(), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_TILT), | 
|  | pointerCoords.getAxisValue(AMOTION_EVENT_AXIS_DISTANCE), | 
|  | pointerProperties.toolType, | 
|  | toString(mLastCookedState.cookedPointerData.isHovering(i))); | 
|  | } | 
|  |  | 
|  | dump += INDENT3 "Stylus Fusion:\n"; | 
|  | dump += StringPrintf(INDENT4 "ExternalStylusConnected: %s\n", | 
|  | toString(mExternalStylusConnected)); | 
|  | dump += StringPrintf(INDENT4 "External Stylus ID: %" PRId64 "\n", mExternalStylusId); | 
|  | dump += StringPrintf(INDENT4 "External Stylus Data Timeout: %" PRId64 "\n", | 
|  | mExternalStylusFusionTimeout); | 
|  | dump += INDENT3 "External Stylus State:\n"; | 
|  | dumpStylusState(dump, mExternalStylusState); | 
|  |  | 
|  | if (mDeviceMode == DeviceMode::POINTER) { | 
|  | dump += StringPrintf(INDENT3 "Pointer Gesture Detector:\n"); | 
|  | dump += StringPrintf(INDENT4 "XMovementScale: %0.3f\n", mPointerXMovementScale); | 
|  | dump += StringPrintf(INDENT4 "YMovementScale: %0.3f\n", mPointerYMovementScale); | 
|  | dump += StringPrintf(INDENT4 "XZoomScale: %0.3f\n", mPointerXZoomScale); | 
|  | dump += StringPrintf(INDENT4 "YZoomScale: %0.3f\n", mPointerYZoomScale); | 
|  | dump += StringPrintf(INDENT4 "MaxSwipeWidth: %f\n", mPointerGestureMaxSwipeWidth); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::configure(nsecs_t when, | 
|  | const InputReaderConfiguration* config, | 
|  | uint32_t changes) { | 
|  | std::list<NotifyArgs> out = InputMapper::configure(when, config, changes); | 
|  |  | 
|  | mConfig = *config; | 
|  |  | 
|  | if (!changes) { // first time only | 
|  | // Configure basic parameters. | 
|  | configureParameters(); | 
|  |  | 
|  | // Configure common accumulators. | 
|  | mCursorScrollAccumulator.configure(getDeviceContext()); | 
|  | mTouchButtonAccumulator.configure(); | 
|  |  | 
|  | // Configure absolute axis information. | 
|  | configureRawPointerAxes(); | 
|  |  | 
|  | // Prepare input device calibration. | 
|  | parseCalibration(); | 
|  | resolveCalibration(); | 
|  | } | 
|  |  | 
|  | if (!changes || (changes & InputReaderConfiguration::CHANGE_TOUCH_AFFINE_TRANSFORMATION)) { | 
|  | // Update location calibration to reflect current settings | 
|  | updateAffineTransformation(); | 
|  | } | 
|  |  | 
|  | if (!changes || (changes & InputReaderConfiguration::CHANGE_POINTER_SPEED)) { | 
|  | // Update pointer speed. | 
|  | mPointerVelocityControl.setParameters(mConfig.pointerVelocityControlParameters); | 
|  | mWheelXVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); | 
|  | mWheelYVelocityControl.setParameters(mConfig.wheelVelocityControlParameters); | 
|  | } | 
|  |  | 
|  | bool resetNeeded = false; | 
|  | if (!changes || | 
|  | (changes & | 
|  | (InputReaderConfiguration::CHANGE_DISPLAY_INFO | | 
|  | InputReaderConfiguration::CHANGE_POINTER_CAPTURE | | 
|  | InputReaderConfiguration::CHANGE_POINTER_GESTURE_ENABLEMENT | | 
|  | InputReaderConfiguration::CHANGE_SHOW_TOUCHES | | 
|  | InputReaderConfiguration::CHANGE_EXTERNAL_STYLUS_PRESENCE))) { | 
|  | // Configure device sources, display dimensions, orientation and | 
|  | // scaling factors. | 
|  | configureInputDevice(when, &resetNeeded); | 
|  | } | 
|  |  | 
|  | if (changes && resetNeeded) { | 
|  | out += reset(when); | 
|  |  | 
|  | // Send reset, unless this is the first time the device has been configured, | 
|  | // in which case the reader will call reset itself after all mappers are ready. | 
|  | out.emplace_back(NotifyDeviceResetArgs(getContext()->getNextId(), when, getDeviceId())); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::resolveExternalStylusPresence() { | 
|  | std::vector<InputDeviceInfo> devices; | 
|  | getContext()->getExternalStylusDevices(devices); | 
|  | mExternalStylusConnected = !devices.empty(); | 
|  |  | 
|  | if (!mExternalStylusConnected) { | 
|  | resetExternalStylus(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::configureParameters() { | 
|  | // Use the pointer presentation mode for devices that do not support distinct | 
|  | // multitouch.  The spot-based presentation relies on being able to accurately | 
|  | // locate two or more fingers on the touch pad. | 
|  | mParameters.gestureMode = getDeviceContext().hasInputProperty(INPUT_PROP_SEMI_MT) | 
|  | ? Parameters::GestureMode::SINGLE_TOUCH | 
|  | : Parameters::GestureMode::MULTI_TOUCH; | 
|  |  | 
|  | std::string gestureModeString; | 
|  | if (getDeviceContext().getConfiguration().tryGetProperty("touch.gestureMode", | 
|  | gestureModeString)) { | 
|  | if (gestureModeString == "single-touch") { | 
|  | mParameters.gestureMode = Parameters::GestureMode::SINGLE_TOUCH; | 
|  | } else if (gestureModeString == "multi-touch") { | 
|  | mParameters.gestureMode = Parameters::GestureMode::MULTI_TOUCH; | 
|  | } else if (gestureModeString != "default") { | 
|  | ALOGW("Invalid value for touch.gestureMode: '%s'", gestureModeString.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (getDeviceContext().hasInputProperty(INPUT_PROP_DIRECT)) { | 
|  | // The device is a touch screen. | 
|  | mParameters.deviceType = Parameters::DeviceType::TOUCH_SCREEN; | 
|  | } else if (getDeviceContext().hasInputProperty(INPUT_PROP_POINTER)) { | 
|  | // The device is a pointing device like a track pad. | 
|  | mParameters.deviceType = Parameters::DeviceType::POINTER; | 
|  | } else { | 
|  | // The device is a touch pad of unknown purpose. | 
|  | mParameters.deviceType = Parameters::DeviceType::POINTER; | 
|  | } | 
|  |  | 
|  | mParameters.hasButtonUnderPad = getDeviceContext().hasInputProperty(INPUT_PROP_BUTTONPAD); | 
|  |  | 
|  | std::string deviceTypeString; | 
|  | if (getDeviceContext().getConfiguration().tryGetProperty("touch.deviceType", | 
|  | deviceTypeString)) { | 
|  | if (deviceTypeString == "touchScreen") { | 
|  | mParameters.deviceType = Parameters::DeviceType::TOUCH_SCREEN; | 
|  | } else if (deviceTypeString == "touchNavigation") { | 
|  | mParameters.deviceType = Parameters::DeviceType::TOUCH_NAVIGATION; | 
|  | } else if (deviceTypeString == "pointer") { | 
|  | mParameters.deviceType = Parameters::DeviceType::POINTER; | 
|  | } else if (deviceTypeString != "default") { | 
|  | ALOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | mParameters.orientationAware = mParameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN; | 
|  | getDeviceContext().getConfiguration().tryGetProperty("touch.orientationAware", | 
|  | mParameters.orientationAware); | 
|  |  | 
|  | mParameters.orientation = Parameters::Orientation::ORIENTATION_0; | 
|  | std::string orientationString; | 
|  | if (getDeviceContext().getConfiguration().tryGetProperty("touch.orientation", | 
|  | orientationString)) { | 
|  | if (mParameters.deviceType != Parameters::DeviceType::TOUCH_SCREEN) { | 
|  | ALOGW("The configuration 'touch.orientation' is only supported for touchscreens."); | 
|  | } else if (orientationString == "ORIENTATION_90") { | 
|  | mParameters.orientation = Parameters::Orientation::ORIENTATION_90; | 
|  | } else if (orientationString == "ORIENTATION_180") { | 
|  | mParameters.orientation = Parameters::Orientation::ORIENTATION_180; | 
|  | } else if (orientationString == "ORIENTATION_270") { | 
|  | mParameters.orientation = Parameters::Orientation::ORIENTATION_270; | 
|  | } else if (orientationString != "ORIENTATION_0") { | 
|  | ALOGW("Invalid value for touch.orientation: '%s'", orientationString.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | mParameters.hasAssociatedDisplay = false; | 
|  | mParameters.associatedDisplayIsExternal = false; | 
|  | if (mParameters.orientationAware || | 
|  | mParameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN || | 
|  | mParameters.deviceType == Parameters::DeviceType::POINTER) { | 
|  | mParameters.hasAssociatedDisplay = true; | 
|  | if (mParameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN) { | 
|  | mParameters.associatedDisplayIsExternal = getDeviceContext().isExternal(); | 
|  | std::string uniqueDisplayId; | 
|  | getDeviceContext().getConfiguration().tryGetProperty("touch.displayId", | 
|  | uniqueDisplayId); | 
|  | mParameters.uniqueDisplayId = uniqueDisplayId.c_str(); | 
|  | } | 
|  | } | 
|  | if (getDeviceContext().getAssociatedDisplayPort()) { | 
|  | mParameters.hasAssociatedDisplay = true; | 
|  | } | 
|  |  | 
|  | // Initial downs on external touch devices should wake the device. | 
|  | // Normally we don't do this for internal touch screens to prevent them from waking | 
|  | // up in your pocket but you can enable it using the input device configuration. | 
|  | mParameters.wake = getDeviceContext().isExternal(); | 
|  | getDeviceContext().getConfiguration().tryGetProperty("touch.wake", mParameters.wake); | 
|  |  | 
|  | mParameters.supportsUsi = false; | 
|  | getDeviceContext().getConfiguration().tryGetProperty("touch.supportsUsi", | 
|  | mParameters.supportsUsi); | 
|  |  | 
|  | mParameters.enableForInactiveViewport = false; | 
|  | getDeviceContext().getConfiguration().tryGetProperty("touch.enableForInactiveViewport", | 
|  | mParameters.enableForInactiveViewport); | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::dumpParameters(std::string& dump) { | 
|  | dump += INDENT3 "Parameters:\n"; | 
|  |  | 
|  | dump += INDENT4 "GestureMode: " + ftl::enum_string(mParameters.gestureMode) + "\n"; | 
|  |  | 
|  | dump += INDENT4 "DeviceType: " + ftl::enum_string(mParameters.deviceType) + "\n"; | 
|  |  | 
|  | dump += StringPrintf(INDENT4 "AssociatedDisplay: hasAssociatedDisplay=%s, isExternal=%s, " | 
|  | "displayId='%s'\n", | 
|  | toString(mParameters.hasAssociatedDisplay), | 
|  | toString(mParameters.associatedDisplayIsExternal), | 
|  | mParameters.uniqueDisplayId.c_str()); | 
|  | dump += StringPrintf(INDENT4 "OrientationAware: %s\n", toString(mParameters.orientationAware)); | 
|  | dump += INDENT4 "Orientation: " + ftl::enum_string(mParameters.orientation) + "\n"; | 
|  | dump += StringPrintf(INDENT4 "SupportsUsi: %s\n", toString(mParameters.supportsUsi)); | 
|  | dump += StringPrintf(INDENT4 "EnableForInactiveViewport: %s\n", | 
|  | toString(mParameters.enableForInactiveViewport)); | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::configureRawPointerAxes() { | 
|  | mRawPointerAxes.clear(); | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::dumpRawPointerAxes(std::string& dump) { | 
|  | dump += INDENT3 "Raw Touch Axes:\n"; | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.x, "X"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.y, "Y"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.pressure, "Pressure"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMajor, "TouchMajor"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.touchMinor, "TouchMinor"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMajor, "ToolMajor"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.toolMinor, "ToolMinor"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.orientation, "Orientation"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.distance, "Distance"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltX, "TiltX"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.tiltY, "TiltY"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.trackingId, "TrackingId"); | 
|  | dumpRawAbsoluteAxisInfo(dump, mRawPointerAxes.slot, "Slot"); | 
|  | } | 
|  |  | 
|  | bool TouchInputMapper::hasExternalStylus() const { | 
|  | return mExternalStylusConnected; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Determine which DisplayViewport to use. | 
|  | * 1. If a device has associated display, get the matching viewport. | 
|  | * 2. Always use the suggested viewport from WindowManagerService for pointers. | 
|  | * 3. Get the matching viewport by either unique id in idc file or by the display type | 
|  | * (internal or external). | 
|  | * 4. Otherwise, use a non-display viewport. | 
|  | */ | 
|  | std::optional<DisplayViewport> TouchInputMapper::findViewport() { | 
|  | if (mParameters.hasAssociatedDisplay && mDeviceMode != DeviceMode::UNSCALED) { | 
|  | if (getDeviceContext().getAssociatedViewport()) { | 
|  | return getDeviceContext().getAssociatedViewport(); | 
|  | } | 
|  |  | 
|  | const std::optional<std::string> associatedDisplayUniqueId = | 
|  | getDeviceContext().getAssociatedDisplayUniqueId(); | 
|  | if (associatedDisplayUniqueId) { | 
|  | return getDeviceContext().getAssociatedViewport(); | 
|  | } | 
|  |  | 
|  | if (mDeviceMode == DeviceMode::POINTER) { | 
|  | std::optional<DisplayViewport> viewport = | 
|  | mConfig.getDisplayViewportById(mConfig.defaultPointerDisplayId); | 
|  | if (viewport) { | 
|  | return viewport; | 
|  | } else { | 
|  | ALOGW("Can't find designated display viewport with ID %" PRId32 " for pointers.", | 
|  | mConfig.defaultPointerDisplayId); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if uniqueDisplayId is specified in idc file. | 
|  | if (!mParameters.uniqueDisplayId.empty()) { | 
|  | return mConfig.getDisplayViewportByUniqueId(mParameters.uniqueDisplayId); | 
|  | } | 
|  |  | 
|  | ViewportType viewportTypeToUse; | 
|  | if (mParameters.associatedDisplayIsExternal) { | 
|  | viewportTypeToUse = ViewportType::EXTERNAL; | 
|  | } else { | 
|  | viewportTypeToUse = ViewportType::INTERNAL; | 
|  | } | 
|  |  | 
|  | std::optional<DisplayViewport> viewport = | 
|  | mConfig.getDisplayViewportByType(viewportTypeToUse); | 
|  | if (!viewport && viewportTypeToUse == ViewportType::EXTERNAL) { | 
|  | ALOGW("Input device %s should be associated with external display, " | 
|  | "fallback to internal one for the external viewport is not found.", | 
|  | getDeviceName().c_str()); | 
|  | viewport = mConfig.getDisplayViewportByType(ViewportType::INTERNAL); | 
|  | } | 
|  |  | 
|  | return viewport; | 
|  | } | 
|  |  | 
|  | // No associated display, return a non-display viewport. | 
|  | DisplayViewport newViewport; | 
|  | // Raw width and height in the natural orientation. | 
|  | int32_t rawWidth = mRawPointerAxes.getRawWidth(); | 
|  | int32_t rawHeight = mRawPointerAxes.getRawHeight(); | 
|  | newViewport.setNonDisplayViewport(rawWidth, rawHeight); | 
|  | return std::make_optional(newViewport); | 
|  | } | 
|  |  | 
|  | int32_t TouchInputMapper::clampResolution(const char* axisName, int32_t resolution) const { | 
|  | if (resolution < 0) { | 
|  | ALOGE("Invalid %s resolution %" PRId32 " for device %s", axisName, resolution, | 
|  | getDeviceName().c_str()); | 
|  | return 0; | 
|  | } | 
|  | return resolution; | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::initializeSizeRanges() { | 
|  | if (mCalibration.sizeCalibration == Calibration::SizeCalibration::NONE) { | 
|  | mSizeScale = 0.0f; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Size of diagonal axis. | 
|  | const float diagonalSize = hypotf(mDisplayWidth, mDisplayHeight); | 
|  |  | 
|  | // Size factors. | 
|  | if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.touchMajor.maxValue != 0) { | 
|  | mSizeScale = 1.0f / mRawPointerAxes.touchMajor.maxValue; | 
|  | } else if (mRawPointerAxes.toolMajor.valid && mRawPointerAxes.toolMajor.maxValue != 0) { | 
|  | mSizeScale = 1.0f / mRawPointerAxes.toolMajor.maxValue; | 
|  | } else { | 
|  | mSizeScale = 0.0f; | 
|  | } | 
|  |  | 
|  | mOrientedRanges.touchMajor = InputDeviceInfo::MotionRange{ | 
|  | .axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR, | 
|  | .source = mSource, | 
|  | .min = 0, | 
|  | .max = diagonalSize, | 
|  | .flat = 0, | 
|  | .fuzz = 0, | 
|  | .resolution = 0, | 
|  | }; | 
|  |  | 
|  | if (mRawPointerAxes.touchMajor.valid) { | 
|  | mRawPointerAxes.touchMajor.resolution = | 
|  | clampResolution("touchMajor", mRawPointerAxes.touchMajor.resolution); | 
|  | mOrientedRanges.touchMajor->resolution = mRawPointerAxes.touchMajor.resolution; | 
|  | } | 
|  |  | 
|  | mOrientedRanges.touchMinor = mOrientedRanges.touchMajor; | 
|  | mOrientedRanges.touchMinor->axis = AMOTION_EVENT_AXIS_TOUCH_MINOR; | 
|  | if (mRawPointerAxes.touchMinor.valid) { | 
|  | mRawPointerAxes.touchMinor.resolution = | 
|  | clampResolution("touchMinor", mRawPointerAxes.touchMinor.resolution); | 
|  | mOrientedRanges.touchMinor->resolution = mRawPointerAxes.touchMinor.resolution; | 
|  | } | 
|  |  | 
|  | mOrientedRanges.toolMajor = InputDeviceInfo::MotionRange{ | 
|  | .axis = AMOTION_EVENT_AXIS_TOOL_MAJOR, | 
|  | .source = mSource, | 
|  | .min = 0, | 
|  | .max = diagonalSize, | 
|  | .flat = 0, | 
|  | .fuzz = 0, | 
|  | .resolution = 0, | 
|  | }; | 
|  | if (mRawPointerAxes.toolMajor.valid) { | 
|  | mRawPointerAxes.toolMajor.resolution = | 
|  | clampResolution("toolMajor", mRawPointerAxes.toolMajor.resolution); | 
|  | mOrientedRanges.toolMajor->resolution = mRawPointerAxes.toolMajor.resolution; | 
|  | } | 
|  |  | 
|  | mOrientedRanges.toolMinor = mOrientedRanges.toolMajor; | 
|  | mOrientedRanges.toolMinor->axis = AMOTION_EVENT_AXIS_TOOL_MINOR; | 
|  | if (mRawPointerAxes.toolMinor.valid) { | 
|  | mRawPointerAxes.toolMinor.resolution = | 
|  | clampResolution("toolMinor", mRawPointerAxes.toolMinor.resolution); | 
|  | mOrientedRanges.toolMinor->resolution = mRawPointerAxes.toolMinor.resolution; | 
|  | } | 
|  |  | 
|  | if (mCalibration.sizeCalibration == Calibration::SizeCalibration::GEOMETRIC) { | 
|  | mOrientedRanges.touchMajor->resolution *= mGeometricScale; | 
|  | mOrientedRanges.touchMinor->resolution *= mGeometricScale; | 
|  | mOrientedRanges.toolMajor->resolution *= mGeometricScale; | 
|  | mOrientedRanges.toolMinor->resolution *= mGeometricScale; | 
|  | } else { | 
|  | // Support for other calibrations can be added here. | 
|  | ALOGW("%s calibration is not supported for size ranges at the moment. " | 
|  | "Using raw resolution instead", | 
|  | ftl::enum_string(mCalibration.sizeCalibration).c_str()); | 
|  | } | 
|  |  | 
|  | mOrientedRanges.size = InputDeviceInfo::MotionRange{ | 
|  | .axis = AMOTION_EVENT_AXIS_SIZE, | 
|  | .source = mSource, | 
|  | .min = 0, | 
|  | .max = 1.0, | 
|  | .flat = 0, | 
|  | .fuzz = 0, | 
|  | .resolution = 0, | 
|  | }; | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::initializeOrientedRanges() { | 
|  | // Configure X and Y factors. | 
|  | mXScale = float(mDisplayWidth) / mRawPointerAxes.getRawWidth(); | 
|  | mYScale = float(mDisplayHeight) / mRawPointerAxes.getRawHeight(); | 
|  | mXPrecision = 1.0f / mXScale; | 
|  | mYPrecision = 1.0f / mYScale; | 
|  |  | 
|  | mOrientedRanges.x.axis = AMOTION_EVENT_AXIS_X; | 
|  | mOrientedRanges.x.source = mSource; | 
|  | mOrientedRanges.y.axis = AMOTION_EVENT_AXIS_Y; | 
|  | mOrientedRanges.y.source = mSource; | 
|  |  | 
|  | // Scale factor for terms that are not oriented in a particular axis. | 
|  | // If the pixels are square then xScale == yScale otherwise we fake it | 
|  | // by choosing an average. | 
|  | mGeometricScale = avg(mXScale, mYScale); | 
|  |  | 
|  | initializeSizeRanges(); | 
|  |  | 
|  | // Pressure factors. | 
|  | mPressureScale = 0; | 
|  | float pressureMax = 1.0; | 
|  | if (mCalibration.pressureCalibration == Calibration::PressureCalibration::PHYSICAL || | 
|  | mCalibration.pressureCalibration == Calibration::PressureCalibration::AMPLITUDE) { | 
|  | if (mCalibration.pressureScale) { | 
|  | mPressureScale = *mCalibration.pressureScale; | 
|  | pressureMax = mPressureScale * mRawPointerAxes.pressure.maxValue; | 
|  | } else if (mRawPointerAxes.pressure.valid && mRawPointerAxes.pressure.maxValue != 0) { | 
|  | mPressureScale = 1.0f / mRawPointerAxes.pressure.maxValue; | 
|  | } | 
|  | } | 
|  |  | 
|  | mOrientedRanges.pressure = InputDeviceInfo::MotionRange{ | 
|  | .axis = AMOTION_EVENT_AXIS_PRESSURE, | 
|  | .source = mSource, | 
|  | .min = 0, | 
|  | .max = pressureMax, | 
|  | .flat = 0, | 
|  | .fuzz = 0, | 
|  | .resolution = 0, | 
|  | }; | 
|  |  | 
|  | // Tilt | 
|  | mTiltXCenter = 0; | 
|  | mTiltXScale = 0; | 
|  | mTiltYCenter = 0; | 
|  | mTiltYScale = 0; | 
|  | mHaveTilt = mRawPointerAxes.tiltX.valid && mRawPointerAxes.tiltY.valid; | 
|  | if (mHaveTilt) { | 
|  | mTiltXCenter = avg(mRawPointerAxes.tiltX.minValue, mRawPointerAxes.tiltX.maxValue); | 
|  | mTiltYCenter = avg(mRawPointerAxes.tiltY.minValue, mRawPointerAxes.tiltY.maxValue); | 
|  | mTiltXScale = M_PI / 180; | 
|  | mTiltYScale = M_PI / 180; | 
|  |  | 
|  | if (mRawPointerAxes.tiltX.resolution) { | 
|  | mTiltXScale = 1.0 / mRawPointerAxes.tiltX.resolution; | 
|  | } | 
|  | if (mRawPointerAxes.tiltY.resolution) { | 
|  | mTiltYScale = 1.0 / mRawPointerAxes.tiltY.resolution; | 
|  | } | 
|  |  | 
|  | mOrientedRanges.tilt = InputDeviceInfo::MotionRange{ | 
|  | .axis = AMOTION_EVENT_AXIS_TILT, | 
|  | .source = mSource, | 
|  | .min = 0, | 
|  | .max = M_PI_2, | 
|  | .flat = 0, | 
|  | .fuzz = 0, | 
|  | .resolution = 0, | 
|  | }; | 
|  | } | 
|  |  | 
|  | // Orientation | 
|  | mOrientationScale = 0; | 
|  | if (mHaveTilt) { | 
|  | mOrientedRanges.orientation = InputDeviceInfo::MotionRange{ | 
|  | .axis = AMOTION_EVENT_AXIS_ORIENTATION, | 
|  | .source = mSource, | 
|  | .min = -M_PI, | 
|  | .max = M_PI, | 
|  | .flat = 0, | 
|  | .fuzz = 0, | 
|  | .resolution = 0, | 
|  | }; | 
|  |  | 
|  | } else if (mCalibration.orientationCalibration != Calibration::OrientationCalibration::NONE) { | 
|  | if (mCalibration.orientationCalibration == | 
|  | Calibration::OrientationCalibration::INTERPOLATED) { | 
|  | if (mRawPointerAxes.orientation.valid) { | 
|  | if (mRawPointerAxes.orientation.maxValue > 0) { | 
|  | mOrientationScale = M_PI_2 / mRawPointerAxes.orientation.maxValue; | 
|  | } else if (mRawPointerAxes.orientation.minValue < 0) { | 
|  | mOrientationScale = -M_PI_2 / mRawPointerAxes.orientation.minValue; | 
|  | } else { | 
|  | mOrientationScale = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mOrientedRanges.orientation = InputDeviceInfo::MotionRange{ | 
|  | .axis = AMOTION_EVENT_AXIS_ORIENTATION, | 
|  | .source = mSource, | 
|  | .min = -M_PI_2, | 
|  | .max = M_PI_2, | 
|  | .flat = 0, | 
|  | .fuzz = 0, | 
|  | .resolution = 0, | 
|  | }; | 
|  | } | 
|  |  | 
|  | // Distance | 
|  | mDistanceScale = 0; | 
|  | if (mCalibration.distanceCalibration != Calibration::DistanceCalibration::NONE) { | 
|  | if (mCalibration.distanceCalibration == Calibration::DistanceCalibration::SCALED) { | 
|  | mDistanceScale = mCalibration.distanceScale.value_or(1.0f); | 
|  | } | 
|  |  | 
|  | mOrientedRanges.distance = InputDeviceInfo::MotionRange{ | 
|  |  | 
|  | .axis = AMOTION_EVENT_AXIS_DISTANCE, | 
|  | .source = mSource, | 
|  | .min = mRawPointerAxes.distance.minValue * mDistanceScale, | 
|  | .max = mRawPointerAxes.distance.maxValue * mDistanceScale, | 
|  | .flat = 0, | 
|  | .fuzz = mRawPointerAxes.distance.fuzz * mDistanceScale, | 
|  | .resolution = 0, | 
|  | }; | 
|  | } | 
|  |  | 
|  | // Compute oriented precision, scales and ranges. | 
|  | // Note that the maximum value reported is an inclusive maximum value so it is one | 
|  | // unit less than the total width or height of the display. | 
|  | switch (mInputDeviceOrientation) { | 
|  | case DISPLAY_ORIENTATION_90: | 
|  | case DISPLAY_ORIENTATION_270: | 
|  | mOrientedXPrecision = mYPrecision; | 
|  | mOrientedYPrecision = mXPrecision; | 
|  |  | 
|  | mOrientedRanges.x.min = 0; | 
|  | mOrientedRanges.x.max = mDisplayHeight - 1; | 
|  | mOrientedRanges.x.flat = 0; | 
|  | mOrientedRanges.x.fuzz = 0; | 
|  | mOrientedRanges.x.resolution = mRawPointerAxes.y.resolution * mYScale; | 
|  |  | 
|  | mOrientedRanges.y.min = 0; | 
|  | mOrientedRanges.y.max = mDisplayWidth - 1; | 
|  | mOrientedRanges.y.flat = 0; | 
|  | mOrientedRanges.y.fuzz = 0; | 
|  | mOrientedRanges.y.resolution = mRawPointerAxes.x.resolution * mXScale; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | mOrientedXPrecision = mXPrecision; | 
|  | mOrientedYPrecision = mYPrecision; | 
|  |  | 
|  | mOrientedRanges.x.min = 0; | 
|  | mOrientedRanges.x.max = mDisplayWidth - 1; | 
|  | mOrientedRanges.x.flat = 0; | 
|  | mOrientedRanges.x.fuzz = 0; | 
|  | mOrientedRanges.x.resolution = mRawPointerAxes.x.resolution * mXScale; | 
|  |  | 
|  | mOrientedRanges.y.min = 0; | 
|  | mOrientedRanges.y.max = mDisplayHeight - 1; | 
|  | mOrientedRanges.y.flat = 0; | 
|  | mOrientedRanges.y.fuzz = 0; | 
|  | mOrientedRanges.y.resolution = mRawPointerAxes.y.resolution * mYScale; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::configureInputDevice(nsecs_t when, bool* outResetNeeded) { | 
|  | const DeviceMode oldDeviceMode = mDeviceMode; | 
|  |  | 
|  | resolveExternalStylusPresence(); | 
|  |  | 
|  | // Determine device mode. | 
|  | if (mParameters.deviceType == Parameters::DeviceType::POINTER && | 
|  | mConfig.pointerGesturesEnabled && !mConfig.pointerCaptureRequest.enable) { | 
|  | mSource = AINPUT_SOURCE_MOUSE; | 
|  | mDeviceMode = DeviceMode::POINTER; | 
|  | if (hasStylus()) { | 
|  | mSource |= AINPUT_SOURCE_STYLUS; | 
|  | } else { | 
|  | mSource |= AINPUT_SOURCE_TOUCHPAD; | 
|  | } | 
|  | } else if (isTouchScreen()) { | 
|  | mSource = AINPUT_SOURCE_TOUCHSCREEN; | 
|  | mDeviceMode = DeviceMode::DIRECT; | 
|  | if (hasStylus()) { | 
|  | mSource |= AINPUT_SOURCE_STYLUS; | 
|  | } | 
|  | if (hasExternalStylus()) { | 
|  | mSource |= AINPUT_SOURCE_BLUETOOTH_STYLUS; | 
|  | } | 
|  | } else if (mParameters.deviceType == Parameters::DeviceType::TOUCH_NAVIGATION) { | 
|  | mSource = AINPUT_SOURCE_TOUCH_NAVIGATION; | 
|  | mDeviceMode = DeviceMode::NAVIGATION; | 
|  | } else { | 
|  | mSource = AINPUT_SOURCE_TOUCHPAD; | 
|  | mDeviceMode = DeviceMode::UNSCALED; | 
|  | } | 
|  |  | 
|  | const std::optional<DisplayViewport> newViewportOpt = findViewport(); | 
|  |  | 
|  | // Ensure the device is valid and can be used. | 
|  | if (!mRawPointerAxes.x.valid || !mRawPointerAxes.y.valid) { | 
|  | ALOGW("Touch device '%s' did not report support for X or Y axis!  " | 
|  | "The device will be inoperable.", | 
|  | getDeviceName().c_str()); | 
|  | mDeviceMode = DeviceMode::DISABLED; | 
|  | } else if (!newViewportOpt) { | 
|  | ALOGI("Touch device '%s' could not query the properties of its associated " | 
|  | "display.  The device will be inoperable until the display size " | 
|  | "becomes available.", | 
|  | getDeviceName().c_str()); | 
|  | mDeviceMode = DeviceMode::DISABLED; | 
|  | } else if (!mParameters.enableForInactiveViewport && !newViewportOpt->isActive) { | 
|  | ALOGI("Disabling %s (device %i) because the associated viewport is not active", | 
|  | getDeviceName().c_str(), getDeviceId()); | 
|  | mDeviceMode = DeviceMode::DISABLED; | 
|  | } | 
|  |  | 
|  | // Raw width and height in the natural orientation. | 
|  | const int32_t rawWidth = mRawPointerAxes.getRawWidth(); | 
|  | const int32_t rawHeight = mRawPointerAxes.getRawHeight(); | 
|  | const int32_t rawXResolution = mRawPointerAxes.x.resolution; | 
|  | const int32_t rawYResolution = mRawPointerAxes.y.resolution; | 
|  | // Calculate the mean resolution when both x and y resolution are set, otherwise set it to 0. | 
|  | const float rawMeanResolution = | 
|  | (rawXResolution > 0 && rawYResolution > 0) ? (rawXResolution + rawYResolution) / 2 : 0; | 
|  |  | 
|  | const DisplayViewport& newViewport = newViewportOpt.value_or(kUninitializedViewport); | 
|  | const bool viewportChanged = mViewport != newViewport; | 
|  | bool skipViewportUpdate = false; | 
|  | if (viewportChanged) { | 
|  | const bool viewportOrientationChanged = mViewport.orientation != newViewport.orientation; | 
|  | const bool viewportDisplayIdChanged = mViewport.displayId != newViewport.displayId; | 
|  | mViewport = newViewport; | 
|  |  | 
|  | if (mDeviceMode == DeviceMode::DIRECT || mDeviceMode == DeviceMode::POINTER) { | 
|  | // Convert rotated viewport to the natural orientation. | 
|  | int32_t naturalPhysicalWidth, naturalPhysicalHeight; | 
|  | int32_t naturalPhysicalLeft, naturalPhysicalTop; | 
|  | int32_t naturalDeviceWidth, naturalDeviceHeight; | 
|  |  | 
|  | // Apply the inverse of the input device orientation so that the input device is | 
|  | // configured in the same orientation as the viewport. The input device orientation will | 
|  | // be re-applied by mInputDeviceOrientation. | 
|  | const int32_t naturalDeviceOrientation = | 
|  | (mViewport.orientation - static_cast<int32_t>(mParameters.orientation) + 4) % 4; | 
|  | switch (naturalDeviceOrientation) { | 
|  | case DISPLAY_ORIENTATION_90: | 
|  | naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; | 
|  | naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; | 
|  | naturalPhysicalLeft = mViewport.deviceHeight - mViewport.physicalBottom; | 
|  | naturalPhysicalTop = mViewport.physicalLeft; | 
|  | naturalDeviceWidth = mViewport.deviceHeight; | 
|  | naturalDeviceHeight = mViewport.deviceWidth; | 
|  | break; | 
|  | case DISPLAY_ORIENTATION_180: | 
|  | naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; | 
|  | naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; | 
|  | naturalPhysicalLeft = mViewport.deviceWidth - mViewport.physicalRight; | 
|  | naturalPhysicalTop = mViewport.deviceHeight - mViewport.physicalBottom; | 
|  | naturalDeviceWidth = mViewport.deviceWidth; | 
|  | naturalDeviceHeight = mViewport.deviceHeight; | 
|  | break; | 
|  | case DISPLAY_ORIENTATION_270: | 
|  | naturalPhysicalWidth = mViewport.physicalBottom - mViewport.physicalTop; | 
|  | naturalPhysicalHeight = mViewport.physicalRight - mViewport.physicalLeft; | 
|  | naturalPhysicalLeft = mViewport.physicalTop; | 
|  | naturalPhysicalTop = mViewport.deviceWidth - mViewport.physicalRight; | 
|  | naturalDeviceWidth = mViewport.deviceHeight; | 
|  | naturalDeviceHeight = mViewport.deviceWidth; | 
|  | break; | 
|  | case DISPLAY_ORIENTATION_0: | 
|  | default: | 
|  | naturalPhysicalWidth = mViewport.physicalRight - mViewport.physicalLeft; | 
|  | naturalPhysicalHeight = mViewport.physicalBottom - mViewport.physicalTop; | 
|  | naturalPhysicalLeft = mViewport.physicalLeft; | 
|  | naturalPhysicalTop = mViewport.physicalTop; | 
|  | naturalDeviceWidth = mViewport.deviceWidth; | 
|  | naturalDeviceHeight = mViewport.deviceHeight; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (naturalPhysicalHeight == 0 || naturalPhysicalWidth == 0) { | 
|  | ALOGE("Viewport is not set properly: %s", mViewport.toString().c_str()); | 
|  | naturalPhysicalHeight = naturalPhysicalHeight == 0 ? 1 : naturalPhysicalHeight; | 
|  | naturalPhysicalWidth = naturalPhysicalWidth == 0 ? 1 : naturalPhysicalWidth; | 
|  | } | 
|  |  | 
|  | mPhysicalWidth = naturalPhysicalWidth; | 
|  | mPhysicalHeight = naturalPhysicalHeight; | 
|  | mPhysicalLeft = naturalPhysicalLeft; | 
|  | mPhysicalTop = naturalPhysicalTop; | 
|  |  | 
|  | const int32_t oldDisplayWidth = mDisplayWidth; | 
|  | const int32_t oldDisplayHeight = mDisplayHeight; | 
|  | mDisplayWidth = naturalDeviceWidth; | 
|  | mDisplayHeight = naturalDeviceHeight; | 
|  |  | 
|  | // InputReader works in the un-rotated display coordinate space, so we don't need to do | 
|  | // anything if the device is already orientation-aware. If the device is not | 
|  | // orientation-aware, then we need to apply the inverse rotation of the display so that | 
|  | // when the display rotation is applied later as a part of the per-window transform, we | 
|  | // get the expected screen coordinates. | 
|  | mInputDeviceOrientation = mParameters.orientationAware | 
|  | ? DISPLAY_ORIENTATION_0 | 
|  | : getInverseRotation(mViewport.orientation); | 
|  | // For orientation-aware devices that work in the un-rotated coordinate space, the | 
|  | // viewport update should be skipped if it is only a change in the orientation. | 
|  | skipViewportUpdate = !viewportDisplayIdChanged && mParameters.orientationAware && | 
|  | mDisplayWidth == oldDisplayWidth && mDisplayHeight == oldDisplayHeight && | 
|  | viewportOrientationChanged; | 
|  |  | 
|  | // Apply the input device orientation for the device. | 
|  | mInputDeviceOrientation = | 
|  | (mInputDeviceOrientation + static_cast<int32_t>(mParameters.orientation)) % 4; | 
|  | } else { | 
|  | mPhysicalWidth = rawWidth; | 
|  | mPhysicalHeight = rawHeight; | 
|  | mPhysicalLeft = 0; | 
|  | mPhysicalTop = 0; | 
|  |  | 
|  | mDisplayWidth = rawWidth; | 
|  | mDisplayHeight = rawHeight; | 
|  | mInputDeviceOrientation = DISPLAY_ORIENTATION_0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If moving between pointer modes, need to reset some state. | 
|  | bool deviceModeChanged = mDeviceMode != oldDeviceMode; | 
|  | if (deviceModeChanged) { | 
|  | mOrientedRanges.clear(); | 
|  | } | 
|  |  | 
|  | // Create pointer controller if needed, and keep it around if Pointer Capture is enabled to | 
|  | // preserve the cursor position. | 
|  | if (mDeviceMode == DeviceMode::POINTER || | 
|  | (mDeviceMode == DeviceMode::DIRECT && mConfig.showTouches) || | 
|  | (mParameters.deviceType == Parameters::DeviceType::POINTER && | 
|  | mConfig.pointerCaptureRequest.enable)) { | 
|  | if (mPointerController == nullptr) { | 
|  | mPointerController = getContext()->getPointerController(getDeviceId()); | 
|  | } | 
|  | if (mConfig.pointerCaptureRequest.enable) { | 
|  | mPointerController->fade(PointerControllerInterface::Transition::IMMEDIATE); | 
|  | } | 
|  | } else { | 
|  | if (mPointerController != nullptr && mDeviceMode == DeviceMode::DIRECT && | 
|  | !mConfig.showTouches) { | 
|  | mPointerController->clearSpots(); | 
|  | } | 
|  | mPointerController.reset(); | 
|  | } | 
|  |  | 
|  | if ((viewportChanged && !skipViewportUpdate) || deviceModeChanged) { | 
|  | ALOGI("Device reconfigured: id=%d, name='%s', size %dx%d, orientation %d, mode %d, " | 
|  | "display id %d", | 
|  | getDeviceId(), getDeviceName().c_str(), mDisplayWidth, mDisplayHeight, | 
|  | mInputDeviceOrientation, mDeviceMode, mViewport.displayId); | 
|  |  | 
|  | configureVirtualKeys(); | 
|  |  | 
|  | initializeOrientedRanges(); | 
|  |  | 
|  | // Location | 
|  | updateAffineTransformation(); | 
|  |  | 
|  | if (mDeviceMode == DeviceMode::POINTER) { | 
|  | // Compute pointer gesture detection parameters. | 
|  | float rawDiagonal = hypotf(rawWidth, rawHeight); | 
|  | float displayDiagonal = hypotf(mDisplayWidth, mDisplayHeight); | 
|  |  | 
|  | // Scale movements such that one whole swipe of the touch pad covers a | 
|  | // given area relative to the diagonal size of the display when no acceleration | 
|  | // is applied. | 
|  | // Assume that the touch pad has a square aspect ratio such that movements in | 
|  | // X and Y of the same number of raw units cover the same physical distance. | 
|  | mPointerXMovementScale = | 
|  | mConfig.pointerGestureMovementSpeedRatio * displayDiagonal / rawDiagonal; | 
|  | mPointerYMovementScale = mPointerXMovementScale; | 
|  |  | 
|  | // Scale zooms to cover a smaller range of the display than movements do. | 
|  | // This value determines the area around the pointer that is affected by freeform | 
|  | // pointer gestures. | 
|  | mPointerXZoomScale = | 
|  | mConfig.pointerGestureZoomSpeedRatio * displayDiagonal / rawDiagonal; | 
|  | mPointerYZoomScale = mPointerXZoomScale; | 
|  |  | 
|  | // Calculate the min freeform gesture width. It will be 0 when the resolution of any | 
|  | // axis is non positive value. | 
|  | const float minFreeformGestureWidth = | 
|  | rawMeanResolution * MIN_FREEFORM_GESTURE_WIDTH_IN_MILLIMETER; | 
|  |  | 
|  | mPointerGestureMaxSwipeWidth = | 
|  | std::max(mConfig.pointerGestureSwipeMaxWidthRatio * rawDiagonal, | 
|  | minFreeformGestureWidth); | 
|  | } | 
|  |  | 
|  | // Inform the dispatcher about the changes. | 
|  | *outResetNeeded = true; | 
|  | bumpGeneration(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::dumpDisplay(std::string& dump) { | 
|  | dump += StringPrintf(INDENT3 "%s\n", mViewport.toString().c_str()); | 
|  | dump += StringPrintf(INDENT3 "DisplayWidth: %dpx\n", mDisplayWidth); | 
|  | dump += StringPrintf(INDENT3 "DisplayHeight: %dpx\n", mDisplayHeight); | 
|  | dump += StringPrintf(INDENT3 "PhysicalWidth: %dpx\n", mPhysicalWidth); | 
|  | dump += StringPrintf(INDENT3 "PhysicalHeight: %dpx\n", mPhysicalHeight); | 
|  | dump += StringPrintf(INDENT3 "PhysicalLeft: %d\n", mPhysicalLeft); | 
|  | dump += StringPrintf(INDENT3 "PhysicalTop: %d\n", mPhysicalTop); | 
|  | dump += StringPrintf(INDENT3 "InputDeviceOrientation: %d\n", mInputDeviceOrientation); | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::configureVirtualKeys() { | 
|  | std::vector<VirtualKeyDefinition> virtualKeyDefinitions; | 
|  | getDeviceContext().getVirtualKeyDefinitions(virtualKeyDefinitions); | 
|  |  | 
|  | mVirtualKeys.clear(); | 
|  |  | 
|  | if (virtualKeyDefinitions.size() == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | int32_t touchScreenLeft = mRawPointerAxes.x.minValue; | 
|  | int32_t touchScreenTop = mRawPointerAxes.y.minValue; | 
|  | int32_t touchScreenWidth = mRawPointerAxes.getRawWidth(); | 
|  | int32_t touchScreenHeight = mRawPointerAxes.getRawHeight(); | 
|  |  | 
|  | for (const VirtualKeyDefinition& virtualKeyDefinition : virtualKeyDefinitions) { | 
|  | VirtualKey virtualKey; | 
|  |  | 
|  | virtualKey.scanCode = virtualKeyDefinition.scanCode; | 
|  | int32_t keyCode; | 
|  | int32_t dummyKeyMetaState; | 
|  | uint32_t flags; | 
|  | if (getDeviceContext().mapKey(virtualKey.scanCode, 0, 0, &keyCode, &dummyKeyMetaState, | 
|  | &flags)) { | 
|  | ALOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", virtualKey.scanCode); | 
|  | continue; // drop the key | 
|  | } | 
|  |  | 
|  | virtualKey.keyCode = keyCode; | 
|  | virtualKey.flags = flags; | 
|  |  | 
|  | // convert the key definition's display coordinates into touch coordinates for a hit box | 
|  | int32_t halfWidth = virtualKeyDefinition.width / 2; | 
|  | int32_t halfHeight = virtualKeyDefinition.height / 2; | 
|  |  | 
|  | virtualKey.hitLeft = | 
|  | (virtualKeyDefinition.centerX - halfWidth) * touchScreenWidth / mDisplayWidth + | 
|  | touchScreenLeft; | 
|  | virtualKey.hitRight = | 
|  | (virtualKeyDefinition.centerX + halfWidth) * touchScreenWidth / mDisplayWidth + | 
|  | touchScreenLeft; | 
|  | virtualKey.hitTop = | 
|  | (virtualKeyDefinition.centerY - halfHeight) * touchScreenHeight / mDisplayHeight + | 
|  | touchScreenTop; | 
|  | virtualKey.hitBottom = | 
|  | (virtualKeyDefinition.centerY + halfHeight) * touchScreenHeight / mDisplayHeight + | 
|  | touchScreenTop; | 
|  | mVirtualKeys.push_back(virtualKey); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::dumpVirtualKeys(std::string& dump) { | 
|  | if (!mVirtualKeys.empty()) { | 
|  | dump += INDENT3 "Virtual Keys:\n"; | 
|  |  | 
|  | for (size_t i = 0; i < mVirtualKeys.size(); i++) { | 
|  | const VirtualKey& virtualKey = mVirtualKeys[i]; | 
|  | dump += StringPrintf(INDENT4 "%zu: scanCode=%d, keyCode=%d, " | 
|  | "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n", | 
|  | i, virtualKey.scanCode, virtualKey.keyCode, virtualKey.hitLeft, | 
|  | virtualKey.hitRight, virtualKey.hitTop, virtualKey.hitBottom); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::parseCalibration() { | 
|  | const PropertyMap& in = getDeviceContext().getConfiguration(); | 
|  | Calibration& out = mCalibration; | 
|  |  | 
|  | // Size | 
|  | out.sizeCalibration = Calibration::SizeCalibration::DEFAULT; | 
|  | std::string sizeCalibrationString; | 
|  | if (in.tryGetProperty("touch.size.calibration", sizeCalibrationString)) { | 
|  | if (sizeCalibrationString == "none") { | 
|  | out.sizeCalibration = Calibration::SizeCalibration::NONE; | 
|  | } else if (sizeCalibrationString == "geometric") { | 
|  | out.sizeCalibration = Calibration::SizeCalibration::GEOMETRIC; | 
|  | } else if (sizeCalibrationString == "diameter") { | 
|  | out.sizeCalibration = Calibration::SizeCalibration::DIAMETER; | 
|  | } else if (sizeCalibrationString == "box") { | 
|  | out.sizeCalibration = Calibration::SizeCalibration::BOX; | 
|  | } else if (sizeCalibrationString == "area") { | 
|  | out.sizeCalibration = Calibration::SizeCalibration::AREA; | 
|  | } else if (sizeCalibrationString != "default") { | 
|  | ALOGW("Invalid value for touch.size.calibration: '%s'", sizeCalibrationString.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | float sizeScale; | 
|  |  | 
|  | if (in.tryGetProperty("touch.size.scale", sizeScale)) { | 
|  | out.sizeScale = sizeScale; | 
|  | } | 
|  | float sizeBias; | 
|  | if (in.tryGetProperty("touch.size.bias", sizeBias)) { | 
|  | out.sizeBias = sizeBias; | 
|  | } | 
|  | bool sizeIsSummed; | 
|  | if (in.tryGetProperty("touch.size.isSummed", sizeIsSummed)) { | 
|  | out.sizeIsSummed = sizeIsSummed; | 
|  | } | 
|  |  | 
|  | // Pressure | 
|  | out.pressureCalibration = Calibration::PressureCalibration::DEFAULT; | 
|  | std::string pressureCalibrationString; | 
|  | if (in.tryGetProperty("touch.pressure.calibration", pressureCalibrationString)) { | 
|  | if (pressureCalibrationString == "none") { | 
|  | out.pressureCalibration = Calibration::PressureCalibration::NONE; | 
|  | } else if (pressureCalibrationString == "physical") { | 
|  | out.pressureCalibration = Calibration::PressureCalibration::PHYSICAL; | 
|  | } else if (pressureCalibrationString == "amplitude") { | 
|  | out.pressureCalibration = Calibration::PressureCalibration::AMPLITUDE; | 
|  | } else if (pressureCalibrationString != "default") { | 
|  | ALOGW("Invalid value for touch.pressure.calibration: '%s'", | 
|  | pressureCalibrationString.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | float pressureScale; | 
|  | if (in.tryGetProperty("touch.pressure.scale", pressureScale)) { | 
|  | out.pressureScale = pressureScale; | 
|  | } | 
|  |  | 
|  | // Orientation | 
|  | out.orientationCalibration = Calibration::OrientationCalibration::DEFAULT; | 
|  | std::string orientationCalibrationString; | 
|  | if (in.tryGetProperty("touch.orientation.calibration", orientationCalibrationString)) { | 
|  | if (orientationCalibrationString == "none") { | 
|  | out.orientationCalibration = Calibration::OrientationCalibration::NONE; | 
|  | } else if (orientationCalibrationString == "interpolated") { | 
|  | out.orientationCalibration = Calibration::OrientationCalibration::INTERPOLATED; | 
|  | } else if (orientationCalibrationString == "vector") { | 
|  | out.orientationCalibration = Calibration::OrientationCalibration::VECTOR; | 
|  | } else if (orientationCalibrationString != "default") { | 
|  | ALOGW("Invalid value for touch.orientation.calibration: '%s'", | 
|  | orientationCalibrationString.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Distance | 
|  | out.distanceCalibration = Calibration::DistanceCalibration::DEFAULT; | 
|  | std::string distanceCalibrationString; | 
|  | if (in.tryGetProperty("touch.distance.calibration", distanceCalibrationString)) { | 
|  | if (distanceCalibrationString == "none") { | 
|  | out.distanceCalibration = Calibration::DistanceCalibration::NONE; | 
|  | } else if (distanceCalibrationString == "scaled") { | 
|  | out.distanceCalibration = Calibration::DistanceCalibration::SCALED; | 
|  | } else if (distanceCalibrationString != "default") { | 
|  | ALOGW("Invalid value for touch.distance.calibration: '%s'", | 
|  | distanceCalibrationString.c_str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | float distanceScale; | 
|  | if (in.tryGetProperty("touch.distance.scale", distanceScale)) { | 
|  | out.distanceScale = distanceScale; | 
|  | } | 
|  |  | 
|  | out.coverageCalibration = Calibration::CoverageCalibration::DEFAULT; | 
|  | std::string coverageCalibrationString; | 
|  | if (in.tryGetProperty("touch.coverage.calibration", coverageCalibrationString)) { | 
|  | if (coverageCalibrationString == "none") { | 
|  | out.coverageCalibration = Calibration::CoverageCalibration::NONE; | 
|  | } else if (coverageCalibrationString == "box") { | 
|  | out.coverageCalibration = Calibration::CoverageCalibration::BOX; | 
|  | } else if (coverageCalibrationString != "default") { | 
|  | ALOGW("Invalid value for touch.coverage.calibration: '%s'", | 
|  | coverageCalibrationString.c_str()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::resolveCalibration() { | 
|  | // Size | 
|  | if (mRawPointerAxes.touchMajor.valid || mRawPointerAxes.toolMajor.valid) { | 
|  | if (mCalibration.sizeCalibration == Calibration::SizeCalibration::DEFAULT) { | 
|  | mCalibration.sizeCalibration = Calibration::SizeCalibration::GEOMETRIC; | 
|  | } | 
|  | } else { | 
|  | mCalibration.sizeCalibration = Calibration::SizeCalibration::NONE; | 
|  | } | 
|  |  | 
|  | // Pressure | 
|  | if (mRawPointerAxes.pressure.valid) { | 
|  | if (mCalibration.pressureCalibration == Calibration::PressureCalibration::DEFAULT) { | 
|  | mCalibration.pressureCalibration = Calibration::PressureCalibration::PHYSICAL; | 
|  | } | 
|  | } else { | 
|  | mCalibration.pressureCalibration = Calibration::PressureCalibration::NONE; | 
|  | } | 
|  |  | 
|  | // Orientation | 
|  | if (mRawPointerAxes.orientation.valid) { | 
|  | if (mCalibration.orientationCalibration == Calibration::OrientationCalibration::DEFAULT) { | 
|  | mCalibration.orientationCalibration = Calibration::OrientationCalibration::INTERPOLATED; | 
|  | } | 
|  | } else { | 
|  | mCalibration.orientationCalibration = Calibration::OrientationCalibration::NONE; | 
|  | } | 
|  |  | 
|  | // Distance | 
|  | if (mRawPointerAxes.distance.valid) { | 
|  | if (mCalibration.distanceCalibration == Calibration::DistanceCalibration::DEFAULT) { | 
|  | mCalibration.distanceCalibration = Calibration::DistanceCalibration::SCALED; | 
|  | } | 
|  | } else { | 
|  | mCalibration.distanceCalibration = Calibration::DistanceCalibration::NONE; | 
|  | } | 
|  |  | 
|  | // Coverage | 
|  | if (mCalibration.coverageCalibration == Calibration::CoverageCalibration::DEFAULT) { | 
|  | mCalibration.coverageCalibration = Calibration::CoverageCalibration::NONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::dumpCalibration(std::string& dump) { | 
|  | dump += INDENT3 "Calibration:\n"; | 
|  |  | 
|  | dump += INDENT4 "touch.size.calibration: "; | 
|  | dump += ftl::enum_string(mCalibration.sizeCalibration) + "\n"; | 
|  |  | 
|  | if (mCalibration.sizeScale) { | 
|  | dump += StringPrintf(INDENT4 "touch.size.scale: %0.3f\n", *mCalibration.sizeScale); | 
|  | } | 
|  |  | 
|  | if (mCalibration.sizeBias) { | 
|  | dump += StringPrintf(INDENT4 "touch.size.bias: %0.3f\n", *mCalibration.sizeBias); | 
|  | } | 
|  |  | 
|  | if (mCalibration.sizeIsSummed) { | 
|  | dump += StringPrintf(INDENT4 "touch.size.isSummed: %s\n", | 
|  | toString(*mCalibration.sizeIsSummed)); | 
|  | } | 
|  |  | 
|  | // Pressure | 
|  | switch (mCalibration.pressureCalibration) { | 
|  | case Calibration::PressureCalibration::NONE: | 
|  | dump += INDENT4 "touch.pressure.calibration: none\n"; | 
|  | break; | 
|  | case Calibration::PressureCalibration::PHYSICAL: | 
|  | dump += INDENT4 "touch.pressure.calibration: physical\n"; | 
|  | break; | 
|  | case Calibration::PressureCalibration::AMPLITUDE: | 
|  | dump += INDENT4 "touch.pressure.calibration: amplitude\n"; | 
|  | break; | 
|  | default: | 
|  | ALOG_ASSERT(false); | 
|  | } | 
|  |  | 
|  | if (mCalibration.pressureScale) { | 
|  | dump += StringPrintf(INDENT4 "touch.pressure.scale: %0.3f\n", *mCalibration.pressureScale); | 
|  | } | 
|  |  | 
|  | // Orientation | 
|  | switch (mCalibration.orientationCalibration) { | 
|  | case Calibration::OrientationCalibration::NONE: | 
|  | dump += INDENT4 "touch.orientation.calibration: none\n"; | 
|  | break; | 
|  | case Calibration::OrientationCalibration::INTERPOLATED: | 
|  | dump += INDENT4 "touch.orientation.calibration: interpolated\n"; | 
|  | break; | 
|  | case Calibration::OrientationCalibration::VECTOR: | 
|  | dump += INDENT4 "touch.orientation.calibration: vector\n"; | 
|  | break; | 
|  | default: | 
|  | ALOG_ASSERT(false); | 
|  | } | 
|  |  | 
|  | // Distance | 
|  | switch (mCalibration.distanceCalibration) { | 
|  | case Calibration::DistanceCalibration::NONE: | 
|  | dump += INDENT4 "touch.distance.calibration: none\n"; | 
|  | break; | 
|  | case Calibration::DistanceCalibration::SCALED: | 
|  | dump += INDENT4 "touch.distance.calibration: scaled\n"; | 
|  | break; | 
|  | default: | 
|  | ALOG_ASSERT(false); | 
|  | } | 
|  |  | 
|  | if (mCalibration.distanceScale) { | 
|  | dump += StringPrintf(INDENT4 "touch.distance.scale: %0.3f\n", *mCalibration.distanceScale); | 
|  | } | 
|  |  | 
|  | switch (mCalibration.coverageCalibration) { | 
|  | case Calibration::CoverageCalibration::NONE: | 
|  | dump += INDENT4 "touch.coverage.calibration: none\n"; | 
|  | break; | 
|  | case Calibration::CoverageCalibration::BOX: | 
|  | dump += INDENT4 "touch.coverage.calibration: box\n"; | 
|  | break; | 
|  | default: | 
|  | ALOG_ASSERT(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::dumpAffineTransformation(std::string& dump) { | 
|  | dump += INDENT3 "Affine Transformation:\n"; | 
|  |  | 
|  | dump += StringPrintf(INDENT4 "X scale: %0.3f\n", mAffineTransform.x_scale); | 
|  | dump += StringPrintf(INDENT4 "X ymix: %0.3f\n", mAffineTransform.x_ymix); | 
|  | dump += StringPrintf(INDENT4 "X offset: %0.3f\n", mAffineTransform.x_offset); | 
|  | dump += StringPrintf(INDENT4 "Y xmix: %0.3f\n", mAffineTransform.y_xmix); | 
|  | dump += StringPrintf(INDENT4 "Y scale: %0.3f\n", mAffineTransform.y_scale); | 
|  | dump += StringPrintf(INDENT4 "Y offset: %0.3f\n", mAffineTransform.y_offset); | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::updateAffineTransformation() { | 
|  | mAffineTransform = getPolicy()->getTouchAffineTransformation(getDeviceContext().getDescriptor(), | 
|  | mInputDeviceOrientation); | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::reset(nsecs_t when) { | 
|  | std::list<NotifyArgs> out = cancelTouch(when, when); | 
|  | updateTouchSpots(); | 
|  |  | 
|  | mCursorButtonAccumulator.reset(getDeviceContext()); | 
|  | mCursorScrollAccumulator.reset(getDeviceContext()); | 
|  | mTouchButtonAccumulator.reset(); | 
|  |  | 
|  | mPointerVelocityControl.reset(); | 
|  | mWheelXVelocityControl.reset(); | 
|  | mWheelYVelocityControl.reset(); | 
|  |  | 
|  | mRawStatesPending.clear(); | 
|  | mCurrentRawState.clear(); | 
|  | mCurrentCookedState.clear(); | 
|  | mLastRawState.clear(); | 
|  | mLastCookedState.clear(); | 
|  | mPointerUsage = PointerUsage::NONE; | 
|  | mSentHoverEnter = false; | 
|  | mHavePointerIds = false; | 
|  | mCurrentMotionAborted = false; | 
|  | mDownTime = 0; | 
|  |  | 
|  | mCurrentVirtualKey.down = false; | 
|  |  | 
|  | mPointerGesture.reset(); | 
|  | mPointerSimple.reset(); | 
|  | resetExternalStylus(); | 
|  |  | 
|  | if (mPointerController != nullptr) { | 
|  | mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); | 
|  | mPointerController->clearSpots(); | 
|  | } | 
|  |  | 
|  | return out += InputMapper::reset(when); | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::resetExternalStylus() { | 
|  | mExternalStylusState.clear(); | 
|  | mExternalStylusId = -1; | 
|  | mExternalStylusFusionTimeout = LLONG_MAX; | 
|  | mExternalStylusDataPending = false; | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::clearStylusDataPendingFlags() { | 
|  | mExternalStylusDataPending = false; | 
|  | mExternalStylusFusionTimeout = LLONG_MAX; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::process(const RawEvent* rawEvent) { | 
|  | mCursorButtonAccumulator.process(rawEvent); | 
|  | mCursorScrollAccumulator.process(rawEvent); | 
|  | mTouchButtonAccumulator.process(rawEvent); | 
|  |  | 
|  | std::list<NotifyArgs> out; | 
|  | if (rawEvent->type == EV_SYN && rawEvent->code == SYN_REPORT) { | 
|  | out += sync(rawEvent->when, rawEvent->readTime); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::sync(nsecs_t when, nsecs_t readTime) { | 
|  | std::list<NotifyArgs> out; | 
|  | if (mDeviceMode == DeviceMode::DISABLED) { | 
|  | // Only save the last pending state when the device is disabled. | 
|  | mRawStatesPending.clear(); | 
|  | } | 
|  | // Push a new state. | 
|  | mRawStatesPending.emplace_back(); | 
|  |  | 
|  | RawState& next = mRawStatesPending.back(); | 
|  | next.clear(); | 
|  | next.when = when; | 
|  | next.readTime = readTime; | 
|  |  | 
|  | // Sync button state. | 
|  | next.buttonState = | 
|  | mTouchButtonAccumulator.getButtonState() | mCursorButtonAccumulator.getButtonState(); | 
|  |  | 
|  | // Sync scroll | 
|  | next.rawVScroll = mCursorScrollAccumulator.getRelativeVWheel(); | 
|  | next.rawHScroll = mCursorScrollAccumulator.getRelativeHWheel(); | 
|  | mCursorScrollAccumulator.finishSync(); | 
|  |  | 
|  | // Sync touch | 
|  | syncTouch(when, &next); | 
|  |  | 
|  | // The last RawState is the actually second to last, since we just added a new state | 
|  | const RawState& last = | 
|  | mRawStatesPending.size() == 1 ? mCurrentRawState : mRawStatesPending.rbegin()[1]; | 
|  |  | 
|  | // Assign pointer ids. | 
|  | if (!mHavePointerIds) { | 
|  | assignPointerIds(last, next); | 
|  | } | 
|  |  | 
|  | ALOGD_IF(DEBUG_RAW_EVENTS, | 
|  | "syncTouch: pointerCount %d -> %d, touching ids 0x%08x -> 0x%08x, " | 
|  | "hovering ids 0x%08x -> 0x%08x, canceled ids 0x%08x", | 
|  | last.rawPointerData.pointerCount, next.rawPointerData.pointerCount, | 
|  | last.rawPointerData.touchingIdBits.value, next.rawPointerData.touchingIdBits.value, | 
|  | last.rawPointerData.hoveringIdBits.value, next.rawPointerData.hoveringIdBits.value, | 
|  | next.rawPointerData.canceledIdBits.value); | 
|  |  | 
|  | if (!next.rawPointerData.touchingIdBits.isEmpty() && | 
|  | !next.rawPointerData.hoveringIdBits.isEmpty() && | 
|  | last.rawPointerData.hoveringIdBits != next.rawPointerData.hoveringIdBits) { | 
|  | ALOGI("Multi-touch contains some hovering ids 0x%08x", | 
|  | next.rawPointerData.hoveringIdBits.value); | 
|  | } | 
|  |  | 
|  | out += processRawTouches(false /*timeout*/); | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::processRawTouches(bool timeout) { | 
|  | std::list<NotifyArgs> out; | 
|  | if (mDeviceMode == DeviceMode::DISABLED) { | 
|  | // Do not process raw event while the device is disabled. | 
|  | return out; | 
|  | } | 
|  |  | 
|  | // Drain any pending touch states. The invariant here is that the mCurrentRawState is always | 
|  | // valid and must go through the full cook and dispatch cycle. This ensures that anything | 
|  | // touching the current state will only observe the events that have been dispatched to the | 
|  | // rest of the pipeline. | 
|  | const size_t N = mRawStatesPending.size(); | 
|  | size_t count; | 
|  | for (count = 0; count < N; count++) { | 
|  | const RawState& next = mRawStatesPending[count]; | 
|  |  | 
|  | // A failure to assign the stylus id means that we're waiting on stylus data | 
|  | // and so should defer the rest of the pipeline. | 
|  | if (assignExternalStylusId(next, timeout)) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // All ready to go. | 
|  | clearStylusDataPendingFlags(); | 
|  | mCurrentRawState = next; | 
|  | if (mCurrentRawState.when < mLastRawState.when) { | 
|  | mCurrentRawState.when = mLastRawState.when; | 
|  | mCurrentRawState.readTime = mLastRawState.readTime; | 
|  | } | 
|  | out += cookAndDispatch(mCurrentRawState.when, mCurrentRawState.readTime); | 
|  | } | 
|  | if (count != 0) { | 
|  | mRawStatesPending.erase(mRawStatesPending.begin(), mRawStatesPending.begin() + count); | 
|  | } | 
|  |  | 
|  | if (mExternalStylusDataPending) { | 
|  | if (timeout) { | 
|  | nsecs_t when = mExternalStylusFusionTimeout - STYLUS_DATA_LATENCY; | 
|  | clearStylusDataPendingFlags(); | 
|  | mCurrentRawState = mLastRawState; | 
|  | ALOGD_IF(DEBUG_STYLUS_FUSION, | 
|  | "Timeout expired, synthesizing event with new stylus data"); | 
|  | const nsecs_t readTime = when; // consider this synthetic event to be zero latency | 
|  | out += cookAndDispatch(when, readTime); | 
|  | } else if (mExternalStylusFusionTimeout == LLONG_MAX) { | 
|  | mExternalStylusFusionTimeout = mExternalStylusState.when + TOUCH_DATA_TIMEOUT; | 
|  | getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); | 
|  | } | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::cookAndDispatch(nsecs_t when, nsecs_t readTime) { | 
|  | std::list<NotifyArgs> out; | 
|  | // Always start with a clean state. | 
|  | mCurrentCookedState.clear(); | 
|  |  | 
|  | // Apply stylus buttons to current raw state. | 
|  | applyExternalStylusButtonState(when); | 
|  |  | 
|  | // Handle policy on initial down or hover events. | 
|  | bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 && | 
|  | mCurrentRawState.rawPointerData.pointerCount != 0; | 
|  |  | 
|  | uint32_t policyFlags = 0; | 
|  | bool buttonsPressed = mCurrentRawState.buttonState & ~mLastRawState.buttonState; | 
|  | if (initialDown || buttonsPressed) { | 
|  | // If this is a touch screen, hide the pointer on an initial down. | 
|  | if (mDeviceMode == DeviceMode::DIRECT) { | 
|  | getContext()->fadePointer(); | 
|  | } | 
|  |  | 
|  | if (mParameters.wake) { | 
|  | policyFlags |= POLICY_FLAG_WAKE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Consume raw off-screen touches before cooking pointer data. | 
|  | // If touches are consumed, subsequent code will not receive any pointer data. | 
|  | bool consumed; | 
|  | out += consumeRawTouches(when, readTime, policyFlags, consumed /*byref*/); | 
|  | if (consumed) { | 
|  | mCurrentRawState.rawPointerData.clear(); | 
|  | } | 
|  |  | 
|  | // Cook pointer data.  This call populates the mCurrentCookedState.cookedPointerData structure | 
|  | // with cooked pointer data that has the same ids and indices as the raw data. | 
|  | // The following code can use either the raw or cooked data, as needed. | 
|  | cookPointerData(); | 
|  |  | 
|  | // Apply stylus pressure to current cooked state. | 
|  | applyExternalStylusTouchState(when); | 
|  |  | 
|  | // Synthesize key down from raw buttons if needed. | 
|  | out += synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_DOWN, when, readTime, getDeviceId(), | 
|  | mSource, mViewport.displayId, policyFlags, | 
|  | mLastCookedState.buttonState, mCurrentCookedState.buttonState); | 
|  |  | 
|  | // Dispatch the touches either directly or by translation through a pointer on screen. | 
|  | if (mDeviceMode == DeviceMode::POINTER) { | 
|  | for (BitSet32 idBits(mCurrentRawState.rawPointerData.touchingIdBits); !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | const RawPointerData::Pointer& pointer = | 
|  | mCurrentRawState.rawPointerData.pointerForId(id); | 
|  | if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS || | 
|  | pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { | 
|  | mCurrentCookedState.stylusIdBits.markBit(id); | 
|  | } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_FINGER || | 
|  | pointer.toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { | 
|  | mCurrentCookedState.fingerIdBits.markBit(id); | 
|  | } else if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_MOUSE) { | 
|  | mCurrentCookedState.mouseIdBits.markBit(id); | 
|  | } | 
|  | } | 
|  | for (BitSet32 idBits(mCurrentRawState.rawPointerData.hoveringIdBits); !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | const RawPointerData::Pointer& pointer = | 
|  | mCurrentRawState.rawPointerData.pointerForId(id); | 
|  | if (pointer.toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS || | 
|  | pointer.toolType == AMOTION_EVENT_TOOL_TYPE_ERASER) { | 
|  | mCurrentCookedState.stylusIdBits.markBit(id); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Stylus takes precedence over all tools, then mouse, then finger. | 
|  | PointerUsage pointerUsage = mPointerUsage; | 
|  | if (!mCurrentCookedState.stylusIdBits.isEmpty()) { | 
|  | mCurrentCookedState.mouseIdBits.clear(); | 
|  | mCurrentCookedState.fingerIdBits.clear(); | 
|  | pointerUsage = PointerUsage::STYLUS; | 
|  | } else if (!mCurrentCookedState.mouseIdBits.isEmpty()) { | 
|  | mCurrentCookedState.fingerIdBits.clear(); | 
|  | pointerUsage = PointerUsage::MOUSE; | 
|  | } else if (!mCurrentCookedState.fingerIdBits.isEmpty() || | 
|  | isPointerDown(mCurrentRawState.buttonState)) { | 
|  | pointerUsage = PointerUsage::GESTURES; | 
|  | } | 
|  |  | 
|  | out += dispatchPointerUsage(when, readTime, policyFlags, pointerUsage); | 
|  | } else { | 
|  | if (!mCurrentMotionAborted) { | 
|  | updateTouchSpots(); | 
|  | out += dispatchButtonRelease(when, readTime, policyFlags); | 
|  | out += dispatchHoverExit(when, readTime, policyFlags); | 
|  | out += dispatchTouches(when, readTime, policyFlags); | 
|  | out += dispatchHoverEnterAndMove(when, readTime, policyFlags); | 
|  | out += dispatchButtonPress(when, readTime, policyFlags); | 
|  | } | 
|  |  | 
|  | if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { | 
|  | mCurrentMotionAborted = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Synthesize key up from raw buttons if needed. | 
|  | out += synthesizeButtonKeys(getContext(), AKEY_EVENT_ACTION_UP, when, readTime, getDeviceId(), | 
|  | mSource, mViewport.displayId, policyFlags, | 
|  | mLastCookedState.buttonState, mCurrentCookedState.buttonState); | 
|  |  | 
|  | // Clear some transient state. | 
|  | mCurrentRawState.rawVScroll = 0; | 
|  | mCurrentRawState.rawHScroll = 0; | 
|  |  | 
|  | // Copy current touch to last touch in preparation for the next cycle. | 
|  | mLastRawState = mCurrentRawState; | 
|  | mLastCookedState = mCurrentCookedState; | 
|  | return out; | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::updateTouchSpots() { | 
|  | if (!mConfig.showTouches || mPointerController == nullptr) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Update touch spots when this is a touchscreen even when it's not enabled so that we can | 
|  | // clear touch spots. | 
|  | if (mDeviceMode != DeviceMode::DIRECT && | 
|  | (mDeviceMode != DeviceMode::DISABLED || !isTouchScreen())) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | mPointerController->setPresentation(PointerControllerInterface::Presentation::SPOT); | 
|  | mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); | 
|  |  | 
|  | mPointerController->setButtonState(mCurrentRawState.buttonState); | 
|  | mPointerController->setSpots(mCurrentCookedState.cookedPointerData.pointerCoords.cbegin(), | 
|  | mCurrentCookedState.cookedPointerData.idToIndex.cbegin(), | 
|  | mCurrentCookedState.cookedPointerData.touchingIdBits, | 
|  | mViewport.displayId); | 
|  | } | 
|  |  | 
|  | bool TouchInputMapper::isTouchScreen() { | 
|  | return mParameters.deviceType == Parameters::DeviceType::TOUCH_SCREEN && | 
|  | mParameters.hasAssociatedDisplay; | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::applyExternalStylusButtonState(nsecs_t when) { | 
|  | if (mDeviceMode == DeviceMode::DIRECT && hasExternalStylus() && mExternalStylusId != -1) { | 
|  | mCurrentRawState.buttonState |= mExternalStylusState.buttons; | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::applyExternalStylusTouchState(nsecs_t when) { | 
|  | CookedPointerData& currentPointerData = mCurrentCookedState.cookedPointerData; | 
|  | const CookedPointerData& lastPointerData = mLastCookedState.cookedPointerData; | 
|  |  | 
|  | if (mExternalStylusId != -1 && currentPointerData.isTouching(mExternalStylusId)) { | 
|  | float pressure = mExternalStylusState.pressure; | 
|  | if (pressure == 0.0f && lastPointerData.isTouching(mExternalStylusId)) { | 
|  | const PointerCoords& coords = lastPointerData.pointerCoordsForId(mExternalStylusId); | 
|  | pressure = coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE); | 
|  | } | 
|  | PointerCoords& coords = currentPointerData.editPointerCoordsWithId(mExternalStylusId); | 
|  | coords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); | 
|  |  | 
|  | PointerProperties& properties = | 
|  | currentPointerData.editPointerPropertiesWithId(mExternalStylusId); | 
|  | if (mExternalStylusState.toolType != AMOTION_EVENT_TOOL_TYPE_UNKNOWN) { | 
|  | properties.toolType = mExternalStylusState.toolType; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool TouchInputMapper::assignExternalStylusId(const RawState& state, bool timeout) { | 
|  | if (mDeviceMode != DeviceMode::DIRECT || !hasExternalStylus()) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const bool initialDown = mLastRawState.rawPointerData.pointerCount == 0 && | 
|  | state.rawPointerData.pointerCount != 0; | 
|  | if (initialDown) { | 
|  | if (mExternalStylusState.pressure != 0.0f) { | 
|  | ALOGD_IF(DEBUG_STYLUS_FUSION, "Have both stylus and touch data, beginning fusion"); | 
|  | mExternalStylusId = state.rawPointerData.touchingIdBits.firstMarkedBit(); | 
|  | } else if (timeout) { | 
|  | ALOGD_IF(DEBUG_STYLUS_FUSION, "Timeout expired, assuming touch is not a stylus."); | 
|  | resetExternalStylus(); | 
|  | } else { | 
|  | if (mExternalStylusFusionTimeout == LLONG_MAX) { | 
|  | mExternalStylusFusionTimeout = state.when + EXTERNAL_STYLUS_DATA_TIMEOUT; | 
|  | } | 
|  | ALOGD_IF(DEBUG_STYLUS_FUSION, | 
|  | "No stylus data but stylus is connected, requesting timeout (%" PRId64 "ms)", | 
|  | mExternalStylusFusionTimeout); | 
|  | getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if the stylus pointer has gone up. | 
|  | if (mExternalStylusId != -1 && !state.rawPointerData.touchingIdBits.hasBit(mExternalStylusId)) { | 
|  | ALOGD_IF(DEBUG_STYLUS_FUSION, "Stylus pointer is going up"); | 
|  | mExternalStylusId = -1; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::timeoutExpired(nsecs_t when) { | 
|  | std::list<NotifyArgs> out; | 
|  | if (mDeviceMode == DeviceMode::POINTER) { | 
|  | if (mPointerUsage == PointerUsage::GESTURES) { | 
|  | // Since this is a synthetic event, we can consider its latency to be zero | 
|  | const nsecs_t readTime = when; | 
|  | out += dispatchPointerGestures(when, readTime, 0 /*policyFlags*/, true /*isTimeout*/); | 
|  | } | 
|  | } else if (mDeviceMode == DeviceMode::DIRECT) { | 
|  | if (mExternalStylusFusionTimeout < when) { | 
|  | out += processRawTouches(true /*timeout*/); | 
|  | } else if (mExternalStylusFusionTimeout != LLONG_MAX) { | 
|  | getContext()->requestTimeoutAtTime(mExternalStylusFusionTimeout); | 
|  | } | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::updateExternalStylusState(const StylusState& state) { | 
|  | std::list<NotifyArgs> out; | 
|  | mExternalStylusState.copyFrom(state); | 
|  | if (mExternalStylusId != -1 || mExternalStylusFusionTimeout != LLONG_MAX) { | 
|  | // We're either in the middle of a fused stream of data or we're waiting on data before | 
|  | // dispatching the initial down, so go ahead and dispatch now that we have fresh stylus | 
|  | // data. | 
|  | mExternalStylusDataPending = true; | 
|  | out += processRawTouches(false /*timeout*/); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::consumeRawTouches(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags, bool& outConsumed) { | 
|  | outConsumed = false; | 
|  | std::list<NotifyArgs> out; | 
|  | // Check for release of a virtual key. | 
|  | if (mCurrentVirtualKey.down) { | 
|  | if (mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { | 
|  | // Pointer went up while virtual key was down. | 
|  | mCurrentVirtualKey.down = false; | 
|  | if (!mCurrentVirtualKey.ignored) { | 
|  | ALOGD_IF(DEBUG_VIRTUAL_KEYS, | 
|  | "VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", | 
|  | mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); | 
|  | out.push_back(dispatchVirtualKey(when, readTime, policyFlags, AKEY_EVENT_ACTION_UP, | 
|  | AKEY_EVENT_FLAG_FROM_SYSTEM | | 
|  | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)); | 
|  | } | 
|  | outConsumed = true; | 
|  | return out; | 
|  | } | 
|  |  | 
|  | if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { | 
|  | uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); | 
|  | const RawPointerData::Pointer& pointer = | 
|  | mCurrentRawState.rawPointerData.pointerForId(id); | 
|  | const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); | 
|  | if (virtualKey && virtualKey->keyCode == mCurrentVirtualKey.keyCode) { | 
|  | // Pointer is still within the space of the virtual key. | 
|  | outConsumed = true; | 
|  | return out; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pointer left virtual key area or another pointer also went down. | 
|  | // Send key cancellation but do not consume the touch yet. | 
|  | // This is useful when the user swipes through from the virtual key area | 
|  | // into the main display surface. | 
|  | mCurrentVirtualKey.down = false; | 
|  | if (!mCurrentVirtualKey.ignored) { | 
|  | ALOGD_IF(DEBUG_VIRTUAL_KEYS, "VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", | 
|  | mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); | 
|  | out.push_back(dispatchVirtualKey(when, readTime, policyFlags, AKEY_EVENT_ACTION_UP, | 
|  | AKEY_EVENT_FLAG_FROM_SYSTEM | | 
|  | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY | | 
|  | AKEY_EVENT_FLAG_CANCELED)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mLastRawState.rawPointerData.touchingIdBits.isEmpty() && | 
|  | !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { | 
|  | // Pointer just went down.  Check for virtual key press or off-screen touches. | 
|  | uint32_t id = mCurrentRawState.rawPointerData.touchingIdBits.firstMarkedBit(); | 
|  | const RawPointerData::Pointer& pointer = mCurrentRawState.rawPointerData.pointerForId(id); | 
|  | // Skip checking whether the pointer is inside the physical frame if the device is in | 
|  | // unscaled mode. | 
|  | if (!isPointInsidePhysicalFrame(pointer.x, pointer.y) && | 
|  | mDeviceMode != DeviceMode::UNSCALED) { | 
|  | // If exactly one pointer went down, check for virtual key hit. | 
|  | // Otherwise we will drop the entire stroke. | 
|  | if (mCurrentRawState.rawPointerData.touchingIdBits.count() == 1) { | 
|  | const VirtualKey* virtualKey = findVirtualKeyHit(pointer.x, pointer.y); | 
|  | if (virtualKey) { | 
|  | mCurrentVirtualKey.down = true; | 
|  | mCurrentVirtualKey.downTime = when; | 
|  | mCurrentVirtualKey.keyCode = virtualKey->keyCode; | 
|  | mCurrentVirtualKey.scanCode = virtualKey->scanCode; | 
|  | mCurrentVirtualKey.ignored = | 
|  | getContext()->shouldDropVirtualKey(when, virtualKey->keyCode, | 
|  | virtualKey->scanCode); | 
|  |  | 
|  | if (!mCurrentVirtualKey.ignored) { | 
|  | ALOGD_IF(DEBUG_VIRTUAL_KEYS, | 
|  | "VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", | 
|  | mCurrentVirtualKey.keyCode, mCurrentVirtualKey.scanCode); | 
|  | out.push_back(dispatchVirtualKey(when, readTime, policyFlags, | 
|  | AKEY_EVENT_ACTION_DOWN, | 
|  | AKEY_EVENT_FLAG_FROM_SYSTEM | | 
|  | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)); | 
|  | } | 
|  | } | 
|  | } | 
|  | outConsumed = true; | 
|  | return out; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Disable all virtual key touches that happen within a short time interval of the | 
|  | // most recent touch within the screen area.  The idea is to filter out stray | 
|  | // virtual key presses when interacting with the touch screen. | 
|  | // | 
|  | // Problems we're trying to solve: | 
|  | // | 
|  | // 1. While scrolling a list or dragging the window shade, the user swipes down into a | 
|  | //    virtual key area that is implemented by a separate touch panel and accidentally | 
|  | //    triggers a virtual key. | 
|  | // | 
|  | // 2. While typing in the on screen keyboard, the user taps slightly outside the screen | 
|  | //    area and accidentally triggers a virtual key.  This often happens when virtual keys | 
|  | //    are layed out below the screen near to where the on screen keyboard's space bar | 
|  | //    is displayed. | 
|  | if (mConfig.virtualKeyQuietTime > 0 && | 
|  | !mCurrentRawState.rawPointerData.touchingIdBits.isEmpty()) { | 
|  | getContext()->disableVirtualKeysUntil(when + mConfig.virtualKeyQuietTime); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | NotifyKeyArgs TouchInputMapper::dispatchVirtualKey(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags, int32_t keyEventAction, | 
|  | int32_t keyEventFlags) { | 
|  | int32_t keyCode = mCurrentVirtualKey.keyCode; | 
|  | int32_t scanCode = mCurrentVirtualKey.scanCode; | 
|  | nsecs_t downTime = mCurrentVirtualKey.downTime; | 
|  | int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | policyFlags |= POLICY_FLAG_VIRTUAL; | 
|  |  | 
|  | return NotifyKeyArgs(getContext()->getNextId(), when, readTime, getDeviceId(), | 
|  | AINPUT_SOURCE_KEYBOARD, mViewport.displayId, policyFlags, keyEventAction, | 
|  | keyEventFlags, keyCode, scanCode, metaState, downTime); | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::abortTouches(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | std::list<NotifyArgs> out; | 
|  | if (mCurrentMotionAborted) { | 
|  | // Current motion event was already aborted. | 
|  | return out; | 
|  | } | 
|  | BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; | 
|  | if (!currentIdBits.isEmpty()) { | 
|  | int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | int32_t buttonState = mCurrentCookedState.buttonState; | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_CANCEL, 0, AMOTION_EVENT_FLAG_CANCELED, | 
|  | metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, | 
|  | mCurrentCookedState.cookedPointerData.pointerProperties, | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords, | 
|  | mCurrentCookedState.cookedPointerData.idToIndex, currentIdBits, | 
|  | -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime, | 
|  | MotionClassification::NONE)); | 
|  | mCurrentMotionAborted = true; | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | // Updates pointer coords and properties for pointers with specified ids that have moved. | 
|  | // Returns true if any of them changed. | 
|  | static bool updateMovedPointers(const PropertiesArray& inProperties, CoordsArray& inCoords, | 
|  | const IdToIndexArray& inIdToIndex, PropertiesArray& outProperties, | 
|  | CoordsArray& outCoords, IdToIndexArray& outIdToIndex, | 
|  | BitSet32 idBits) { | 
|  | bool changed = false; | 
|  | while (!idBits.isEmpty()) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | uint32_t inIndex = inIdToIndex[id]; | 
|  | uint32_t outIndex = outIdToIndex[id]; | 
|  |  | 
|  | const PointerProperties& curInProperties = inProperties[inIndex]; | 
|  | const PointerCoords& curInCoords = inCoords[inIndex]; | 
|  | PointerProperties& curOutProperties = outProperties[outIndex]; | 
|  | PointerCoords& curOutCoords = outCoords[outIndex]; | 
|  |  | 
|  | if (curInProperties != curOutProperties) { | 
|  | curOutProperties.copyFrom(curInProperties); | 
|  | changed = true; | 
|  | } | 
|  |  | 
|  | if (curInCoords != curOutCoords) { | 
|  | curOutCoords.copyFrom(curInCoords); | 
|  | changed = true; | 
|  | } | 
|  | } | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchTouches(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | std::list<NotifyArgs> out; | 
|  | BitSet32 currentIdBits = mCurrentCookedState.cookedPointerData.touchingIdBits; | 
|  | BitSet32 lastIdBits = mLastCookedState.cookedPointerData.touchingIdBits; | 
|  | int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | int32_t buttonState = mCurrentCookedState.buttonState; | 
|  |  | 
|  | if (currentIdBits == lastIdBits) { | 
|  | if (!currentIdBits.isEmpty()) { | 
|  | // No pointer id changes so this is a move event. | 
|  | // The listener takes care of batching moves so we don't have to deal with that here. | 
|  | out.push_back( | 
|  | dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, | 
|  | 0, 0, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, | 
|  | mCurrentCookedState.cookedPointerData.pointerProperties, | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords, | 
|  | mCurrentCookedState.cookedPointerData.idToIndex, currentIdBits, | 
|  | -1, mOrientedXPrecision, mOrientedYPrecision, mDownTime, | 
|  | MotionClassification::NONE)); | 
|  | } | 
|  | } else { | 
|  | // There may be pointers going up and pointers going down and pointers moving | 
|  | // all at the same time. | 
|  | BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value); | 
|  | BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value); | 
|  | BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value); | 
|  | BitSet32 dispatchedIdBits(lastIdBits.value); | 
|  |  | 
|  | // Update last coordinates of pointers that have moved so that we observe the new | 
|  | // pointer positions at the same time as other pointers that have just gone up. | 
|  | bool moveNeeded = | 
|  | updateMovedPointers(mCurrentCookedState.cookedPointerData.pointerProperties, | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords, | 
|  | mCurrentCookedState.cookedPointerData.idToIndex, | 
|  | mLastCookedState.cookedPointerData.pointerProperties, | 
|  | mLastCookedState.cookedPointerData.pointerCoords, | 
|  | mLastCookedState.cookedPointerData.idToIndex, moveIdBits); | 
|  | if (buttonState != mLastCookedState.buttonState) { | 
|  | moveNeeded = true; | 
|  | } | 
|  |  | 
|  | // Dispatch pointer up events. | 
|  | while (!upIdBits.isEmpty()) { | 
|  | uint32_t upId = upIdBits.clearFirstMarkedBit(); | 
|  | bool isCanceled = mCurrentCookedState.cookedPointerData.canceledIdBits.hasBit(upId); | 
|  | if (isCanceled) { | 
|  | ALOGI("Canceling pointer %d for the palm event was detected.", upId); | 
|  | } | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_POINTER_UP, 0, | 
|  | isCanceled ? AMOTION_EVENT_FLAG_CANCELED : 0, metaState, | 
|  | buttonState, 0, | 
|  | mLastCookedState.cookedPointerData.pointerProperties, | 
|  | mLastCookedState.cookedPointerData.pointerCoords, | 
|  | mLastCookedState.cookedPointerData.idToIndex, | 
|  | dispatchedIdBits, upId, mOrientedXPrecision, | 
|  | mOrientedYPrecision, mDownTime, | 
|  | MotionClassification::NONE)); | 
|  | dispatchedIdBits.clearBit(upId); | 
|  | mCurrentCookedState.cookedPointerData.canceledIdBits.clearBit(upId); | 
|  | } | 
|  |  | 
|  | // Dispatch move events if any of the remaining pointers moved from their old locations. | 
|  | // Although applications receive new locations as part of individual pointer up | 
|  | // events, they do not generally handle them except when presented in a move event. | 
|  | if (moveNeeded && !moveIdBits.isEmpty()) { | 
|  | ALOG_ASSERT(moveIdBits.value == dispatchedIdBits.value); | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_MOVE, 0, 0, metaState, buttonState, 0, | 
|  | mCurrentCookedState.cookedPointerData.pointerProperties, | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords, | 
|  | mCurrentCookedState.cookedPointerData.idToIndex, | 
|  | dispatchedIdBits, -1, mOrientedXPrecision, | 
|  | mOrientedYPrecision, mDownTime, | 
|  | MotionClassification::NONE)); | 
|  | } | 
|  |  | 
|  | // Dispatch pointer down events using the new pointer locations. | 
|  | while (!downIdBits.isEmpty()) { | 
|  | uint32_t downId = downIdBits.clearFirstMarkedBit(); | 
|  | dispatchedIdBits.markBit(downId); | 
|  |  | 
|  | if (dispatchedIdBits.count() == 1) { | 
|  | // First pointer is going down.  Set down time. | 
|  | mDownTime = when; | 
|  | } | 
|  |  | 
|  | out.push_back( | 
|  | dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_POINTER_DOWN, 0, 0, metaState, buttonState, | 
|  | 0, mCurrentCookedState.cookedPointerData.pointerProperties, | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords, | 
|  | mCurrentCookedState.cookedPointerData.idToIndex, | 
|  | dispatchedIdBits, downId, mOrientedXPrecision, | 
|  | mOrientedYPrecision, mDownTime, MotionClassification::NONE)); | 
|  | } | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchHoverExit(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | std::list<NotifyArgs> out; | 
|  | if (mSentHoverEnter && | 
|  | (mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty() || | 
|  | !mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty())) { | 
|  | int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, metaState, | 
|  | mLastCookedState.buttonState, 0, | 
|  | mLastCookedState.cookedPointerData.pointerProperties, | 
|  | mLastCookedState.cookedPointerData.pointerCoords, | 
|  | mLastCookedState.cookedPointerData.idToIndex, | 
|  | mLastCookedState.cookedPointerData.hoveringIdBits, -1, | 
|  | mOrientedXPrecision, mOrientedYPrecision, mDownTime, | 
|  | MotionClassification::NONE)); | 
|  | mSentHoverEnter = false; | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchHoverEnterAndMove(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | std::list<NotifyArgs> out; | 
|  | if (mCurrentCookedState.cookedPointerData.touchingIdBits.isEmpty() && | 
|  | !mCurrentCookedState.cookedPointerData.hoveringIdBits.isEmpty()) { | 
|  | int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | if (!mSentHoverEnter) { | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_HOVER_ENTER, 0, 0, metaState, | 
|  | mCurrentRawState.buttonState, 0, | 
|  | mCurrentCookedState.cookedPointerData.pointerProperties, | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords, | 
|  | mCurrentCookedState.cookedPointerData.idToIndex, | 
|  | mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, | 
|  | mOrientedXPrecision, mOrientedYPrecision, mDownTime, | 
|  | MotionClassification::NONE)); | 
|  | mSentHoverEnter = true; | 
|  | } | 
|  |  | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, metaState, | 
|  | mCurrentRawState.buttonState, 0, | 
|  | mCurrentCookedState.cookedPointerData.pointerProperties, | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords, | 
|  | mCurrentCookedState.cookedPointerData.idToIndex, | 
|  | mCurrentCookedState.cookedPointerData.hoveringIdBits, -1, | 
|  | mOrientedXPrecision, mOrientedYPrecision, mDownTime, | 
|  | MotionClassification::NONE)); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchButtonRelease(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | std::list<NotifyArgs> out; | 
|  | BitSet32 releasedButtons(mLastCookedState.buttonState & ~mCurrentCookedState.buttonState); | 
|  | const BitSet32& idBits = findActiveIdBits(mLastCookedState.cookedPointerData); | 
|  | const int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | int32_t buttonState = mLastCookedState.buttonState; | 
|  | while (!releasedButtons.isEmpty()) { | 
|  | int32_t actionButton = BitSet32::valueForBit(releasedButtons.clearFirstMarkedBit()); | 
|  | buttonState &= ~actionButton; | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_BUTTON_RELEASE, actionButton, 0, | 
|  | metaState, buttonState, 0, | 
|  | mLastCookedState.cookedPointerData.pointerProperties, | 
|  | mLastCookedState.cookedPointerData.pointerCoords, | 
|  | mLastCookedState.cookedPointerData.idToIndex, idBits, -1, | 
|  | mOrientedXPrecision, mOrientedYPrecision, mDownTime, | 
|  | MotionClassification::NONE)); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchButtonPress(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | std::list<NotifyArgs> out; | 
|  | BitSet32 pressedButtons(mCurrentCookedState.buttonState & ~mLastCookedState.buttonState); | 
|  | const BitSet32& idBits = findActiveIdBits(mCurrentCookedState.cookedPointerData); | 
|  | const int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | int32_t buttonState = mLastCookedState.buttonState; | 
|  | while (!pressedButtons.isEmpty()) { | 
|  | int32_t actionButton = BitSet32::valueForBit(pressedButtons.clearFirstMarkedBit()); | 
|  | buttonState |= actionButton; | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_BUTTON_PRESS, actionButton, 0, metaState, | 
|  | buttonState, 0, | 
|  | mCurrentCookedState.cookedPointerData.pointerProperties, | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords, | 
|  | mCurrentCookedState.cookedPointerData.idToIndex, idBits, -1, | 
|  | mOrientedXPrecision, mOrientedYPrecision, mDownTime, | 
|  | MotionClassification::NONE)); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | const BitSet32& TouchInputMapper::findActiveIdBits(const CookedPointerData& cookedPointerData) { | 
|  | if (!cookedPointerData.touchingIdBits.isEmpty()) { | 
|  | return cookedPointerData.touchingIdBits; | 
|  | } | 
|  | return cookedPointerData.hoveringIdBits; | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::cookPointerData() { | 
|  | uint32_t currentPointerCount = mCurrentRawState.rawPointerData.pointerCount; | 
|  |  | 
|  | mCurrentCookedState.cookedPointerData.clear(); | 
|  | mCurrentCookedState.cookedPointerData.pointerCount = currentPointerCount; | 
|  | mCurrentCookedState.cookedPointerData.hoveringIdBits = | 
|  | mCurrentRawState.rawPointerData.hoveringIdBits; | 
|  | mCurrentCookedState.cookedPointerData.touchingIdBits = | 
|  | mCurrentRawState.rawPointerData.touchingIdBits; | 
|  | mCurrentCookedState.cookedPointerData.canceledIdBits = | 
|  | mCurrentRawState.rawPointerData.canceledIdBits; | 
|  |  | 
|  | if (mCurrentCookedState.cookedPointerData.pointerCount == 0) { | 
|  | mCurrentCookedState.buttonState = 0; | 
|  | } else { | 
|  | mCurrentCookedState.buttonState = mCurrentRawState.buttonState; | 
|  | } | 
|  |  | 
|  | // Walk through the the active pointers and map device coordinates onto | 
|  | // display coordinates and adjust for display orientation. | 
|  | for (uint32_t i = 0; i < currentPointerCount; i++) { | 
|  | const RawPointerData::Pointer& in = mCurrentRawState.rawPointerData.pointers[i]; | 
|  |  | 
|  | // Size | 
|  | float touchMajor, touchMinor, toolMajor, toolMinor, size; | 
|  | switch (mCalibration.sizeCalibration) { | 
|  | case Calibration::SizeCalibration::GEOMETRIC: | 
|  | case Calibration::SizeCalibration::DIAMETER: | 
|  | case Calibration::SizeCalibration::BOX: | 
|  | case Calibration::SizeCalibration::AREA: | 
|  | if (mRawPointerAxes.touchMajor.valid && mRawPointerAxes.toolMajor.valid) { | 
|  | touchMajor = in.touchMajor; | 
|  | touchMinor = mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; | 
|  | toolMajor = in.toolMajor; | 
|  | toolMinor = mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; | 
|  | size = mRawPointerAxes.touchMinor.valid ? avg(in.touchMajor, in.touchMinor) | 
|  | : in.touchMajor; | 
|  | } else if (mRawPointerAxes.touchMajor.valid) { | 
|  | toolMajor = touchMajor = in.touchMajor; | 
|  | toolMinor = touchMinor = | 
|  | mRawPointerAxes.touchMinor.valid ? in.touchMinor : in.touchMajor; | 
|  | size = mRawPointerAxes.touchMinor.valid ? avg(in.touchMajor, in.touchMinor) | 
|  | : in.touchMajor; | 
|  | } else if (mRawPointerAxes.toolMajor.valid) { | 
|  | touchMajor = toolMajor = in.toolMajor; | 
|  | touchMinor = toolMinor = | 
|  | mRawPointerAxes.toolMinor.valid ? in.toolMinor : in.toolMajor; | 
|  | size = mRawPointerAxes.toolMinor.valid ? avg(in.toolMajor, in.toolMinor) | 
|  | : in.toolMajor; | 
|  | } else { | 
|  | ALOG_ASSERT(false, | 
|  | "No touch or tool axes.  " | 
|  | "Size calibration should have been resolved to NONE."); | 
|  | touchMajor = 0; | 
|  | touchMinor = 0; | 
|  | toolMajor = 0; | 
|  | toolMinor = 0; | 
|  | size = 0; | 
|  | } | 
|  |  | 
|  | if (mCalibration.sizeIsSummed && *mCalibration.sizeIsSummed) { | 
|  | uint32_t touchingCount = mCurrentRawState.rawPointerData.touchingIdBits.count(); | 
|  | if (touchingCount > 1) { | 
|  | touchMajor /= touchingCount; | 
|  | touchMinor /= touchingCount; | 
|  | toolMajor /= touchingCount; | 
|  | toolMinor /= touchingCount; | 
|  | size /= touchingCount; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mCalibration.sizeCalibration == Calibration::SizeCalibration::GEOMETRIC) { | 
|  | touchMajor *= mGeometricScale; | 
|  | touchMinor *= mGeometricScale; | 
|  | toolMajor *= mGeometricScale; | 
|  | toolMinor *= mGeometricScale; | 
|  | } else if (mCalibration.sizeCalibration == Calibration::SizeCalibration::AREA) { | 
|  | touchMajor = touchMajor > 0 ? sqrtf(touchMajor) : 0; | 
|  | touchMinor = touchMajor; | 
|  | toolMajor = toolMajor > 0 ? sqrtf(toolMajor) : 0; | 
|  | toolMinor = toolMajor; | 
|  | } else if (mCalibration.sizeCalibration == Calibration::SizeCalibration::DIAMETER) { | 
|  | touchMinor = touchMajor; | 
|  | toolMinor = toolMajor; | 
|  | } | 
|  |  | 
|  | mCalibration.applySizeScaleAndBias(touchMajor); | 
|  | mCalibration.applySizeScaleAndBias(touchMinor); | 
|  | mCalibration.applySizeScaleAndBias(toolMajor); | 
|  | mCalibration.applySizeScaleAndBias(toolMinor); | 
|  | size *= mSizeScale; | 
|  | break; | 
|  | case Calibration::SizeCalibration::DEFAULT: | 
|  | LOG_ALWAYS_FATAL("Resolution should not be 'DEFAULT' at this point"); | 
|  | break; | 
|  | case Calibration::SizeCalibration::NONE: | 
|  | touchMajor = 0; | 
|  | touchMinor = 0; | 
|  | toolMajor = 0; | 
|  | toolMinor = 0; | 
|  | size = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Pressure | 
|  | float pressure; | 
|  | switch (mCalibration.pressureCalibration) { | 
|  | case Calibration::PressureCalibration::PHYSICAL: | 
|  | case Calibration::PressureCalibration::AMPLITUDE: | 
|  | pressure = in.pressure * mPressureScale; | 
|  | break; | 
|  | default: | 
|  | pressure = in.isHovering ? 0 : 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Tilt and Orientation | 
|  | float tilt; | 
|  | float orientation; | 
|  | if (mHaveTilt) { | 
|  | float tiltXAngle = (in.tiltX - mTiltXCenter) * mTiltXScale; | 
|  | float tiltYAngle = (in.tiltY - mTiltYCenter) * mTiltYScale; | 
|  | orientation = atan2f(-sinf(tiltXAngle), sinf(tiltYAngle)); | 
|  | tilt = acosf(cosf(tiltXAngle) * cosf(tiltYAngle)); | 
|  | } else { | 
|  | tilt = 0; | 
|  |  | 
|  | switch (mCalibration.orientationCalibration) { | 
|  | case Calibration::OrientationCalibration::INTERPOLATED: | 
|  | orientation = in.orientation * mOrientationScale; | 
|  | break; | 
|  | case Calibration::OrientationCalibration::VECTOR: { | 
|  | int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4); | 
|  | int32_t c2 = signExtendNybble(in.orientation & 0x0f); | 
|  | if (c1 != 0 || c2 != 0) { | 
|  | orientation = atan2f(c1, c2) * 0.5f; | 
|  | float confidence = hypotf(c1, c2); | 
|  | float scale = 1.0f + confidence / 16.0f; | 
|  | touchMajor *= scale; | 
|  | touchMinor /= scale; | 
|  | toolMajor *= scale; | 
|  | toolMinor /= scale; | 
|  | } else { | 
|  | orientation = 0; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | orientation = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Distance | 
|  | float distance; | 
|  | switch (mCalibration.distanceCalibration) { | 
|  | case Calibration::DistanceCalibration::SCALED: | 
|  | distance = in.distance * mDistanceScale; | 
|  | break; | 
|  | default: | 
|  | distance = 0; | 
|  | } | 
|  |  | 
|  | // Coverage | 
|  | int32_t rawLeft, rawTop, rawRight, rawBottom; | 
|  | switch (mCalibration.coverageCalibration) { | 
|  | case Calibration::CoverageCalibration::BOX: | 
|  | rawLeft = (in.toolMinor & 0xffff0000) >> 16; | 
|  | rawRight = in.toolMinor & 0x0000ffff; | 
|  | rawBottom = in.toolMajor & 0x0000ffff; | 
|  | rawTop = (in.toolMajor & 0xffff0000) >> 16; | 
|  | break; | 
|  | default: | 
|  | rawLeft = rawTop = rawRight = rawBottom = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Adjust X,Y coords for device calibration | 
|  | // TODO: Adjust coverage coords? | 
|  | float xTransformed = in.x, yTransformed = in.y; | 
|  | mAffineTransform.applyTo(xTransformed, yTransformed); | 
|  | rotateAndScale(xTransformed, yTransformed); | 
|  |  | 
|  | // Adjust X, Y, and coverage coords for input device orientation. | 
|  | float left, top, right, bottom; | 
|  |  | 
|  | switch (mInputDeviceOrientation) { | 
|  | case DISPLAY_ORIENTATION_90: | 
|  | left = float(rawTop - mRawPointerAxes.y.minValue) * mYScale; | 
|  | right = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale; | 
|  | bottom = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale; | 
|  | top = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale; | 
|  | orientation -= M_PI_2; | 
|  | if (mOrientedRanges.orientation && orientation < mOrientedRanges.orientation->min) { | 
|  | orientation += | 
|  | (mOrientedRanges.orientation->max - mOrientedRanges.orientation->min); | 
|  | } | 
|  | break; | 
|  | case DISPLAY_ORIENTATION_180: | 
|  | left = float(mRawPointerAxes.x.maxValue - rawRight) * mXScale; | 
|  | right = float(mRawPointerAxes.x.maxValue - rawLeft) * mXScale; | 
|  | bottom = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale; | 
|  | top = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale; | 
|  | orientation -= M_PI; | 
|  | if (mOrientedRanges.orientation && orientation < mOrientedRanges.orientation->min) { | 
|  | orientation += | 
|  | (mOrientedRanges.orientation->max - mOrientedRanges.orientation->min); | 
|  | } | 
|  | break; | 
|  | case DISPLAY_ORIENTATION_270: | 
|  | left = float(mRawPointerAxes.y.maxValue - rawBottom) * mYScale; | 
|  | right = float(mRawPointerAxes.y.maxValue - rawTop) * mYScale; | 
|  | bottom = float(rawRight - mRawPointerAxes.x.minValue) * mXScale; | 
|  | top = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale; | 
|  | orientation += M_PI_2; | 
|  | if (mOrientedRanges.orientation && orientation > mOrientedRanges.orientation->max) { | 
|  | orientation -= | 
|  | (mOrientedRanges.orientation->max - mOrientedRanges.orientation->min); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | left = float(rawLeft - mRawPointerAxes.x.minValue) * mXScale; | 
|  | right = float(rawRight - mRawPointerAxes.x.minValue) * mXScale; | 
|  | bottom = float(rawBottom - mRawPointerAxes.y.minValue) * mYScale; | 
|  | top = float(rawTop - mRawPointerAxes.y.minValue) * mYScale; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Write output coords. | 
|  | PointerCoords& out = mCurrentCookedState.cookedPointerData.pointerCoords[i]; | 
|  | out.clear(); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_X, xTransformed); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_Y, yTransformed); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_TILT, tilt); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_DISTANCE, distance); | 
|  | if (mCalibration.coverageCalibration == Calibration::CoverageCalibration::BOX) { | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_1, left); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_2, top); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_3, right); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_GENERIC_4, bottom); | 
|  | } else { | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor); | 
|  | } | 
|  |  | 
|  | // Write output relative fields if applicable. | 
|  | uint32_t id = in.id; | 
|  | if (mSource == AINPUT_SOURCE_TOUCHPAD && | 
|  | mLastCookedState.cookedPointerData.hasPointerCoordsForId(id)) { | 
|  | const PointerCoords& p = mLastCookedState.cookedPointerData.pointerCoordsForId(id); | 
|  | float dx = xTransformed - p.getAxisValue(AMOTION_EVENT_AXIS_X); | 
|  | float dy = yTransformed - p.getAxisValue(AMOTION_EVENT_AXIS_Y); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_X, dx); | 
|  | out.setAxisValue(AMOTION_EVENT_AXIS_RELATIVE_Y, dy); | 
|  | } | 
|  |  | 
|  | // Write output properties. | 
|  | PointerProperties& properties = mCurrentCookedState.cookedPointerData.pointerProperties[i]; | 
|  | properties.clear(); | 
|  | properties.id = id; | 
|  | properties.toolType = in.toolType; | 
|  |  | 
|  | // Write id index and mark id as valid. | 
|  | mCurrentCookedState.cookedPointerData.idToIndex[id] = i; | 
|  | mCurrentCookedState.cookedPointerData.validIdBits.markBit(id); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchPointerUsage(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags, | 
|  | PointerUsage pointerUsage) { | 
|  | std::list<NotifyArgs> out; | 
|  | if (pointerUsage != mPointerUsage) { | 
|  | out += abortPointerUsage(when, readTime, policyFlags); | 
|  | mPointerUsage = pointerUsage; | 
|  | } | 
|  |  | 
|  | switch (mPointerUsage) { | 
|  | case PointerUsage::GESTURES: | 
|  | out += dispatchPointerGestures(when, readTime, policyFlags, false /*isTimeout*/); | 
|  | break; | 
|  | case PointerUsage::STYLUS: | 
|  | out += dispatchPointerStylus(when, readTime, policyFlags); | 
|  | break; | 
|  | case PointerUsage::MOUSE: | 
|  | out += dispatchPointerMouse(when, readTime, policyFlags); | 
|  | break; | 
|  | case PointerUsage::NONE: | 
|  | break; | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::abortPointerUsage(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | std::list<NotifyArgs> out; | 
|  | switch (mPointerUsage) { | 
|  | case PointerUsage::GESTURES: | 
|  | out += abortPointerGestures(when, readTime, policyFlags); | 
|  | break; | 
|  | case PointerUsage::STYLUS: | 
|  | out += abortPointerStylus(when, readTime, policyFlags); | 
|  | break; | 
|  | case PointerUsage::MOUSE: | 
|  | out += abortPointerMouse(when, readTime, policyFlags); | 
|  | break; | 
|  | case PointerUsage::NONE: | 
|  | break; | 
|  | } | 
|  |  | 
|  | mPointerUsage = PointerUsage::NONE; | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchPointerGestures(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags, | 
|  | bool isTimeout) { | 
|  | std::list<NotifyArgs> out; | 
|  | // Update current gesture coordinates. | 
|  | bool cancelPreviousGesture, finishPreviousGesture; | 
|  | bool sendEvents = | 
|  | preparePointerGestures(when, &cancelPreviousGesture, &finishPreviousGesture, isTimeout); | 
|  | if (!sendEvents) { | 
|  | return {}; | 
|  | } | 
|  | if (finishPreviousGesture) { | 
|  | cancelPreviousGesture = false; | 
|  | } | 
|  |  | 
|  | // Update the pointer presentation and spots. | 
|  | if (mParameters.gestureMode == Parameters::GestureMode::MULTI_TOUCH) { | 
|  | mPointerController->setPresentation(PointerControllerInterface::Presentation::POINTER); | 
|  | if (finishPreviousGesture || cancelPreviousGesture) { | 
|  | mPointerController->clearSpots(); | 
|  | } | 
|  |  | 
|  | if (mPointerGesture.currentGestureMode == PointerGesture::Mode::FREEFORM) { | 
|  | mPointerController->setSpots(mPointerGesture.currentGestureCoords.cbegin(), | 
|  | mPointerGesture.currentGestureIdToIndex.cbegin(), | 
|  | mPointerGesture.currentGestureIdBits, | 
|  | mPointerController->getDisplayId()); | 
|  | } | 
|  | } else { | 
|  | mPointerController->setPresentation(PointerControllerInterface::Presentation::POINTER); | 
|  | } | 
|  |  | 
|  | // Show or hide the pointer if needed. | 
|  | switch (mPointerGesture.currentGestureMode) { | 
|  | case PointerGesture::Mode::NEUTRAL: | 
|  | case PointerGesture::Mode::QUIET: | 
|  | if (mParameters.gestureMode == Parameters::GestureMode::MULTI_TOUCH && | 
|  | mPointerGesture.lastGestureMode == PointerGesture::Mode::FREEFORM) { | 
|  | // Remind the user of where the pointer is after finishing a gesture with spots. | 
|  | mPointerController->unfade(PointerControllerInterface::Transition::GRADUAL); | 
|  | } | 
|  | break; | 
|  | case PointerGesture::Mode::TAP: | 
|  | case PointerGesture::Mode::TAP_DRAG: | 
|  | case PointerGesture::Mode::BUTTON_CLICK_OR_DRAG: | 
|  | case PointerGesture::Mode::HOVER: | 
|  | case PointerGesture::Mode::PRESS: | 
|  | case PointerGesture::Mode::SWIPE: | 
|  | // Unfade the pointer when the current gesture manipulates the | 
|  | // area directly under the pointer. | 
|  | mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); | 
|  | break; | 
|  | case PointerGesture::Mode::FREEFORM: | 
|  | // Fade the pointer when the current gesture manipulates a different | 
|  | // area and there are spots to guide the user experience. | 
|  | if (mParameters.gestureMode == Parameters::GestureMode::MULTI_TOUCH) { | 
|  | mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); | 
|  | } else { | 
|  | mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Send events! | 
|  | int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | int32_t buttonState = mCurrentCookedState.buttonState; | 
|  | const MotionClassification classification = | 
|  | mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE | 
|  | ? MotionClassification::TWO_FINGER_SWIPE | 
|  | : MotionClassification::NONE; | 
|  |  | 
|  | uint32_t flags = 0; | 
|  |  | 
|  | if (!PointerGesture::canGestureAffectWindowFocus(mPointerGesture.currentGestureMode)) { | 
|  | flags |= AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE; | 
|  | } | 
|  |  | 
|  | // Update last coordinates of pointers that have moved so that we observe the new | 
|  | // pointer positions at the same time as other pointers that have just gone up. | 
|  | bool down = mPointerGesture.currentGestureMode == PointerGesture::Mode::TAP || | 
|  | mPointerGesture.currentGestureMode == PointerGesture::Mode::TAP_DRAG || | 
|  | mPointerGesture.currentGestureMode == PointerGesture::Mode::BUTTON_CLICK_OR_DRAG || | 
|  | mPointerGesture.currentGestureMode == PointerGesture::Mode::PRESS || | 
|  | mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE || | 
|  | mPointerGesture.currentGestureMode == PointerGesture::Mode::FREEFORM; | 
|  | bool moveNeeded = false; | 
|  | if (down && !cancelPreviousGesture && !finishPreviousGesture && | 
|  | !mPointerGesture.lastGestureIdBits.isEmpty() && | 
|  | !mPointerGesture.currentGestureIdBits.isEmpty()) { | 
|  | BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value & | 
|  | mPointerGesture.lastGestureIdBits.value); | 
|  | moveNeeded = updateMovedPointers(mPointerGesture.currentGestureProperties, | 
|  | mPointerGesture.currentGestureCoords, | 
|  | mPointerGesture.currentGestureIdToIndex, | 
|  | mPointerGesture.lastGestureProperties, | 
|  | mPointerGesture.lastGestureCoords, | 
|  | mPointerGesture.lastGestureIdToIndex, movedGestureIdBits); | 
|  | if (buttonState != mLastCookedState.buttonState) { | 
|  | moveNeeded = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Send motion events for all pointers that went up or were canceled. | 
|  | BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits); | 
|  | if (!dispatchedGestureIdBits.isEmpty()) { | 
|  | if (cancelPreviousGesture) { | 
|  | const uint32_t cancelFlags = flags | AMOTION_EVENT_FLAG_CANCELED; | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_CANCEL, 0, cancelFlags, metaState, | 
|  | buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, | 
|  | mPointerGesture.lastGestureProperties, | 
|  | mPointerGesture.lastGestureCoords, | 
|  | mPointerGesture.lastGestureIdToIndex, | 
|  | dispatchedGestureIdBits, -1, 0, 0, | 
|  | mPointerGesture.downTime, classification)); | 
|  |  | 
|  | dispatchedGestureIdBits.clear(); | 
|  | } else { | 
|  | BitSet32 upGestureIdBits; | 
|  | if (finishPreviousGesture) { | 
|  | upGestureIdBits = dispatchedGestureIdBits; | 
|  | } else { | 
|  | upGestureIdBits.value = | 
|  | dispatchedGestureIdBits.value & ~mPointerGesture.currentGestureIdBits.value; | 
|  | } | 
|  | while (!upGestureIdBits.isEmpty()) { | 
|  | uint32_t id = upGestureIdBits.clearFirstMarkedBit(); | 
|  |  | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_POINTER_UP, 0, flags, metaState, | 
|  | buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, | 
|  | mPointerGesture.lastGestureProperties, | 
|  | mPointerGesture.lastGestureCoords, | 
|  | mPointerGesture.lastGestureIdToIndex, | 
|  | dispatchedGestureIdBits, id, 0, 0, | 
|  | mPointerGesture.downTime, classification)); | 
|  |  | 
|  | dispatchedGestureIdBits.clearBit(id); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Send motion events for all pointers that moved. | 
|  | if (moveNeeded) { | 
|  | out.push_back( | 
|  | dispatchMotion(when, readTime, policyFlags, mSource, AMOTION_EVENT_ACTION_MOVE, 0, | 
|  | flags, metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, | 
|  | mPointerGesture.currentGestureProperties, | 
|  | mPointerGesture.currentGestureCoords, | 
|  | mPointerGesture.currentGestureIdToIndex, dispatchedGestureIdBits, -1, | 
|  | 0, 0, mPointerGesture.downTime, classification)); | 
|  | } | 
|  |  | 
|  | // Send motion events for all pointers that went down. | 
|  | if (down) { | 
|  | BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value & | 
|  | ~dispatchedGestureIdBits.value); | 
|  | while (!downGestureIdBits.isEmpty()) { | 
|  | uint32_t id = downGestureIdBits.clearFirstMarkedBit(); | 
|  | dispatchedGestureIdBits.markBit(id); | 
|  |  | 
|  | if (dispatchedGestureIdBits.count() == 1) { | 
|  | mPointerGesture.downTime = when; | 
|  | } | 
|  |  | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_POINTER_DOWN, 0, flags, metaState, | 
|  | buttonState, 0, mPointerGesture.currentGestureProperties, | 
|  | mPointerGesture.currentGestureCoords, | 
|  | mPointerGesture.currentGestureIdToIndex, | 
|  | dispatchedGestureIdBits, id, 0, 0, | 
|  | mPointerGesture.downTime, classification)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Send motion events for hover. | 
|  | if (mPointerGesture.currentGestureMode == PointerGesture::Mode::HOVER) { | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_HOVER_MOVE, 0, flags, metaState, | 
|  | buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, | 
|  | mPointerGesture.currentGestureProperties, | 
|  | mPointerGesture.currentGestureCoords, | 
|  | mPointerGesture.currentGestureIdToIndex, | 
|  | mPointerGesture.currentGestureIdBits, -1, 0, 0, | 
|  | mPointerGesture.downTime, MotionClassification::NONE)); | 
|  | } else if (dispatchedGestureIdBits.isEmpty() && !mPointerGesture.lastGestureIdBits.isEmpty()) { | 
|  | // Synthesize a hover move event after all pointers go up to indicate that | 
|  | // the pointer is hovering again even if the user is not currently touching | 
|  | // the touch pad.  This ensures that a view will receive a fresh hover enter | 
|  | // event after a tap. | 
|  | float x, y; | 
|  | mPointerController->getPosition(&x, &y); | 
|  |  | 
|  | PointerProperties pointerProperties; | 
|  | pointerProperties.clear(); | 
|  | pointerProperties.id = 0; | 
|  | pointerProperties.toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; | 
|  |  | 
|  | PointerCoords pointerCoords; | 
|  | pointerCoords.clear(); | 
|  | pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); | 
|  | pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); | 
|  |  | 
|  | const int32_t displayId = mPointerController->getDisplayId(); | 
|  | out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), | 
|  | mSource, displayId, policyFlags, | 
|  | AMOTION_EVENT_ACTION_HOVER_MOVE, 0, flags, metaState, | 
|  | buttonState, MotionClassification::NONE, | 
|  | AMOTION_EVENT_EDGE_FLAG_NONE, 1, &pointerProperties, | 
|  | &pointerCoords, 0, 0, x, y, mPointerGesture.downTime, | 
|  | /* videoFrames */ {})); | 
|  | } | 
|  |  | 
|  | // Update state. | 
|  | mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode; | 
|  | if (!down) { | 
|  | mPointerGesture.lastGestureIdBits.clear(); | 
|  | } else { | 
|  | mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits; | 
|  | for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; | 
|  | mPointerGesture.lastGestureProperties[index].copyFrom( | 
|  | mPointerGesture.currentGestureProperties[index]); | 
|  | mPointerGesture.lastGestureCoords[index].copyFrom( | 
|  | mPointerGesture.currentGestureCoords[index]); | 
|  | mPointerGesture.lastGestureIdToIndex[id] = index; | 
|  | } | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::abortPointerGestures(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | const MotionClassification classification = | 
|  | mPointerGesture.lastGestureMode == PointerGesture::Mode::SWIPE | 
|  | ? MotionClassification::TWO_FINGER_SWIPE | 
|  | : MotionClassification::NONE; | 
|  | std::list<NotifyArgs> out; | 
|  | // Cancel previously dispatches pointers. | 
|  | if (!mPointerGesture.lastGestureIdBits.isEmpty()) { | 
|  | int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | int32_t buttonState = mCurrentRawState.buttonState; | 
|  | out.push_back(dispatchMotion(when, readTime, policyFlags, mSource, | 
|  | AMOTION_EVENT_ACTION_CANCEL, 0, AMOTION_EVENT_FLAG_CANCELED, | 
|  | metaState, buttonState, AMOTION_EVENT_EDGE_FLAG_NONE, | 
|  | mPointerGesture.lastGestureProperties, | 
|  | mPointerGesture.lastGestureCoords, | 
|  | mPointerGesture.lastGestureIdToIndex, | 
|  | mPointerGesture.lastGestureIdBits, -1, 0, 0, | 
|  | mPointerGesture.downTime, classification)); | 
|  | } | 
|  |  | 
|  | // Reset the current pointer gesture. | 
|  | mPointerGesture.reset(); | 
|  | mPointerVelocityControl.reset(); | 
|  |  | 
|  | // Remove any current spots. | 
|  | if (mPointerController != nullptr) { | 
|  | mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); | 
|  | mPointerController->clearSpots(); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | bool TouchInputMapper::preparePointerGestures(nsecs_t when, bool* outCancelPreviousGesture, | 
|  | bool* outFinishPreviousGesture, bool isTimeout) { | 
|  | *outCancelPreviousGesture = false; | 
|  | *outFinishPreviousGesture = false; | 
|  |  | 
|  | // Handle TAP timeout. | 
|  | if (isTimeout) { | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: Processing timeout"); | 
|  |  | 
|  | if (mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP) { | 
|  | if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { | 
|  | // The tap/drag timeout has not yet expired. | 
|  | getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime + | 
|  | mConfig.pointerGestureTapDragInterval); | 
|  | } else { | 
|  | // The tap is finished. | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: TAP finished"); | 
|  | *outFinishPreviousGesture = true; | 
|  |  | 
|  | mPointerGesture.activeGestureId = -1; | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::NEUTRAL; | 
|  | mPointerGesture.currentGestureIdBits.clear(); | 
|  |  | 
|  | mPointerVelocityControl.reset(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We did not handle this timeout. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const uint32_t currentFingerCount = mCurrentCookedState.fingerIdBits.count(); | 
|  | const uint32_t lastFingerCount = mLastCookedState.fingerIdBits.count(); | 
|  |  | 
|  | // Update the velocity tracker. | 
|  | { | 
|  | std::vector<float> positionsX; | 
|  | std::vector<float> positionsY; | 
|  | for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | const RawPointerData::Pointer& pointer = | 
|  | mCurrentRawState.rawPointerData.pointerForId(id); | 
|  | positionsX.push_back(pointer.x * mPointerXMovementScale); | 
|  | positionsY.push_back(pointer.y * mPointerYMovementScale); | 
|  | } | 
|  | mPointerGesture.velocityTracker.addMovement(when, mCurrentCookedState.fingerIdBits, | 
|  | {{AMOTION_EVENT_AXIS_X, positionsX}, | 
|  | {AMOTION_EVENT_AXIS_Y, positionsY}}); | 
|  | } | 
|  |  | 
|  | // If the gesture ever enters a mode other than TAP, HOVER or TAP_DRAG, without first returning | 
|  | // to NEUTRAL, then we should not generate tap event. | 
|  | if (mPointerGesture.lastGestureMode != PointerGesture::Mode::HOVER && | 
|  | mPointerGesture.lastGestureMode != PointerGesture::Mode::TAP && | 
|  | mPointerGesture.lastGestureMode != PointerGesture::Mode::TAP_DRAG) { | 
|  | mPointerGesture.resetTap(); | 
|  | } | 
|  |  | 
|  | // Pick a new active touch id if needed. | 
|  | // Choose an arbitrary pointer that just went down, if there is one. | 
|  | // Otherwise choose an arbitrary remaining pointer. | 
|  | // This guarantees we always have an active touch id when there is at least one pointer. | 
|  | // We keep the same active touch id for as long as possible. | 
|  | if (mPointerGesture.activeTouchId < 0) { | 
|  | if (!mCurrentCookedState.fingerIdBits.isEmpty()) { | 
|  | mPointerGesture.activeTouchId = mCurrentCookedState.fingerIdBits.firstMarkedBit(); | 
|  | mPointerGesture.firstTouchTime = when; | 
|  | } | 
|  | } else if (!mCurrentCookedState.fingerIdBits.hasBit(mPointerGesture.activeTouchId)) { | 
|  | mPointerGesture.activeTouchId = !mCurrentCookedState.fingerIdBits.isEmpty() | 
|  | ? mCurrentCookedState.fingerIdBits.firstMarkedBit() | 
|  | : -1; | 
|  | } | 
|  | const int32_t& activeTouchId = mPointerGesture.activeTouchId; | 
|  |  | 
|  | // Switch states based on button and pointer state. | 
|  | if (checkForTouchpadQuietTime(when)) { | 
|  | // Case 1: Quiet time. (QUIET) | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: QUIET for next %0.3fms", | 
|  | (mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval - when) * | 
|  | 0.000001f); | 
|  | if (mPointerGesture.lastGestureMode != PointerGesture::Mode::QUIET) { | 
|  | *outFinishPreviousGesture = true; | 
|  | } | 
|  |  | 
|  | mPointerGesture.activeGestureId = -1; | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::QUIET; | 
|  | mPointerGesture.currentGestureIdBits.clear(); | 
|  |  | 
|  | mPointerVelocityControl.reset(); | 
|  | } else if (isPointerDown(mCurrentRawState.buttonState)) { | 
|  | // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG) | 
|  | // The pointer follows the active touch point. | 
|  | // Emit DOWN, MOVE, UP events at the pointer location. | 
|  | // | 
|  | // Only the active touch matters; other fingers are ignored.  This policy helps | 
|  | // to handle the case where the user places a second finger on the touch pad | 
|  | // to apply the necessary force to depress an integrated button below the surface. | 
|  | // We don't want the second finger to be delivered to applications. | 
|  | // | 
|  | // For this to work well, we need to make sure to track the pointer that is really | 
|  | // active.  If the user first puts one finger down to click then adds another | 
|  | // finger to drag then the active pointer should switch to the finger that is | 
|  | // being dragged. | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, currentFingerCount=%d", | 
|  | activeTouchId, currentFingerCount); | 
|  | // Reset state when just starting. | 
|  | if (mPointerGesture.lastGestureMode != PointerGesture::Mode::BUTTON_CLICK_OR_DRAG) { | 
|  | *outFinishPreviousGesture = true; | 
|  | mPointerGesture.activeGestureId = 0; | 
|  | } | 
|  |  | 
|  | // Switch pointers if needed. | 
|  | // Find the fastest pointer and follow it. | 
|  | if (activeTouchId >= 0 && currentFingerCount > 1) { | 
|  | const auto [bestId, bestSpeed] = getFastestFinger(); | 
|  | if (bestId >= 0 && bestId != activeTouchId) { | 
|  | mPointerGesture.activeTouchId = bestId; | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: BUTTON_CLICK_OR_DRAG switched pointers, bestId=%d, " | 
|  | "bestSpeed=%0.3f", | 
|  | bestId, bestSpeed); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (activeTouchId >= 0 && mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { | 
|  | // When using spots, the click will occur at the position of the anchor | 
|  | // spot and all other spots will move there. | 
|  | moveMousePointerFromPointerDelta(when, activeTouchId); | 
|  | } else { | 
|  | mPointerVelocityControl.reset(); | 
|  | } | 
|  |  | 
|  | float x, y; | 
|  | mPointerController->getPosition(&x, &y); | 
|  |  | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::BUTTON_CLICK_OR_DRAG; | 
|  | mPointerGesture.currentGestureIdBits.clear(); | 
|  | mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); | 
|  | mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; | 
|  | mPointerGesture.currentGestureProperties[0].clear(); | 
|  | mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; | 
|  | mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; | 
|  | mPointerGesture.currentGestureCoords[0].clear(); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); | 
|  | } else if (currentFingerCount == 0) { | 
|  | // Case 3. No fingers down and button is not pressed. (NEUTRAL) | 
|  | if (mPointerGesture.lastGestureMode != PointerGesture::Mode::NEUTRAL) { | 
|  | *outFinishPreviousGesture = true; | 
|  | } | 
|  |  | 
|  | // Watch for taps coming out of HOVER or TAP_DRAG mode. | 
|  | // Checking for taps after TAP_DRAG allows us to detect double-taps. | 
|  | bool tapped = false; | 
|  | if ((mPointerGesture.lastGestureMode == PointerGesture::Mode::HOVER || | 
|  | mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP_DRAG) && | 
|  | lastFingerCount == 1) { | 
|  | if (when <= mPointerGesture.tapDownTime + mConfig.pointerGestureTapInterval) { | 
|  | float x, y; | 
|  | mPointerController->getPosition(&x, &y); | 
|  | if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop && | 
|  | fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: TAP"); | 
|  |  | 
|  | mPointerGesture.tapUpTime = when; | 
|  | getContext()->requestTimeoutAtTime(when + | 
|  | mConfig.pointerGestureTapDragInterval); | 
|  |  | 
|  | mPointerGesture.activeGestureId = 0; | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::TAP; | 
|  | mPointerGesture.currentGestureIdBits.clear(); | 
|  | mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); | 
|  | mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; | 
|  | mPointerGesture.currentGestureProperties[0].clear(); | 
|  | mPointerGesture.currentGestureProperties[0].id = | 
|  | mPointerGesture.activeGestureId; | 
|  | mPointerGesture.currentGestureProperties[0].toolType = | 
|  | AMOTION_EVENT_TOOL_TYPE_FINGER; | 
|  | mPointerGesture.currentGestureCoords[0].clear(); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, | 
|  | mPointerGesture.tapX); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, | 
|  | mPointerGesture.tapY); | 
|  | mPointerGesture.currentGestureCoords[0] | 
|  | .setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); | 
|  |  | 
|  | tapped = true; | 
|  | } else { | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: Not a TAP, deltaX=%f, deltaY=%f", | 
|  | x - mPointerGesture.tapX, y - mPointerGesture.tapY); | 
|  | } | 
|  | } else { | 
|  | if (DEBUG_GESTURES) { | 
|  | if (mPointerGesture.tapDownTime != LLONG_MIN) { | 
|  | ALOGD("Gestures: Not a TAP, %0.3fms since down", | 
|  | (when - mPointerGesture.tapDownTime) * 0.000001f); | 
|  | } else { | 
|  | ALOGD("Gestures: Not a TAP, incompatible mode transitions"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mPointerVelocityControl.reset(); | 
|  |  | 
|  | if (!tapped) { | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: NEUTRAL"); | 
|  | mPointerGesture.activeGestureId = -1; | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::NEUTRAL; | 
|  | mPointerGesture.currentGestureIdBits.clear(); | 
|  | } | 
|  | } else if (currentFingerCount == 1) { | 
|  | // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG) | 
|  | // The pointer follows the active touch point. | 
|  | // When in HOVER, emit HOVER_MOVE events at the pointer location. | 
|  | // When in TAP_DRAG, emit MOVE events at the pointer location. | 
|  | ALOG_ASSERT(activeTouchId >= 0); | 
|  |  | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::HOVER; | 
|  | if (mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP) { | 
|  | if (when <= mPointerGesture.tapUpTime + mConfig.pointerGestureTapDragInterval) { | 
|  | float x, y; | 
|  | mPointerController->getPosition(&x, &y); | 
|  | if (fabs(x - mPointerGesture.tapX) <= mConfig.pointerGestureTapSlop && | 
|  | fabs(y - mPointerGesture.tapY) <= mConfig.pointerGestureTapSlop) { | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::TAP_DRAG; | 
|  | } else { | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f", | 
|  | x - mPointerGesture.tapX, y - mPointerGesture.tapY); | 
|  | } | 
|  | } else { | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: Not a TAP_DRAG, %0.3fms time since up", | 
|  | (when - mPointerGesture.tapUpTime) * 0.000001f); | 
|  | } | 
|  | } else if (mPointerGesture.lastGestureMode == PointerGesture::Mode::TAP_DRAG) { | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::TAP_DRAG; | 
|  | } | 
|  |  | 
|  | if (mLastCookedState.fingerIdBits.hasBit(activeTouchId)) { | 
|  | // When using spots, the hover or drag will occur at the position of the anchor spot. | 
|  | moveMousePointerFromPointerDelta(when, activeTouchId); | 
|  | } else { | 
|  | mPointerVelocityControl.reset(); | 
|  | } | 
|  |  | 
|  | bool down; | 
|  | if (mPointerGesture.currentGestureMode == PointerGesture::Mode::TAP_DRAG) { | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: TAP_DRAG"); | 
|  | down = true; | 
|  | } else { | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: HOVER"); | 
|  | if (mPointerGesture.lastGestureMode != PointerGesture::Mode::HOVER) { | 
|  | *outFinishPreviousGesture = true; | 
|  | } | 
|  | mPointerGesture.activeGestureId = 0; | 
|  | down = false; | 
|  | } | 
|  |  | 
|  | float x, y; | 
|  | mPointerController->getPosition(&x, &y); | 
|  |  | 
|  | mPointerGesture.currentGestureIdBits.clear(); | 
|  | mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); | 
|  | mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; | 
|  | mPointerGesture.currentGestureProperties[0].clear(); | 
|  | mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; | 
|  | mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; | 
|  | mPointerGesture.currentGestureCoords[0].clear(); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, | 
|  | down ? 1.0f : 0.0f); | 
|  |  | 
|  | if (lastFingerCount == 0 && currentFingerCount != 0) { | 
|  | mPointerGesture.resetTap(); | 
|  | mPointerGesture.tapDownTime = when; | 
|  | mPointerGesture.tapX = x; | 
|  | mPointerGesture.tapY = y; | 
|  | } | 
|  | } else { | 
|  | // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM) | 
|  | prepareMultiFingerPointerGestures(when, outCancelPreviousGesture, outFinishPreviousGesture); | 
|  | } | 
|  |  | 
|  | mPointerController->setButtonState(mCurrentRawState.buttonState); | 
|  |  | 
|  | if (DEBUG_GESTURES) { | 
|  | ALOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, " | 
|  | "currentGestureMode=%d, currentGestureIdBits=0x%08x, " | 
|  | "lastGestureMode=%d, lastGestureIdBits=0x%08x", | 
|  | toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture), | 
|  | mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value, | 
|  | mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value); | 
|  | for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; | 
|  | const PointerProperties& properties = mPointerGesture.currentGestureProperties[index]; | 
|  | const PointerCoords& coords = mPointerGesture.currentGestureCoords[index]; | 
|  | ALOGD("  currentGesture[%d]: index=%d, toolType=%d, " | 
|  | "x=%0.3f, y=%0.3f, pressure=%0.3f", | 
|  | id, index, properties.toolType, coords.getAxisValue(AMOTION_EVENT_AXIS_X), | 
|  | coords.getAxisValue(AMOTION_EVENT_AXIS_Y), | 
|  | coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); | 
|  | } | 
|  | for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | uint32_t index = mPointerGesture.lastGestureIdToIndex[id]; | 
|  | const PointerProperties& properties = mPointerGesture.lastGestureProperties[index]; | 
|  | const PointerCoords& coords = mPointerGesture.lastGestureCoords[index]; | 
|  | ALOGD("  lastGesture[%d]: index=%d, toolType=%d, " | 
|  | "x=%0.3f, y=%0.3f, pressure=%0.3f", | 
|  | id, index, properties.toolType, coords.getAxisValue(AMOTION_EVENT_AXIS_X), | 
|  | coords.getAxisValue(AMOTION_EVENT_AXIS_Y), | 
|  | coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool TouchInputMapper::checkForTouchpadQuietTime(nsecs_t when) { | 
|  | if (mPointerGesture.activeTouchId < 0) { | 
|  | mPointerGesture.resetQuietTime(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (when < mPointerGesture.quietTime + mConfig.pointerGestureQuietInterval) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const uint32_t currentFingerCount = mCurrentCookedState.fingerIdBits.count(); | 
|  | bool isQuietTime = false; | 
|  | if ((mPointerGesture.lastGestureMode == PointerGesture::Mode::PRESS || | 
|  | mPointerGesture.lastGestureMode == PointerGesture::Mode::SWIPE || | 
|  | mPointerGesture.lastGestureMode == PointerGesture::Mode::FREEFORM) && | 
|  | currentFingerCount < 2) { | 
|  | // Enter quiet time when exiting swipe or freeform state. | 
|  | // This is to prevent accidentally entering the hover state and flinging the | 
|  | // pointer when finishing a swipe and there is still one pointer left onscreen. | 
|  | isQuietTime = true; | 
|  | } else if (mPointerGesture.lastGestureMode == PointerGesture::Mode::BUTTON_CLICK_OR_DRAG && | 
|  | currentFingerCount >= 2 && !isPointerDown(mCurrentRawState.buttonState)) { | 
|  | // Enter quiet time when releasing the button and there are still two or more | 
|  | // fingers down.  This may indicate that one finger was used to press the button | 
|  | // but it has not gone up yet. | 
|  | isQuietTime = true; | 
|  | } | 
|  | if (isQuietTime) { | 
|  | mPointerGesture.quietTime = when; | 
|  | } | 
|  | return isQuietTime; | 
|  | } | 
|  |  | 
|  | std::pair<int32_t, float> TouchInputMapper::getFastestFinger() { | 
|  | int32_t bestId = -1; | 
|  | float bestSpeed = mConfig.pointerGestureDragMinSwitchSpeed; | 
|  | for (BitSet32 idBits(mCurrentCookedState.fingerIdBits); !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | std::optional<float> vx = | 
|  | mPointerGesture.velocityTracker.getVelocity(AMOTION_EVENT_AXIS_X, id); | 
|  | std::optional<float> vy = | 
|  | mPointerGesture.velocityTracker.getVelocity(AMOTION_EVENT_AXIS_Y, id); | 
|  | if (vx && vy) { | 
|  | float speed = hypotf(*vx, *vy); | 
|  | if (speed > bestSpeed) { | 
|  | bestId = id; | 
|  | bestSpeed = speed; | 
|  | } | 
|  | } | 
|  | } | 
|  | return std::make_pair(bestId, bestSpeed); | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::prepareMultiFingerPointerGestures(nsecs_t when, bool* cancelPreviousGesture, | 
|  | bool* finishPreviousGesture) { | 
|  | // We need to provide feedback for each finger that goes down so we cannot wait for the fingers | 
|  | // to move before deciding what to do. | 
|  | // | 
|  | // The ambiguous case is deciding what to do when there are two fingers down but they have not | 
|  | // moved enough to determine whether they are part of a drag or part of a freeform gesture, or | 
|  | // just a press or long-press at the pointer location. | 
|  | // | 
|  | // When there are two fingers we start with the PRESS hypothesis and we generate a down at the | 
|  | // pointer location. | 
|  | // | 
|  | // When the two fingers move enough or when additional fingers are added, we make a decision to | 
|  | // transition into SWIPE or FREEFORM mode accordingly. | 
|  | const int32_t activeTouchId = mPointerGesture.activeTouchId; | 
|  | ALOG_ASSERT(activeTouchId >= 0); | 
|  |  | 
|  | const uint32_t currentFingerCount = mCurrentCookedState.fingerIdBits.count(); | 
|  | const uint32_t lastFingerCount = mLastCookedState.fingerIdBits.count(); | 
|  | bool settled = | 
|  | when >= mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval; | 
|  | if (mPointerGesture.lastGestureMode != PointerGesture::Mode::PRESS && | 
|  | mPointerGesture.lastGestureMode != PointerGesture::Mode::SWIPE && | 
|  | mPointerGesture.lastGestureMode != PointerGesture::Mode::FREEFORM) { | 
|  | *finishPreviousGesture = true; | 
|  | } else if (!settled && currentFingerCount > lastFingerCount) { | 
|  | // Additional pointers have gone down but not yet settled. | 
|  | // Reset the gesture. | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: Resetting gesture since additional pointers went down for " | 
|  | "MULTITOUCH, settle time remaining %0.3fms", | 
|  | (mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval - | 
|  | when) * 0.000001f); | 
|  | *cancelPreviousGesture = true; | 
|  | } else { | 
|  | // Continue previous gesture. | 
|  | mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode; | 
|  | } | 
|  |  | 
|  | if (*finishPreviousGesture || *cancelPreviousGesture) { | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::PRESS; | 
|  | mPointerGesture.activeGestureId = 0; | 
|  | mPointerGesture.referenceIdBits.clear(); | 
|  | mPointerVelocityControl.reset(); | 
|  |  | 
|  | // Use the centroid and pointer location as the reference points for the gesture. | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: Using centroid as reference for MULTITOUCH, settle time remaining " | 
|  | "%0.3fms", | 
|  | (mPointerGesture.firstTouchTime + mConfig.pointerGestureMultitouchSettleInterval - | 
|  | when) * 0.000001f); | 
|  | mCurrentRawState.rawPointerData | 
|  | .getCentroidOfTouchingPointers(&mPointerGesture.referenceTouchX, | 
|  | &mPointerGesture.referenceTouchY); | 
|  | mPointerController->getPosition(&mPointerGesture.referenceGestureX, | 
|  | &mPointerGesture.referenceGestureY); | 
|  | } | 
|  |  | 
|  | // Clear the reference deltas for fingers not yet included in the reference calculation. | 
|  | for (BitSet32 idBits(mCurrentCookedState.fingerIdBits.value & | 
|  | ~mPointerGesture.referenceIdBits.value); | 
|  | !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | mPointerGesture.referenceDeltas[id].dx = 0; | 
|  | mPointerGesture.referenceDeltas[id].dy = 0; | 
|  | } | 
|  | mPointerGesture.referenceIdBits = mCurrentCookedState.fingerIdBits; | 
|  |  | 
|  | // Add delta for all fingers and calculate a common movement delta. | 
|  | int32_t commonDeltaRawX = 0, commonDeltaRawY = 0; | 
|  | BitSet32 commonIdBits(mLastCookedState.fingerIdBits.value & | 
|  | mCurrentCookedState.fingerIdBits.value); | 
|  | for (BitSet32 idBits(commonIdBits); !idBits.isEmpty();) { | 
|  | bool first = (idBits == commonIdBits); | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | const RawPointerData::Pointer& cpd = mCurrentRawState.rawPointerData.pointerForId(id); | 
|  | const RawPointerData::Pointer& lpd = mLastRawState.rawPointerData.pointerForId(id); | 
|  | PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; | 
|  | delta.dx += cpd.x - lpd.x; | 
|  | delta.dy += cpd.y - lpd.y; | 
|  |  | 
|  | if (first) { | 
|  | commonDeltaRawX = delta.dx; | 
|  | commonDeltaRawY = delta.dy; | 
|  | } else { | 
|  | commonDeltaRawX = calculateCommonVector(commonDeltaRawX, delta.dx); | 
|  | commonDeltaRawY = calculateCommonVector(commonDeltaRawY, delta.dy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Consider transitions from PRESS to SWIPE or MULTITOUCH. | 
|  | if (mPointerGesture.currentGestureMode == PointerGesture::Mode::PRESS) { | 
|  | float dist[MAX_POINTER_ID + 1]; | 
|  | int32_t distOverThreshold = 0; | 
|  | for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; | 
|  | dist[id] = hypotf(delta.dx * mPointerXZoomScale, delta.dy * mPointerYZoomScale); | 
|  | if (dist[id] > mConfig.pointerGestureMultitouchMinDistance) { | 
|  | distOverThreshold += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only transition when at least two pointers have moved further than | 
|  | // the minimum distance threshold. | 
|  | if (distOverThreshold >= 2) { | 
|  | if (currentFingerCount > 2) { | 
|  | // There are more than two pointers, switch to FREEFORM. | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2", | 
|  | currentFingerCount); | 
|  | *cancelPreviousGesture = true; | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; | 
|  | } else { | 
|  | // There are exactly two pointers. | 
|  | BitSet32 idBits(mCurrentCookedState.fingerIdBits); | 
|  | uint32_t id1 = idBits.clearFirstMarkedBit(); | 
|  | uint32_t id2 = idBits.firstMarkedBit(); | 
|  | const RawPointerData::Pointer& p1 = | 
|  | mCurrentRawState.rawPointerData.pointerForId(id1); | 
|  | const RawPointerData::Pointer& p2 = | 
|  | mCurrentRawState.rawPointerData.pointerForId(id2); | 
|  | float mutualDistance = distance(p1.x, p1.y, p2.x, p2.y); | 
|  | if (mutualDistance > mPointerGestureMaxSwipeWidth) { | 
|  | // There are two pointers but they are too far apart for a SWIPE, | 
|  | // switch to FREEFORM. | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f", | 
|  | mutualDistance, mPointerGestureMaxSwipeWidth); | 
|  | *cancelPreviousGesture = true; | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; | 
|  | } else { | 
|  | // There are two pointers.  Wait for both pointers to start moving | 
|  | // before deciding whether this is a SWIPE or FREEFORM gesture. | 
|  | float dist1 = dist[id1]; | 
|  | float dist2 = dist[id2]; | 
|  | if (dist1 >= mConfig.pointerGestureMultitouchMinDistance && | 
|  | dist2 >= mConfig.pointerGestureMultitouchMinDistance) { | 
|  | // Calculate the dot product of the displacement vectors. | 
|  | // When the vectors are oriented in approximately the same direction, | 
|  | // the angle betweeen them is near zero and the cosine of the angle | 
|  | // approaches 1.0.  Recall that dot(v1, v2) = cos(angle) * mag(v1) * | 
|  | // mag(v2). | 
|  | PointerGesture::Delta& delta1 = mPointerGesture.referenceDeltas[id1]; | 
|  | PointerGesture::Delta& delta2 = mPointerGesture.referenceDeltas[id2]; | 
|  | float dx1 = delta1.dx * mPointerXZoomScale; | 
|  | float dy1 = delta1.dy * mPointerYZoomScale; | 
|  | float dx2 = delta2.dx * mPointerXZoomScale; | 
|  | float dy2 = delta2.dy * mPointerYZoomScale; | 
|  | float dot = dx1 * dx2 + dy1 * dy2; | 
|  | float cosine = dot / (dist1 * dist2); // denominator always > 0 | 
|  | if (cosine >= mConfig.pointerGestureSwipeTransitionAngleCosine) { | 
|  | // Pointers are moving in the same direction.  Switch to SWIPE. | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: PRESS transitioned to SWIPE, " | 
|  | "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " | 
|  | "cosine %0.3f >= %0.3f", | 
|  | dist1, mConfig.pointerGestureMultitouchMinDistance, dist2, | 
|  | mConfig.pointerGestureMultitouchMinDistance, cosine, | 
|  | mConfig.pointerGestureSwipeTransitionAngleCosine); | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::SWIPE; | 
|  | } else { | 
|  | // Pointers are moving in different directions.  Switch to FREEFORM. | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: PRESS transitioned to FREEFORM, " | 
|  | "dist1 %0.3f >= %0.3f, dist2 %0.3f >= %0.3f, " | 
|  | "cosine %0.3f < %0.3f", | 
|  | dist1, mConfig.pointerGestureMultitouchMinDistance, dist2, | 
|  | mConfig.pointerGestureMultitouchMinDistance, cosine, | 
|  | mConfig.pointerGestureSwipeTransitionAngleCosine); | 
|  | *cancelPreviousGesture = true; | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE) { | 
|  | // Switch from SWIPE to FREEFORM if additional pointers go down. | 
|  | // Cancel previous gesture. | 
|  | if (currentFingerCount > 2) { | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2", | 
|  | currentFingerCount); | 
|  | *cancelPreviousGesture = true; | 
|  | mPointerGesture.currentGestureMode = PointerGesture::Mode::FREEFORM; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Move the reference points based on the overall group motion of the fingers | 
|  | // except in PRESS mode while waiting for a transition to occur. | 
|  | if (mPointerGesture.currentGestureMode != PointerGesture::Mode::PRESS && | 
|  | (commonDeltaRawX || commonDeltaRawY)) { | 
|  | for (BitSet32 idBits(mPointerGesture.referenceIdBits); !idBits.isEmpty();) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | PointerGesture::Delta& delta = mPointerGesture.referenceDeltas[id]; | 
|  | delta.dx = 0; | 
|  | delta.dy = 0; | 
|  | } | 
|  |  | 
|  | mPointerGesture.referenceTouchX += commonDeltaRawX; | 
|  | mPointerGesture.referenceTouchY += commonDeltaRawY; | 
|  |  | 
|  | float commonDeltaX = commonDeltaRawX * mPointerXMovementScale; | 
|  | float commonDeltaY = commonDeltaRawY * mPointerYMovementScale; | 
|  |  | 
|  | rotateDelta(mInputDeviceOrientation, &commonDeltaX, &commonDeltaY); | 
|  | mPointerVelocityControl.move(when, &commonDeltaX, &commonDeltaY); | 
|  |  | 
|  | mPointerGesture.referenceGestureX += commonDeltaX; | 
|  | mPointerGesture.referenceGestureY += commonDeltaY; | 
|  | } | 
|  |  | 
|  | // Report gestures. | 
|  | if (mPointerGesture.currentGestureMode == PointerGesture::Mode::PRESS || | 
|  | mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE) { | 
|  | // PRESS or SWIPE mode. | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: PRESS or SWIPE activeTouchId=%d, activeGestureId=%d, " | 
|  | "currentTouchPointerCount=%d", | 
|  | activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); | 
|  | ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); | 
|  |  | 
|  | mPointerGesture.currentGestureIdBits.clear(); | 
|  | mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); | 
|  | mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; | 
|  | mPointerGesture.currentGestureProperties[0].clear(); | 
|  | mPointerGesture.currentGestureProperties[0].id = mPointerGesture.activeGestureId; | 
|  | mPointerGesture.currentGestureProperties[0].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; | 
|  | mPointerGesture.currentGestureCoords[0].clear(); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, | 
|  | mPointerGesture.referenceGestureX); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, | 
|  | mPointerGesture.referenceGestureY); | 
|  | mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); | 
|  | if (mPointerGesture.currentGestureMode == PointerGesture::Mode::SWIPE) { | 
|  | float xOffset = static_cast<float>(commonDeltaRawX) / | 
|  | (mRawPointerAxes.x.maxValue - mRawPointerAxes.x.minValue); | 
|  | float yOffset = static_cast<float>(commonDeltaRawY) / | 
|  | (mRawPointerAxes.y.maxValue - mRawPointerAxes.y.minValue); | 
|  | mPointerGesture.currentGestureCoords[0] | 
|  | .setAxisValue(AMOTION_EVENT_AXIS_GESTURE_X_OFFSET, xOffset); | 
|  | mPointerGesture.currentGestureCoords[0] | 
|  | .setAxisValue(AMOTION_EVENT_AXIS_GESTURE_Y_OFFSET, yOffset); | 
|  | } | 
|  | } else if (mPointerGesture.currentGestureMode == PointerGesture::Mode::FREEFORM) { | 
|  | // FREEFORM mode. | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: FREEFORM activeTouchId=%d, activeGestureId=%d, " | 
|  | "currentTouchPointerCount=%d", | 
|  | activeTouchId, mPointerGesture.activeGestureId, currentFingerCount); | 
|  | ALOG_ASSERT(mPointerGesture.activeGestureId >= 0); | 
|  |  | 
|  | mPointerGesture.currentGestureIdBits.clear(); | 
|  |  | 
|  | BitSet32 mappedTouchIdBits; | 
|  | BitSet32 usedGestureIdBits; | 
|  | if (mPointerGesture.lastGestureMode != PointerGesture::Mode::FREEFORM) { | 
|  | // Initially, assign the active gesture id to the active touch point | 
|  | // if there is one.  No other touch id bits are mapped yet. | 
|  | if (!*cancelPreviousGesture) { | 
|  | mappedTouchIdBits.markBit(activeTouchId); | 
|  | usedGestureIdBits.markBit(mPointerGesture.activeGestureId); | 
|  | mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] = | 
|  | mPointerGesture.activeGestureId; | 
|  | } else { | 
|  | mPointerGesture.activeGestureId = -1; | 
|  | } | 
|  | } else { | 
|  | // Otherwise, assume we mapped all touches from the previous frame. | 
|  | // Reuse all mappings that are still applicable. | 
|  | mappedTouchIdBits.value = | 
|  | mLastCookedState.fingerIdBits.value & mCurrentCookedState.fingerIdBits.value; | 
|  | usedGestureIdBits = mPointerGesture.lastGestureIdBits; | 
|  |  | 
|  | // Check whether we need to choose a new active gesture id because the | 
|  | // current went went up. | 
|  | for (BitSet32 upTouchIdBits(mLastCookedState.fingerIdBits.value & | 
|  | ~mCurrentCookedState.fingerIdBits.value); | 
|  | !upTouchIdBits.isEmpty();) { | 
|  | uint32_t upTouchId = upTouchIdBits.clearFirstMarkedBit(); | 
|  | uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId]; | 
|  | if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) { | 
|  | mPointerGesture.activeGestureId = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: FREEFORM follow up mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, " | 
|  | "activeGestureId=%d", | 
|  | mappedTouchIdBits.value, usedGestureIdBits.value, mPointerGesture.activeGestureId); | 
|  |  | 
|  | BitSet32 idBits(mCurrentCookedState.fingerIdBits); | 
|  | for (uint32_t i = 0; i < currentFingerCount; i++) { | 
|  | uint32_t touchId = idBits.clearFirstMarkedBit(); | 
|  | uint32_t gestureId; | 
|  | if (!mappedTouchIdBits.hasBit(touchId)) { | 
|  | gestureId = usedGestureIdBits.markFirstUnmarkedBit(); | 
|  | mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId; | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: FREEFORM new mapping for touch id %d -> gesture id %d", touchId, | 
|  | gestureId); | 
|  | } else { | 
|  | gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId]; | 
|  | ALOGD_IF(DEBUG_GESTURES, | 
|  | "Gestures: FREEFORM existing mapping for touch id %d -> gesture id %d", | 
|  | touchId, gestureId); | 
|  | } | 
|  | mPointerGesture.currentGestureIdBits.markBit(gestureId); | 
|  | mPointerGesture.currentGestureIdToIndex[gestureId] = i; | 
|  |  | 
|  | const RawPointerData::Pointer& pointer = | 
|  | mCurrentRawState.rawPointerData.pointerForId(touchId); | 
|  | float deltaX = (pointer.x - mPointerGesture.referenceTouchX) * mPointerXZoomScale; | 
|  | float deltaY = (pointer.y - mPointerGesture.referenceTouchY) * mPointerYZoomScale; | 
|  | rotateDelta(mInputDeviceOrientation, &deltaX, &deltaY); | 
|  |  | 
|  | mPointerGesture.currentGestureProperties[i].clear(); | 
|  | mPointerGesture.currentGestureProperties[i].id = gestureId; | 
|  | mPointerGesture.currentGestureProperties[i].toolType = AMOTION_EVENT_TOOL_TYPE_FINGER; | 
|  | mPointerGesture.currentGestureCoords[i].clear(); | 
|  | mPointerGesture.currentGestureCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, | 
|  | mPointerGesture.referenceGestureX + | 
|  | deltaX); | 
|  | mPointerGesture.currentGestureCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, | 
|  | mPointerGesture.referenceGestureY + | 
|  | deltaY); | 
|  | mPointerGesture.currentGestureCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); | 
|  | } | 
|  |  | 
|  | if (mPointerGesture.activeGestureId < 0) { | 
|  | mPointerGesture.activeGestureId = mPointerGesture.currentGestureIdBits.firstMarkedBit(); | 
|  | ALOGD_IF(DEBUG_GESTURES, "Gestures: FREEFORM new activeGestureId=%d", | 
|  | mPointerGesture.activeGestureId); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::moveMousePointerFromPointerDelta(nsecs_t when, uint32_t pointerId) { | 
|  | const RawPointerData::Pointer& currentPointer = | 
|  | mCurrentRawState.rawPointerData.pointerForId(pointerId); | 
|  | const RawPointerData::Pointer& lastPointer = | 
|  | mLastRawState.rawPointerData.pointerForId(pointerId); | 
|  | float deltaX = (currentPointer.x - lastPointer.x) * mPointerXMovementScale; | 
|  | float deltaY = (currentPointer.y - lastPointer.y) * mPointerYMovementScale; | 
|  |  | 
|  | rotateDelta(mInputDeviceOrientation, &deltaX, &deltaY); | 
|  | mPointerVelocityControl.move(when, &deltaX, &deltaY); | 
|  |  | 
|  | mPointerController->move(deltaX, deltaY); | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchPointerStylus(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | mPointerSimple.currentCoords.clear(); | 
|  | mPointerSimple.currentProperties.clear(); | 
|  |  | 
|  | bool down, hovering; | 
|  | if (!mCurrentCookedState.stylusIdBits.isEmpty()) { | 
|  | uint32_t id = mCurrentCookedState.stylusIdBits.firstMarkedBit(); | 
|  | uint32_t index = mCurrentCookedState.cookedPointerData.idToIndex[id]; | 
|  | mPointerController | 
|  | ->setPosition(mCurrentCookedState.cookedPointerData.pointerCoords[index].getX(), | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords[index].getY()); | 
|  |  | 
|  | hovering = mCurrentCookedState.cookedPointerData.hoveringIdBits.hasBit(id); | 
|  | down = !hovering; | 
|  |  | 
|  | float x, y; | 
|  | mPointerController->getPosition(&x, &y); | 
|  | mPointerSimple.currentCoords.copyFrom( | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords[index]); | 
|  | mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); | 
|  | mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); | 
|  | mPointerSimple.currentProperties.id = 0; | 
|  | mPointerSimple.currentProperties.toolType = | 
|  | mCurrentCookedState.cookedPointerData.pointerProperties[index].toolType; | 
|  | } else { | 
|  | down = false; | 
|  | hovering = false; | 
|  | } | 
|  |  | 
|  | return dispatchPointerSimple(when, readTime, policyFlags, down, hovering); | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::abortPointerStylus(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | return abortPointerSimple(when, readTime, policyFlags); | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchPointerMouse(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | mPointerSimple.currentCoords.clear(); | 
|  | mPointerSimple.currentProperties.clear(); | 
|  |  | 
|  | bool down, hovering; | 
|  | if (!mCurrentCookedState.mouseIdBits.isEmpty()) { | 
|  | uint32_t id = mCurrentCookedState.mouseIdBits.firstMarkedBit(); | 
|  | if (mLastCookedState.mouseIdBits.hasBit(id)) { | 
|  | moveMousePointerFromPointerDelta(when, id); | 
|  | } else { | 
|  | mPointerVelocityControl.reset(); | 
|  | } | 
|  |  | 
|  | down = isPointerDown(mCurrentRawState.buttonState); | 
|  | hovering = !down; | 
|  |  | 
|  | float x, y; | 
|  | mPointerController->getPosition(&x, &y); | 
|  | uint32_t currentIndex = mCurrentRawState.rawPointerData.idToIndex[id]; | 
|  | mPointerSimple.currentCoords.copyFrom( | 
|  | mCurrentCookedState.cookedPointerData.pointerCoords[currentIndex]); | 
|  | mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); | 
|  | mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); | 
|  | mPointerSimple.currentCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, | 
|  | hovering ? 0.0f : 1.0f); | 
|  | mPointerSimple.currentProperties.id = 0; | 
|  | mPointerSimple.currentProperties.toolType = | 
|  | mCurrentCookedState.cookedPointerData.pointerProperties[currentIndex].toolType; | 
|  | } else { | 
|  | mPointerVelocityControl.reset(); | 
|  |  | 
|  | down = false; | 
|  | hovering = false; | 
|  | } | 
|  |  | 
|  | return dispatchPointerSimple(when, readTime, policyFlags, down, hovering); | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::abortPointerMouse(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | std::list<NotifyArgs> out = abortPointerSimple(when, readTime, policyFlags); | 
|  |  | 
|  | mPointerVelocityControl.reset(); | 
|  |  | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::dispatchPointerSimple(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags, bool down, | 
|  | bool hovering) { | 
|  | LOG_ALWAYS_FATAL_IF(mDeviceMode != DeviceMode::POINTER, | 
|  | "%s cannot be used when the device is not in POINTER mode.", __func__); | 
|  | std::list<NotifyArgs> out; | 
|  | int32_t metaState = getContext()->getGlobalMetaState(); | 
|  |  | 
|  | if (down || hovering) { | 
|  | mPointerController->setPresentation(PointerControllerInterface::Presentation::POINTER); | 
|  | mPointerController->clearSpots(); | 
|  | mPointerController->setButtonState(mCurrentRawState.buttonState); | 
|  | mPointerController->unfade(PointerControllerInterface::Transition::IMMEDIATE); | 
|  | } else if (!down && !hovering && (mPointerSimple.down || mPointerSimple.hovering)) { | 
|  | mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); | 
|  | } | 
|  | int32_t displayId = mPointerController->getDisplayId(); | 
|  |  | 
|  | float xCursorPosition, yCursorPosition; | 
|  | mPointerController->getPosition(&xCursorPosition, &yCursorPosition); | 
|  |  | 
|  | if (mPointerSimple.down && !down) { | 
|  | mPointerSimple.down = false; | 
|  |  | 
|  | // Send up. | 
|  | out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), | 
|  | mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_UP, 0, | 
|  | 0, metaState, mLastRawState.buttonState, | 
|  | MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, | 
|  | &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, | 
|  | mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, | 
|  | yCursorPosition, mPointerSimple.downTime, | 
|  | /* videoFrames */ {})); | 
|  | } | 
|  |  | 
|  | if (mPointerSimple.hovering && !hovering) { | 
|  | mPointerSimple.hovering = false; | 
|  |  | 
|  | // Send hover exit. | 
|  | out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), | 
|  | mSource, displayId, policyFlags, | 
|  | AMOTION_EVENT_ACTION_HOVER_EXIT, 0, 0, metaState, | 
|  | mLastRawState.buttonState, MotionClassification::NONE, | 
|  | AMOTION_EVENT_EDGE_FLAG_NONE, 1, | 
|  | &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, | 
|  | mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, | 
|  | yCursorPosition, mPointerSimple.downTime, | 
|  | /* videoFrames */ {})); | 
|  | } | 
|  |  | 
|  | if (down) { | 
|  | if (!mPointerSimple.down) { | 
|  | mPointerSimple.down = true; | 
|  | mPointerSimple.downTime = when; | 
|  |  | 
|  | // Send down. | 
|  | out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), | 
|  | mSource, displayId, policyFlags, | 
|  | AMOTION_EVENT_ACTION_DOWN, 0, 0, metaState, | 
|  | mCurrentRawState.buttonState, MotionClassification::NONE, | 
|  | AMOTION_EVENT_EDGE_FLAG_NONE, 1, | 
|  | &mPointerSimple.currentProperties, | 
|  | &mPointerSimple.currentCoords, mOrientedXPrecision, | 
|  | mOrientedYPrecision, xCursorPosition, yCursorPosition, | 
|  | mPointerSimple.downTime, /* videoFrames */ {})); | 
|  | } | 
|  |  | 
|  | // Send move. | 
|  | out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), | 
|  | mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_MOVE, | 
|  | 0, 0, metaState, mCurrentRawState.buttonState, | 
|  | MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, | 
|  | &mPointerSimple.currentProperties, | 
|  | &mPointerSimple.currentCoords, mOrientedXPrecision, | 
|  | mOrientedYPrecision, xCursorPosition, yCursorPosition, | 
|  | mPointerSimple.downTime, /* videoFrames */ {})); | 
|  | } | 
|  |  | 
|  | if (hovering) { | 
|  | if (!mPointerSimple.hovering) { | 
|  | mPointerSimple.hovering = true; | 
|  |  | 
|  | // Send hover enter. | 
|  | out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), | 
|  | mSource, displayId, policyFlags, | 
|  | AMOTION_EVENT_ACTION_HOVER_ENTER, 0, 0, metaState, | 
|  | mCurrentRawState.buttonState, MotionClassification::NONE, | 
|  | AMOTION_EVENT_EDGE_FLAG_NONE, 1, | 
|  | &mPointerSimple.currentProperties, | 
|  | &mPointerSimple.currentCoords, mOrientedXPrecision, | 
|  | mOrientedYPrecision, xCursorPosition, yCursorPosition, | 
|  | mPointerSimple.downTime, /* videoFrames */ {})); | 
|  | } | 
|  |  | 
|  | // Send hover move. | 
|  | out.push_back( | 
|  | NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), mSource, | 
|  | displayId, policyFlags, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, 0, | 
|  | metaState, mCurrentRawState.buttonState, | 
|  | MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, | 
|  | &mPointerSimple.currentProperties, &mPointerSimple.currentCoords, | 
|  | mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, | 
|  | yCursorPosition, mPointerSimple.downTime, /* videoFrames */ {})); | 
|  | } | 
|  |  | 
|  | if (mCurrentRawState.rawVScroll || mCurrentRawState.rawHScroll) { | 
|  | float vscroll = mCurrentRawState.rawVScroll; | 
|  | float hscroll = mCurrentRawState.rawHScroll; | 
|  | mWheelYVelocityControl.move(when, nullptr, &vscroll); | 
|  | mWheelXVelocityControl.move(when, &hscroll, nullptr); | 
|  |  | 
|  | // Send scroll. | 
|  | PointerCoords pointerCoords; | 
|  | pointerCoords.copyFrom(mPointerSimple.currentCoords); | 
|  | pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); | 
|  | pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); | 
|  |  | 
|  | out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), | 
|  | mSource, displayId, policyFlags, AMOTION_EVENT_ACTION_SCROLL, | 
|  | 0, 0, metaState, mCurrentRawState.buttonState, | 
|  | MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, | 
|  | &mPointerSimple.currentProperties, &pointerCoords, | 
|  | mOrientedXPrecision, mOrientedYPrecision, xCursorPosition, | 
|  | yCursorPosition, mPointerSimple.downTime, | 
|  | /* videoFrames */ {})); | 
|  | } | 
|  |  | 
|  | // Save state. | 
|  | if (down || hovering) { | 
|  | mPointerSimple.lastCoords.copyFrom(mPointerSimple.currentCoords); | 
|  | mPointerSimple.lastProperties.copyFrom(mPointerSimple.currentProperties); | 
|  | mPointerSimple.displayId = displayId; | 
|  | mPointerSimple.source = mSource; | 
|  | mPointerSimple.lastCursorX = xCursorPosition; | 
|  | mPointerSimple.lastCursorY = yCursorPosition; | 
|  | } else { | 
|  | mPointerSimple.reset(); | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::abortPointerSimple(nsecs_t when, nsecs_t readTime, | 
|  | uint32_t policyFlags) { | 
|  | std::list<NotifyArgs> out; | 
|  | if (mPointerSimple.down || mPointerSimple.hovering) { | 
|  | int32_t metaState = getContext()->getGlobalMetaState(); | 
|  | out.push_back(NotifyMotionArgs(getContext()->getNextId(), when, readTime, getDeviceId(), | 
|  | mPointerSimple.source, mPointerSimple.displayId, policyFlags, | 
|  | AMOTION_EVENT_ACTION_CANCEL, 0, AMOTION_EVENT_FLAG_CANCELED, | 
|  | metaState, mLastRawState.buttonState, | 
|  | MotionClassification::NONE, AMOTION_EVENT_EDGE_FLAG_NONE, 1, | 
|  | &mPointerSimple.lastProperties, &mPointerSimple.lastCoords, | 
|  | mOrientedXPrecision, mOrientedYPrecision, | 
|  | mPointerSimple.lastCursorX, mPointerSimple.lastCursorY, | 
|  | mPointerSimple.downTime, | 
|  | /* videoFrames */ {})); | 
|  | if (mPointerController != nullptr) { | 
|  | mPointerController->fade(PointerControllerInterface::Transition::GRADUAL); | 
|  | } | 
|  | } | 
|  | mPointerSimple.reset(); | 
|  | return out; | 
|  | } | 
|  |  | 
|  | NotifyMotionArgs TouchInputMapper::dispatchMotion( | 
|  | nsecs_t when, nsecs_t readTime, uint32_t policyFlags, uint32_t source, int32_t action, | 
|  | int32_t actionButton, int32_t flags, int32_t metaState, int32_t buttonState, | 
|  | int32_t edgeFlags, const PropertiesArray& properties, const CoordsArray& coords, | 
|  | const IdToIndexArray& idToIndex, BitSet32 idBits, int32_t changedId, float xPrecision, | 
|  | float yPrecision, nsecs_t downTime, MotionClassification classification) { | 
|  | PointerCoords pointerCoords[MAX_POINTERS]; | 
|  | PointerProperties pointerProperties[MAX_POINTERS]; | 
|  | uint32_t pointerCount = 0; | 
|  | while (!idBits.isEmpty()) { | 
|  | uint32_t id = idBits.clearFirstMarkedBit(); | 
|  | uint32_t index = idToIndex[id]; | 
|  | pointerProperties[pointerCount].copyFrom(properties[index]); | 
|  | pointerCoords[pointerCount].copyFrom(coords[index]); | 
|  |  | 
|  | if (changedId >= 0 && id == uint32_t(changedId)) { | 
|  | action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; | 
|  | } | 
|  |  | 
|  | pointerCount += 1; | 
|  | } | 
|  |  | 
|  | ALOG_ASSERT(pointerCount != 0); | 
|  |  | 
|  | if (changedId >= 0 && pointerCount == 1) { | 
|  | // Replace initial down and final up action. | 
|  | // We can compare the action without masking off the changed pointer index | 
|  | // because we know the index is 0. | 
|  | if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) { | 
|  | action = AMOTION_EVENT_ACTION_DOWN; | 
|  | } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) { | 
|  | if ((flags & AMOTION_EVENT_FLAG_CANCELED) != 0) { | 
|  | action = AMOTION_EVENT_ACTION_CANCEL; | 
|  | } else { | 
|  | action = AMOTION_EVENT_ACTION_UP; | 
|  | } | 
|  | } else { | 
|  | // Can't happen. | 
|  | ALOG_ASSERT(false); | 
|  | } | 
|  | } | 
|  | float xCursorPosition = AMOTION_EVENT_INVALID_CURSOR_POSITION; | 
|  | float yCursorPosition = AMOTION_EVENT_INVALID_CURSOR_POSITION; | 
|  | if (mDeviceMode == DeviceMode::POINTER) { | 
|  | mPointerController->getPosition(&xCursorPosition, &yCursorPosition); | 
|  | } | 
|  | const int32_t displayId = getAssociatedDisplayId().value_or(ADISPLAY_ID_NONE); | 
|  | const int32_t deviceId = getDeviceId(); | 
|  | std::vector<TouchVideoFrame> frames = getDeviceContext().getVideoFrames(); | 
|  | std::for_each(frames.begin(), frames.end(), | 
|  | [this](TouchVideoFrame& frame) { frame.rotate(this->mInputDeviceOrientation); }); | 
|  | return NotifyMotionArgs(getContext()->getNextId(), when, readTime, deviceId, source, displayId, | 
|  | policyFlags, action, actionButton, flags, metaState, buttonState, | 
|  | classification, edgeFlags, pointerCount, pointerProperties, | 
|  | pointerCoords, xPrecision, yPrecision, xCursorPosition, yCursorPosition, | 
|  | downTime, std::move(frames)); | 
|  | } | 
|  |  | 
|  | std::list<NotifyArgs> TouchInputMapper::cancelTouch(nsecs_t when, nsecs_t readTime) { | 
|  | std::list<NotifyArgs> out; | 
|  | out += abortPointerUsage(when, readTime, 0 /*policyFlags*/); | 
|  | out += abortTouches(when, readTime, 0 /* policyFlags*/); | 
|  | return out; | 
|  | } | 
|  |  | 
|  | // Transform input device coordinates to display panel coordinates. | 
|  | void TouchInputMapper::rotateAndScale(float& x, float& y) const { | 
|  | const float xScaled = float(x - mRawPointerAxes.x.minValue) * mXScale; | 
|  | const float yScaled = float(y - mRawPointerAxes.y.minValue) * mYScale; | 
|  |  | 
|  | const float xScaledMax = float(mRawPointerAxes.x.maxValue - x) * mXScale; | 
|  | const float yScaledMax = float(mRawPointerAxes.y.maxValue - y) * mYScale; | 
|  |  | 
|  | // Rotate to display coordinate. | 
|  | // 0 - no swap and reverse. | 
|  | // 90 - swap x/y and reverse y. | 
|  | // 180 - reverse x, y. | 
|  | // 270 - swap x/y and reverse x. | 
|  | switch (mInputDeviceOrientation) { | 
|  | case DISPLAY_ORIENTATION_0: | 
|  | x = xScaled; | 
|  | y = yScaled; | 
|  | break; | 
|  | case DISPLAY_ORIENTATION_90: | 
|  | y = xScaledMax; | 
|  | x = yScaled; | 
|  | break; | 
|  | case DISPLAY_ORIENTATION_180: | 
|  | x = xScaledMax; | 
|  | y = yScaledMax; | 
|  | break; | 
|  | case DISPLAY_ORIENTATION_270: | 
|  | y = xScaled; | 
|  | x = yScaledMax; | 
|  | break; | 
|  | default: | 
|  | assert(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool TouchInputMapper::isPointInsidePhysicalFrame(int32_t x, int32_t y) const { | 
|  | const float xScaled = (x - mRawPointerAxes.x.minValue) * mXScale; | 
|  | const float yScaled = (y - mRawPointerAxes.y.minValue) * mYScale; | 
|  |  | 
|  | return x >= mRawPointerAxes.x.minValue && x <= mRawPointerAxes.x.maxValue && | 
|  | xScaled >= mPhysicalLeft && xScaled <= (mPhysicalLeft + mPhysicalWidth) && | 
|  | y >= mRawPointerAxes.y.minValue && y <= mRawPointerAxes.y.maxValue && | 
|  | yScaled >= mPhysicalTop && yScaled <= (mPhysicalTop + mPhysicalHeight); | 
|  | } | 
|  |  | 
|  | const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHit(int32_t x, int32_t y) { | 
|  | for (const VirtualKey& virtualKey : mVirtualKeys) { | 
|  | ALOGD_IF(DEBUG_VIRTUAL_KEYS, | 
|  | "VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " | 
|  | "left=%d, top=%d, right=%d, bottom=%d", | 
|  | x, y, virtualKey.keyCode, virtualKey.scanCode, virtualKey.hitLeft, | 
|  | virtualKey.hitTop, virtualKey.hitRight, virtualKey.hitBottom); | 
|  |  | 
|  | if (virtualKey.isHit(x, y)) { | 
|  | return &virtualKey; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void TouchInputMapper::assignPointerIds(const RawState& last, RawState& current) { | 
|  | uint32_t currentPointerCount = current.rawPointerData.pointerCount; | 
|  | uint32_t lastPointerCount = last.rawPointerData.pointerCount; | 
|  |  | 
|  | current.rawPointerData.clearIdBits(); | 
|  |  | 
|  | if (currentPointerCount == 0) { | 
|  | // No pointers to assign. | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (lastPointerCount == 0) { | 
|  | // All pointers are new. | 
|  | for (uint32_t i = 0; i < currentPointerCount; i++) { | 
|  | uint32_t id = i; | 
|  | current.rawPointerData.pointers[i].id = id; | 
|  | current.rawPointerData.idToIndex[id] = i; | 
|  | current.rawPointerData.markIdBit(id, current.rawPointerData.isHovering(i)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (currentPointerCount == 1 && lastPointerCount == 1 && | 
|  | current.rawPointerData.pointers[0].toolType == last.rawPointerData.pointers[0].toolType) { | 
|  | // Only one pointer and no change in count so it must have the same id as before. | 
|  | uint32_t id = last.rawPointerData.pointers[0].id; | 
|  | current.rawPointerData.pointers[0].id = id; | 
|  | current.rawPointerData.idToIndex[id] = 0; | 
|  | current.rawPointerData.markIdBit(id, current.rawPointerData.isHovering(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // General case. | 
|  | // We build a heap of squared euclidean distances between current and last pointers | 
|  | // associated with the current and last pointer indices.  Then, we find the best | 
|  | // match (by distance) for each current pointer. | 
|  | // The pointers must have the same tool type but it is possible for them to | 
|  | // transition from hovering to touching or vice-versa while retaining the same id. | 
|  | PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; | 
|  |  | 
|  | uint32_t heapSize = 0; | 
|  | for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; | 
|  | currentPointerIndex++) { | 
|  | for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; | 
|  | lastPointerIndex++) { | 
|  | const RawPointerData::Pointer& currentPointer = | 
|  | current.rawPointerData.pointers[currentPointerIndex]; | 
|  | const RawPointerData::Pointer& lastPointer = | 
|  | last.rawPointerData.pointers[lastPointerIndex]; | 
|  | if (currentPointer.toolType == lastPointer.toolType) { | 
|  | int64_t deltaX = currentPointer.x - lastPointer.x; | 
|  | int64_t deltaY = currentPointer.y - lastPointer.y; | 
|  |  | 
|  | uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); | 
|  |  | 
|  | // Insert new element into the heap (sift up). | 
|  | heap[heapSize].currentPointerIndex = currentPointerIndex; | 
|  | heap[heapSize].lastPointerIndex = lastPointerIndex; | 
|  | heap[heapSize].distance = distance; | 
|  | heapSize += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Heapify | 
|  | for (uint32_t startIndex = heapSize / 2; startIndex != 0;) { | 
|  | startIndex -= 1; | 
|  | for (uint32_t parentIndex = startIndex;;) { | 
|  | uint32_t childIndex = parentIndex * 2 + 1; | 
|  | if (childIndex >= heapSize) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (childIndex + 1 < heapSize && | 
|  | heap[childIndex + 1].distance < heap[childIndex].distance) { | 
|  | childIndex += 1; | 
|  | } | 
|  |  | 
|  | if (heap[parentIndex].distance <= heap[childIndex].distance) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | swap(heap[parentIndex], heap[childIndex]); | 
|  | parentIndex = childIndex; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DEBUG_POINTER_ASSIGNMENT) { | 
|  | ALOGD("assignPointerIds - initial distance min-heap: size=%d", heapSize); | 
|  | for (size_t i = 0; i < heapSize; i++) { | 
|  | ALOGD("  heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, i, | 
|  | heap[i].currentPointerIndex, heap[i].lastPointerIndex, heap[i].distance); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pull matches out by increasing order of distance. | 
|  | // To avoid reassigning pointers that have already been matched, the loop keeps track | 
|  | // of which last and current pointers have been matched using the matchedXXXBits variables. | 
|  | // It also tracks the used pointer id bits. | 
|  | BitSet32 matchedLastBits(0); | 
|  | BitSet32 matchedCurrentBits(0); | 
|  | BitSet32 usedIdBits(0); | 
|  | bool first = true; | 
|  | for (uint32_t i = min(currentPointerCount, lastPointerCount); heapSize > 0 && i > 0; i--) { | 
|  | while (heapSize > 0) { | 
|  | if (first) { | 
|  | // The first time through the loop, we just consume the root element of | 
|  | // the heap (the one with smallest distance). | 
|  | first = false; | 
|  | } else { | 
|  | // Previous iterations consumed the root element of the heap. | 
|  | // Pop root element off of the heap (sift down). | 
|  | heap[0] = heap[heapSize]; | 
|  | for (uint32_t parentIndex = 0;;) { | 
|  | uint32_t childIndex = parentIndex * 2 + 1; | 
|  | if (childIndex >= heapSize) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (childIndex + 1 < heapSize && | 
|  | heap[childIndex + 1].distance < heap[childIndex].distance) { | 
|  | childIndex += 1; | 
|  | } | 
|  |  | 
|  | if (heap[parentIndex].distance <= heap[childIndex].distance) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | swap(heap[parentIndex], heap[childIndex]); | 
|  | parentIndex = childIndex; | 
|  | } | 
|  |  | 
|  | if (DEBUG_POINTER_ASSIGNMENT) { | 
|  | ALOGD("assignPointerIds - reduced distance min-heap: size=%d", heapSize); | 
|  | for (size_t j = 0; j < heapSize; j++) { | 
|  | ALOGD("  heap[%zu]: cur=%" PRIu32 ", last=%" PRIu32 ", distance=%" PRIu64, | 
|  | j, heap[j].currentPointerIndex, heap[j].lastPointerIndex, | 
|  | heap[j].distance); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | heapSize -= 1; | 
|  |  | 
|  | uint32_t currentPointerIndex = heap[0].currentPointerIndex; | 
|  | if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched | 
|  |  | 
|  | uint32_t lastPointerIndex = heap[0].lastPointerIndex; | 
|  | if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched | 
|  |  | 
|  | matchedCurrentBits.markBit(currentPointerIndex); | 
|  | matchedLastBits.markBit(lastPointerIndex); | 
|  |  | 
|  | uint32_t id = last.rawPointerData.pointers[lastPointerIndex].id; | 
|  | current.rawPointerData.pointers[currentPointerIndex].id = id; | 
|  | current.rawPointerData.idToIndex[id] = currentPointerIndex; | 
|  | current.rawPointerData.markIdBit(id, | 
|  | current.rawPointerData.isHovering( | 
|  | currentPointerIndex)); | 
|  | usedIdBits.markBit(id); | 
|  |  | 
|  | ALOGD_IF(DEBUG_POINTER_ASSIGNMENT, | 
|  | "assignPointerIds - matched: cur=%" PRIu32 ", last=%" PRIu32 ", id=%" PRIu32 | 
|  | ", distance=%" PRIu64, | 
|  | lastPointerIndex, currentPointerIndex, id, heap[0].distance); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Assign fresh ids to pointers that were not matched in the process. | 
|  | for (uint32_t i = currentPointerCount - matchedCurrentBits.count(); i != 0; i--) { | 
|  | uint32_t currentPointerIndex = matchedCurrentBits.markFirstUnmarkedBit(); | 
|  | uint32_t id = usedIdBits.markFirstUnmarkedBit(); | 
|  |  | 
|  | current.rawPointerData.pointers[currentPointerIndex].id = id; | 
|  | current.rawPointerData.idToIndex[id] = currentPointerIndex; | 
|  | current.rawPointerData.markIdBit(id, | 
|  | current.rawPointerData.isHovering(currentPointerIndex)); | 
|  |  | 
|  | ALOGD_IF(DEBUG_POINTER_ASSIGNMENT, | 
|  | "assignPointerIds - assigned: cur=%" PRIu32 ", id=%" PRIu32, currentPointerIndex, | 
|  | id); | 
|  | } | 
|  | } | 
|  |  | 
|  | int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { | 
|  | if (mCurrentVirtualKey.down && mCurrentVirtualKey.keyCode == keyCode) { | 
|  | return AKEY_STATE_VIRTUAL; | 
|  | } | 
|  |  | 
|  | for (const VirtualKey& virtualKey : mVirtualKeys) { | 
|  | if (virtualKey.keyCode == keyCode) { | 
|  | return AKEY_STATE_UP; | 
|  | } | 
|  | } | 
|  |  | 
|  | return AKEY_STATE_UNKNOWN; | 
|  | } | 
|  |  | 
|  | int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { | 
|  | if (mCurrentVirtualKey.down && mCurrentVirtualKey.scanCode == scanCode) { | 
|  | return AKEY_STATE_VIRTUAL; | 
|  | } | 
|  |  | 
|  | for (const VirtualKey& virtualKey : mVirtualKeys) { | 
|  | if (virtualKey.scanCode == scanCode) { | 
|  | return AKEY_STATE_UP; | 
|  | } | 
|  | } | 
|  |  | 
|  | return AKEY_STATE_UNKNOWN; | 
|  | } | 
|  |  | 
|  | bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, | 
|  | const std::vector<int32_t>& keyCodes, | 
|  | uint8_t* outFlags) { | 
|  | for (const VirtualKey& virtualKey : mVirtualKeys) { | 
|  | for (size_t i = 0; i < keyCodes.size(); i++) { | 
|  | if (virtualKey.keyCode == keyCodes[i]) { | 
|  | outFlags[i] = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::optional<int32_t> TouchInputMapper::getAssociatedDisplayId() { | 
|  | if (mParameters.hasAssociatedDisplay) { | 
|  | if (mDeviceMode == DeviceMode::POINTER) { | 
|  | return std::make_optional(mPointerController->getDisplayId()); | 
|  | } else { | 
|  | return std::make_optional(mViewport.displayId); | 
|  | } | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | } // namespace android |