| /* |
| * Copyright 2022 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <cmath> |
| |
| #include <jpegrecoverymap/recoverymapmath.h> |
| |
| namespace android::recoverymap { |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // sRGB transformations |
| |
| static const float kSrgbR = 0.299f, kSrgbG = 0.587f, kSrgbB = 0.114f; |
| |
| float srgbLuminance(Color e) { |
| return kSrgbR * e.r + kSrgbG * e.g + kSrgbB * e.b; |
| } |
| |
| static const float kSrgbRCr = 1.402f, kSrgbGCb = 0.34414f, kSrgbGCr = 0.71414f, kSrgbBCb = 1.772f; |
| |
| Color srgbYuvToRgb(Color e_gamma) { |
| return {{{ e_gamma.y + kSrgbRCr * e_gamma.v, |
| e_gamma.y - kSrgbGCb * e_gamma.u - kSrgbGCr * e_gamma.v, |
| e_gamma.y + kSrgbBCb * e_gamma.u }}}; |
| } |
| |
| static const float kSrgbUR = -0.1687f, kSrgbUG = -0.3313f, kSrgbUB = 0.5f; |
| static const float kSrgbVR = 0.5f, kSrgbVG = -0.4187f, kSrgbVB = -0.0813f; |
| |
| Color srgbRgbToYuv(Color e_gamma) { |
| return {{{ kSrgbR * e_gamma.r + kSrgbG * e_gamma.g + kSrgbB * e_gamma.b, |
| kSrgbUR * e_gamma.r + kSrgbUG * e_gamma.g + kSrgbUB * e_gamma.b, |
| kSrgbVR * e_gamma.r + kSrgbVG * e_gamma.g + kSrgbVB * e_gamma.b }}}; |
| } |
| |
| float srgbInvOetf(float e_gamma) { |
| if (e_gamma <= 0.04045f) { |
| return e_gamma / 12.92f; |
| } else { |
| return pow((e_gamma + 0.055f) / 1.055f, 2.4); |
| } |
| } |
| |
| Color srgbInvOetf(Color e_gamma) { |
| return {{{ srgbInvOetf(e_gamma.r), |
| srgbInvOetf(e_gamma.g), |
| srgbInvOetf(e_gamma.b) }}}; |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Display-P3 transformations |
| |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // BT.2100 transformations - according to ITU-R BT.2100-2 |
| |
| static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f; |
| |
| float bt2100Luminance(Color e) { |
| return kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b; |
| } |
| |
| static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f; |
| |
| Color bt2100RgbToYuv(Color e_gamma) { |
| float y_gamma = bt2100Luminance(e_gamma); |
| return {{{ y_gamma, |
| (e_gamma.b - y_gamma) / kBt2100Cb, |
| (e_gamma.r - y_gamma) / kBt2100Cr }}}; |
| } |
| |
| // Derived from the reverse of bt2100RgbToYuv. The derivation for R and B are |
| // pretty straight forward; we just reverse the formulas for U and V above. But |
| // deriving the formula for G is a bit more complicated: |
| // |
| // Start with equation for luminance: |
| // Y = kBt2100R * R + kBt2100G * G + kBt2100B * B |
| // Solve for G: |
| // G = (Y - kBt2100R * R - kBt2100B * B) / kBt2100B |
| // Substitute equations for R and B in terms YUV: |
| // G = (Y - kBt2100R * (Y + kBt2100Cr * V) - kBt2100B * (Y + kBt2100Cb * U)) / kBt2100B |
| // Simplify: |
| // G = Y * ((1 - kBt2100R - kBt2100B) / kBt2100G) |
| // + U * (kBt2100B * kBt2100Cb / kBt2100G) |
| // + V * (kBt2100R * kBt2100Cr / kBt2100G) |
| // |
| // We then get the following coeficients for calculating G from YUV: |
| // |
| // Coef for Y = (1 - kBt2100R - kBt2100B) / kBt2100G = 1 |
| // Coef for U = kBt2100B * kBt2100Cb / kBt2100G = kBt2100GCb = ~0.1645 |
| // Coef for V = kBt2100R * kBt2100Cr / kBt2100G = kBt2100GCr = ~0.5713 |
| |
| static const float kBt2100GCb = kBt2100B * kBt2100Cb / kBt2100G; |
| static const float kBt2100GCr = kBt2100R * kBt2100Cr / kBt2100G; |
| |
| Color bt2100YuvToRgb(Color e_gamma) { |
| return {{{ e_gamma.y + kBt2100Cr * e_gamma.v, |
| e_gamma.y - kBt2100GCb * e_gamma.u - kBt2100GCr * e_gamma.v, |
| e_gamma.y + kBt2100Cb * e_gamma.u }}}; |
| } |
| |
| static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073; |
| |
| static float hlgOetf(float e) { |
| if (e <= 1.0f/12.0f) { |
| return sqrt(3.0f * e); |
| } else { |
| return kHlgA * log(12.0f * e - kHlgB) + kHlgC; |
| } |
| } |
| |
| Color hlgOetf(Color e) { |
| return {{{ hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b) }}}; |
| } |
| |
| float hlgInvOetf(float e_gamma) { |
| if (e_gamma <= 0.5f) { |
| return pow(e_gamma, 2.0f) / 3.0f; |
| } else { |
| return (exp((e_gamma - kHlgC) / kHlgA) + kHlgB) / 12.0f; |
| } |
| } |
| |
| Color hlgInvOetf(Color e_gamma) { |
| return {{{ hlgInvOetf(e_gamma.r), |
| hlgInvOetf(e_gamma.g), |
| hlgInvOetf(e_gamma.b) }}}; |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Color conversions |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Recovery map calculations |
| |
| uint8_t encodeRecovery(float y_sdr, float y_hdr, float hdr_ratio) { |
| float gain = 1.0f; |
| if (y_sdr > 0.0f) { |
| gain = y_hdr / y_sdr; |
| } |
| |
| if (gain < -hdr_ratio) gain = -hdr_ratio; |
| if (gain > hdr_ratio) gain = hdr_ratio; |
| |
| return static_cast<uint8_t>(log2(gain) / log2(hdr_ratio) * 127.5f + 127.5f); |
| } |
| |
| static float applyRecovery(float e, float recovery, float hdr_ratio) { |
| return exp2(log2(e) + recovery * log2(hdr_ratio)); |
| } |
| |
| Color applyRecovery(Color e, float recovery, float hdr_ratio) { |
| return {{{ applyRecovery(e.r, recovery, hdr_ratio), |
| applyRecovery(e.g, recovery, hdr_ratio), |
| applyRecovery(e.b, recovery, hdr_ratio) }}}; |
| } |
| |
| // TODO: do we need something more clever for filtering either the map or images |
| // to generate the map? |
| |
| static float mapUintToFloat(uint8_t map_uint) { |
| return (static_cast<float>(map_uint) - 127.5f) / 127.5f; |
| } |
| |
| float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y) { |
| float x_map = static_cast<float>(x) / static_cast<float>(map_scale_factor); |
| float y_map = static_cast<float>(y) / static_cast<float>(map_scale_factor); |
| |
| size_t x_lower = static_cast<size_t>(floor(x_map)); |
| size_t x_upper = x_lower + 1; |
| size_t y_lower = static_cast<size_t>(floor(y_map)); |
| size_t y_upper = y_lower + 1; |
| |
| float x_influence = x_map - static_cast<float>(x_lower); |
| float y_influence = y_map - static_cast<float>(y_lower); |
| |
| float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]); |
| float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]); |
| float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]); |
| float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]); |
| |
| return e1 * (x_influence + y_influence) / 2.0f |
| + e2 * (x_influence + 1.0f - y_influence) / 2.0f |
| + e3 * (1.0f - x_influence + y_influence) / 2.0f |
| + e4 * (1.0f - x_influence + 1.0f - y_influence) / 2.0f; |
| } |
| |
| Color getYuv420Pixel(jr_uncompressed_ptr image, size_t x, size_t y) { |
| size_t pixel_count = image->width * image->height; |
| |
| size_t pixel_y_idx = x + y * image->width; |
| size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2); |
| |
| uint8_t y_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y_idx]; |
| uint8_t u_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count + pixel_uv_idx]; |
| uint8_t v_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count * 5 / 4 + pixel_uv_idx]; |
| |
| // 128 bias for UV given we are using jpeglib; see: |
| // https://github.com/kornelski/libjpeg/blob/master/structure.doc |
| return {{{ static_cast<float>(y_uint) / 255.0f, |
| (static_cast<float>(u_uint) - 128.0f) / 255.0f, |
| (static_cast<float>(v_uint) - 128.0f) / 255.0f }}}; |
| } |
| |
| Color getP010Pixel(jr_uncompressed_ptr image, size_t x, size_t y) { |
| size_t pixel_count = image->width * image->height; |
| |
| size_t pixel_y_idx = x + y * image->width; |
| size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2); |
| |
| uint16_t y_uint = reinterpret_cast<uint16_t*>(image->data)[pixel_y_idx]; |
| uint16_t u_uint = reinterpret_cast<uint16_t*>(image->data)[pixel_count + pixel_uv_idx * 2]; |
| uint16_t v_uint = reinterpret_cast<uint16_t*>(image->data)[pixel_count + pixel_uv_idx * 2 + 1]; |
| |
| // Conversions include taking narrow-range into account. |
| return {{{ static_cast<float>(y_uint) / 940.0f, |
| (static_cast<float>(u_uint) - 64.0f) / 940.0f - 0.5f, |
| (static_cast<float>(v_uint) - 64.0f) / 940.0f - 0.5f }}}; |
| } |
| |
| typedef Color (*getPixelFn)(jr_uncompressed_ptr, size_t, size_t); |
| |
| static Color samplePixels(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y, |
| getPixelFn get_pixel_fn) { |
| Color e = {{{ 0.0f, 0.0f, 0.0f }}}; |
| for (size_t dy = 0; dy < map_scale_factor; ++dy) { |
| for (size_t dx = 0; dx < map_scale_factor; ++dx) { |
| e += get_pixel_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy); |
| } |
| } |
| |
| return e / static_cast<float>(map_scale_factor * map_scale_factor); |
| } |
| |
| Color sampleYuv420(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { |
| return samplePixels(image, map_scale_factor, x, y, getYuv420Pixel); |
| } |
| |
| Color sampleP010(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { |
| return samplePixels(image, map_scale_factor, x, y, getP010Pixel); |
| } |
| |
| } // namespace android::recoverymap |