|  | /* | 
|  | * Copyright (C) 2017 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "BufferLayer" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include "BufferLayer.h" | 
|  | #include "Colorizer.h" | 
|  | #include "DisplayDevice.h" | 
|  | #include "LayerRejecter.h" | 
|  |  | 
|  | #include "TimeStats/TimeStats.h" | 
|  |  | 
|  | #include <renderengine/RenderEngine.h> | 
|  |  | 
|  | #include <gui/BufferItem.h> | 
|  | #include <gui/BufferQueue.h> | 
|  | #include <gui/LayerDebugInfo.h> | 
|  | #include <gui/Surface.h> | 
|  |  | 
|  | #include <ui/DebugUtils.h> | 
|  |  | 
|  | #include <utils/Errors.h> | 
|  | #include <utils/Log.h> | 
|  | #include <utils/NativeHandle.h> | 
|  | #include <utils/StopWatch.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <cutils/compiler.h> | 
|  | #include <cutils/native_handle.h> | 
|  | #include <cutils/properties.h> | 
|  |  | 
|  | #include <math.h> | 
|  | #include <stdlib.h> | 
|  | #include <mutex> | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | BufferLayer::BufferLayer(const LayerCreationArgs& args) | 
|  | : Layer(args), mTextureName(args.flinger->getNewTexture()) { | 
|  | ALOGV("Creating Layer %s", args.name.string()); | 
|  |  | 
|  | mTexture.init(renderengine::Texture::TEXTURE_EXTERNAL, mTextureName); | 
|  |  | 
|  | mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied); | 
|  |  | 
|  | mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow; | 
|  | mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp; | 
|  | } | 
|  |  | 
|  | BufferLayer::~BufferLayer() { | 
|  | mFlinger->deleteTextureAsync(mTextureName); | 
|  |  | 
|  | if (!getBE().mHwcLayers.empty()) { | 
|  | ALOGE("Found stale hardware composer layers when destroying " | 
|  | "surface flinger layer %s", | 
|  | mName.string()); | 
|  | destroyAllHwcLayersPlusChildren(); | 
|  | } | 
|  |  | 
|  | mFlinger->mTimeStats->onDestroy(getSequence()); | 
|  | } | 
|  |  | 
|  | void BufferLayer::useSurfaceDamage() { | 
|  | if (mFlinger->mForceFullDamage) { | 
|  | surfaceDamageRegion = Region::INVALID_REGION; | 
|  | } else { | 
|  | surfaceDamageRegion = getDrawingSurfaceDamage(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BufferLayer::useEmptyDamage() { | 
|  | surfaceDamageRegion.clear(); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isOpaque(const Layer::State& s) const { | 
|  | // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the | 
|  | // layer's opaque flag. | 
|  | if ((getBE().compositionInfo.hwc.sidebandStream == nullptr) && (mActiveBuffer == nullptr)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the layer has the opaque flag, then we're always opaque, | 
|  | // otherwise we use the current buffer's format. | 
|  | return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat()); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isVisible() const { | 
|  | return !(isHiddenByPolicy()) && getAlpha() > 0.0f && | 
|  | (mActiveBuffer != nullptr || getBE().compositionInfo.hwc.sidebandStream != nullptr); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isFixedSize() const { | 
|  | return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; | 
|  | } | 
|  |  | 
|  | static constexpr mat4 inverseOrientation(uint32_t transform) { | 
|  | const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); | 
|  | const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); | 
|  | const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); | 
|  | mat4 tr; | 
|  |  | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
|  | tr = tr * rot90; | 
|  | } | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { | 
|  | tr = tr * flipH; | 
|  | } | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { | 
|  | tr = tr * flipV; | 
|  | } | 
|  | return inverse(tr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * onDraw will draw the current layer onto the presentable buffer | 
|  | */ | 
|  | void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip, | 
|  | bool useIdentityTransform) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | if (CC_UNLIKELY(mActiveBuffer == 0)) { | 
|  | // the texture has not been created yet, this Layer has | 
|  | // in fact never been drawn into. This happens frequently with | 
|  | // SurfaceView because the WindowManager can't know when the client | 
|  | // has drawn the first time. | 
|  |  | 
|  | // If there is nothing under us, we paint the screen in black, otherwise | 
|  | // we just skip this update. | 
|  |  | 
|  | // figure out if there is something below us | 
|  | Region under; | 
|  | bool finished = false; | 
|  | mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { | 
|  | if (finished || layer == static_cast<BufferLayer const*>(this)) { | 
|  | finished = true; | 
|  | return; | 
|  | } | 
|  | under.orSelf(renderArea.getTransform().transform(layer->visibleRegion)); | 
|  | }); | 
|  | // if not everything below us is covered, we plug the holes! | 
|  | Region holes(clip.subtract(under)); | 
|  | if (!holes.isEmpty()) { | 
|  | clearWithOpenGL(renderArea, 0, 0, 0, 1); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Bind the current buffer to the GL texture, and wait for it to be | 
|  | // ready for us to draw into. | 
|  | status_t err = bindTextureImage(); | 
|  | if (err != NO_ERROR) { | 
|  | ALOGW("onDraw: bindTextureImage failed (err=%d)", err); | 
|  | // Go ahead and draw the buffer anyway; no matter what we do the screen | 
|  | // is probably going to have something visibly wrong. | 
|  | } | 
|  |  | 
|  | bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure()); | 
|  |  | 
|  | auto& engine(mFlinger->getRenderEngine()); | 
|  |  | 
|  | if (!blackOutLayer) { | 
|  | // TODO: we could be more subtle with isFixedSize() | 
|  | const bool useFiltering = needsFiltering() || renderArea.needsFiltering() || isFixedSize(); | 
|  |  | 
|  | // Query the texture matrix given our current filtering mode. | 
|  | float textureMatrix[16]; | 
|  | setFilteringEnabled(useFiltering); | 
|  | getDrawingTransformMatrix(textureMatrix); | 
|  |  | 
|  | if (getTransformToDisplayInverse()) { | 
|  | /* | 
|  | * the code below applies the primary display's inverse transform to | 
|  | * the texture transform | 
|  | */ | 
|  | uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
|  | mat4 tr = inverseOrientation(transform); | 
|  |  | 
|  | /** | 
|  | * TODO(b/36727915): This is basically a hack. | 
|  | * | 
|  | * Ensure that regardless of the parent transformation, | 
|  | * this buffer is always transformed from native display | 
|  | * orientation to display orientation. For example, in the case | 
|  | * of a camera where the buffer remains in native orientation, | 
|  | * we want the pixels to always be upright. | 
|  | */ | 
|  | sp<Layer> p = mDrawingParent.promote(); | 
|  | if (p != nullptr) { | 
|  | const auto parentTransform = p->getTransform(); | 
|  | tr = tr * inverseOrientation(parentTransform.getOrientation()); | 
|  | } | 
|  |  | 
|  | // and finally apply it to the original texture matrix | 
|  | const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); | 
|  | memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); | 
|  | } | 
|  |  | 
|  | // Set things up for texturing. | 
|  | mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight()); | 
|  | mTexture.setFiltering(useFiltering); | 
|  | mTexture.setMatrix(textureMatrix); | 
|  |  | 
|  | engine.setupLayerTexturing(mTexture); | 
|  | } else { | 
|  | engine.setupLayerBlackedOut(); | 
|  | } | 
|  | drawWithOpenGL(renderArea, useIdentityTransform); | 
|  | engine.disableTexturing(); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isHdrY410() const { | 
|  | // pixel format is HDR Y410 masquerading as RGBA_1010102 | 
|  | return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ && | 
|  | getDrawingApi() == NATIVE_WINDOW_API_MEDIA && | 
|  | getBE().compositionInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102); | 
|  | } | 
|  |  | 
|  | void BufferLayer::setPerFrameData(DisplayId displayId, const ui::Transform& transform, | 
|  | const Rect& viewport, int32_t supportedPerFrameMetadata) { | 
|  | RETURN_IF_NO_HWC_LAYER(displayId); | 
|  |  | 
|  | // Apply this display's projection's viewport to the visible region | 
|  | // before giving it to the HWC HAL. | 
|  | Region visible = transform.transform(visibleRegion.intersect(viewport)); | 
|  |  | 
|  | auto& hwcInfo = getBE().mHwcLayers[displayId]; | 
|  | auto& hwcLayer = hwcInfo.layer; | 
|  | auto error = hwcLayer->setVisibleRegion(visible); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | visible.dump(LOG_TAG); | 
|  | } | 
|  | getBE().compositionInfo.hwc.visibleRegion = visible; | 
|  |  | 
|  | error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | surfaceDamageRegion.dump(LOG_TAG); | 
|  | } | 
|  | getBE().compositionInfo.hwc.surfaceDamage = surfaceDamageRegion; | 
|  |  | 
|  | // Sideband layers | 
|  | if (getBE().compositionInfo.hwc.sidebandStream.get()) { | 
|  | setCompositionType(displayId, HWC2::Composition::Sideband); | 
|  | ALOGV("[%s] Requesting Sideband composition", mName.string()); | 
|  | error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle()); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(), | 
|  | getBE().compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | getBE().compositionInfo.compositionType = HWC2::Composition::Sideband; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Device or Cursor layers | 
|  | if (mPotentialCursor) { | 
|  | ALOGV("[%s] Requesting Cursor composition", mName.string()); | 
|  | setCompositionType(displayId, HWC2::Composition::Cursor); | 
|  | } else { | 
|  | ALOGV("[%s] Requesting Device composition", mName.string()); | 
|  | setCompositionType(displayId, HWC2::Composition::Device); | 
|  | } | 
|  |  | 
|  | ALOGV("setPerFrameData: dataspace = %d", mCurrentDataSpace); | 
|  | error = hwcLayer->setDataspace(mCurrentDataSpace); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace, | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | const HdrMetadata& metadata = getDrawingHdrMetadata(); | 
|  | error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata); | 
|  | if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) { | 
|  | ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | error = hwcLayer->setColorTransform(getColorTransform()); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  | getBE().compositionInfo.hwc.dataspace = mCurrentDataSpace; | 
|  | getBE().compositionInfo.hwc.hdrMetadata = getDrawingHdrMetadata(); | 
|  | getBE().compositionInfo.hwc.supportedPerFrameMetadata = supportedPerFrameMetadata; | 
|  | getBE().compositionInfo.hwc.colorTransform = getColorTransform(); | 
|  |  | 
|  | setHwcLayerBuffer(displayId); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { | 
|  | if (mBufferLatched) { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); | 
|  | } | 
|  | mRefreshPending = false; | 
|  | return hasReadyFrame(); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId, | 
|  | const std::shared_ptr<FenceTime>& glDoneFence, | 
|  | const std::shared_ptr<FenceTime>& presentFence, | 
|  | const CompositorTiming& compositorTiming) { | 
|  | // mFrameLatencyNeeded is true when a new frame was latched for the | 
|  | // composition. | 
|  | if (!mFrameLatencyNeeded) return false; | 
|  |  | 
|  | // Update mFrameEventHistory. | 
|  | { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence, | 
|  | compositorTiming); | 
|  | } | 
|  |  | 
|  | // Update mFrameTracker. | 
|  | nsecs_t desiredPresentTime = getDesiredPresentTime(); | 
|  | mFrameTracker.setDesiredPresentTime(desiredPresentTime); | 
|  |  | 
|  | const int32_t layerID = getSequence(); | 
|  | mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime); | 
|  |  | 
|  | std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime(); | 
|  | if (frameReadyFence->isValid()) { | 
|  | mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); | 
|  | } else { | 
|  | // There was no fence for this frame, so assume that it was ready | 
|  | // to be presented at the desired present time. | 
|  | mFrameTracker.setFrameReadyTime(desiredPresentTime); | 
|  | } | 
|  |  | 
|  | if (presentFence->isValid()) { | 
|  | mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence); | 
|  | mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence)); | 
|  | } else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) { | 
|  | // The HWC doesn't support present fences, so use the refresh | 
|  | // timestamp instead. | 
|  | const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId); | 
|  | mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime); | 
|  | mFrameTracker.setActualPresentTime(actualPresentTime); | 
|  | } | 
|  |  | 
|  | mFrameTracker.advanceFrame(); | 
|  | mFrameLatencyNeeded = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime, | 
|  | const sp<Fence>& releaseFence) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | std::optional<Region> sidebandStreamDirtyRegion = latchSidebandStream(recomputeVisibleRegions); | 
|  |  | 
|  | if (sidebandStreamDirtyRegion) { | 
|  | return *sidebandStreamDirtyRegion; | 
|  | } | 
|  |  | 
|  | Region dirtyRegion; | 
|  |  | 
|  | if (!hasReadyFrame()) { | 
|  | return dirtyRegion; | 
|  | } | 
|  |  | 
|  | // if we've already called updateTexImage() without going through | 
|  | // a composition step, we have to skip this layer at this point | 
|  | // because we cannot call updateTeximage() without a corresponding | 
|  | // compositionComplete() call. | 
|  | // we'll trigger an update in onPreComposition(). | 
|  | if (mRefreshPending) { | 
|  | return dirtyRegion; | 
|  | } | 
|  |  | 
|  | // If the head buffer's acquire fence hasn't signaled yet, return and | 
|  | // try again later | 
|  | if (!fenceHasSignaled()) { | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return dirtyRegion; | 
|  | } | 
|  |  | 
|  | // Capture the old state of the layer for comparisons later | 
|  | const State& s(getDrawingState()); | 
|  | const bool oldOpacity = isOpaque(s); | 
|  | sp<GraphicBuffer> oldBuffer = mActiveBuffer; | 
|  |  | 
|  | if (!allTransactionsSignaled()) { | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return dirtyRegion; | 
|  | } | 
|  |  | 
|  | status_t err = updateTexImage(recomputeVisibleRegions, latchTime, releaseFence); | 
|  | if (err != NO_ERROR) { | 
|  | return dirtyRegion; | 
|  | } | 
|  |  | 
|  | err = updateActiveBuffer(); | 
|  | if (err != NO_ERROR) { | 
|  | return dirtyRegion; | 
|  | } | 
|  |  | 
|  | mBufferLatched = true; | 
|  |  | 
|  | err = updateFrameNumber(latchTime); | 
|  | if (err != NO_ERROR) { | 
|  | return dirtyRegion; | 
|  | } | 
|  |  | 
|  | mRefreshPending = true; | 
|  | mFrameLatencyNeeded = true; | 
|  | if (oldBuffer == nullptr) { | 
|  | // the first time we receive a buffer, we need to trigger a | 
|  | // geometry invalidation. | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | ui::Dataspace dataSpace = getDrawingDataSpace(); | 
|  | // translate legacy dataspaces to modern dataspaces | 
|  | switch (dataSpace) { | 
|  | case ui::Dataspace::SRGB: | 
|  | dataSpace = ui::Dataspace::V0_SRGB; | 
|  | break; | 
|  | case ui::Dataspace::SRGB_LINEAR: | 
|  | dataSpace = ui::Dataspace::V0_SRGB_LINEAR; | 
|  | break; | 
|  | case ui::Dataspace::JFIF: | 
|  | dataSpace = ui::Dataspace::V0_JFIF; | 
|  | break; | 
|  | case ui::Dataspace::BT601_625: | 
|  | dataSpace = ui::Dataspace::V0_BT601_625; | 
|  | break; | 
|  | case ui::Dataspace::BT601_525: | 
|  | dataSpace = ui::Dataspace::V0_BT601_525; | 
|  | break; | 
|  | case ui::Dataspace::BT709: | 
|  | dataSpace = ui::Dataspace::V0_BT709; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | mCurrentDataSpace = dataSpace; | 
|  |  | 
|  | Rect crop(getDrawingCrop()); | 
|  | const uint32_t transform(getDrawingTransform()); | 
|  | const uint32_t scalingMode(getDrawingScalingMode()); | 
|  | if ((crop != mCurrentCrop) || (transform != mCurrentTransform) || | 
|  | (scalingMode != mCurrentScalingMode)) { | 
|  | mCurrentCrop = crop; | 
|  | mCurrentTransform = transform; | 
|  | mCurrentScalingMode = scalingMode; | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | if (oldBuffer != nullptr) { | 
|  | uint32_t bufWidth = mActiveBuffer->getWidth(); | 
|  | uint32_t bufHeight = mActiveBuffer->getHeight(); | 
|  | if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (oldOpacity != isOpaque(s)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | // Remove any sync points corresponding to the buffer which was just | 
|  | // latched | 
|  | { | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | auto point = mLocalSyncPoints.begin(); | 
|  | while (point != mLocalSyncPoints.end()) { | 
|  | if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { | 
|  | // This sync point must have been added since we started | 
|  | // latching. Don't drop it yet. | 
|  | ++point; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { | 
|  | point = mLocalSyncPoints.erase(point); | 
|  | } else { | 
|  | ++point; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: postedRegion should be dirty & bounds | 
|  | // transform the dirty region to window-manager space | 
|  | return getTransform().transform(Region(getBufferSize(s))); | 
|  | } | 
|  |  | 
|  | // transaction | 
|  | void BufferLayer::notifyAvailableFrames() { | 
|  | auto headFrameNumber = getHeadFrameNumber(); | 
|  | bool headFenceSignaled = fenceHasSignaled(); | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) { | 
|  | point->setFrameAvailable(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool BufferLayer::hasReadyFrame() const { | 
|  | return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh(); | 
|  | } | 
|  |  | 
|  | uint32_t BufferLayer::getEffectiveScalingMode() const { | 
|  | if (mOverrideScalingMode >= 0) { | 
|  | return mOverrideScalingMode; | 
|  | } | 
|  |  | 
|  | return mCurrentScalingMode; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::isProtected() const { | 
|  | const sp<GraphicBuffer>& buffer(mActiveBuffer); | 
|  | return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); | 
|  | } | 
|  |  | 
|  | bool BufferLayer::latchUnsignaledBuffers() { | 
|  | static bool propertyLoaded = false; | 
|  | static bool latch = false; | 
|  | static std::mutex mutex; | 
|  | std::lock_guard<std::mutex> lock(mutex); | 
|  | if (!propertyLoaded) { | 
|  | char value[PROPERTY_VALUE_MAX] = {}; | 
|  | property_get("debug.sf.latch_unsignaled", value, "0"); | 
|  | latch = atoi(value); | 
|  | propertyLoaded = true; | 
|  | } | 
|  | return latch; | 
|  | } | 
|  |  | 
|  | // h/w composer set-up | 
|  | bool BufferLayer::allTransactionsSignaled() { | 
|  | auto headFrameNumber = getHeadFrameNumber(); | 
|  | bool matchingFramesFound = false; | 
|  | bool allTransactionsApplied = true; | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  |  | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | if (point->getFrameNumber() > headFrameNumber) { | 
|  | break; | 
|  | } | 
|  | matchingFramesFound = true; | 
|  |  | 
|  | if (!point->frameIsAvailable()) { | 
|  | // We haven't notified the remote layer that the frame for | 
|  | // this point is available yet. Notify it now, and then | 
|  | // abort this attempt to latch. | 
|  | point->setFrameAvailable(); | 
|  | allTransactionsApplied = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); | 
|  | } | 
|  | return !matchingFramesFound || allTransactionsApplied; | 
|  | } | 
|  |  | 
|  | // As documented in libhardware header, formats in the range | 
|  | // 0x100 - 0x1FF are specific to the HAL implementation, and | 
|  | // are known to have no alpha channel | 
|  | // TODO: move definition for device-specific range into | 
|  | // hardware.h, instead of using hard-coded values here. | 
|  | #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) | 
|  |  | 
|  | bool BufferLayer::getOpacityForFormat(uint32_t format) { | 
|  | if (HARDWARE_IS_DEVICE_FORMAT(format)) { | 
|  | return true; | 
|  | } | 
|  | switch (format) { | 
|  | case HAL_PIXEL_FORMAT_RGBA_8888: | 
|  | case HAL_PIXEL_FORMAT_BGRA_8888: | 
|  | case HAL_PIXEL_FORMAT_RGBA_FP16: | 
|  | case HAL_PIXEL_FORMAT_RGBA_1010102: | 
|  | return false; | 
|  | } | 
|  | // in all other case, we have no blending (also for unknown formats) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BufferLayer::needsFiltering() const { | 
|  | const auto displayFrame = getBE().compositionInfo.hwc.displayFrame; | 
|  | const auto sourceCrop = getBE().compositionInfo.hwc.sourceCrop; | 
|  | return mNeedsFiltering || sourceCrop.getHeight() != displayFrame.getHeight() || | 
|  | sourceCrop.getWidth() != displayFrame.getWidth(); | 
|  | } | 
|  |  | 
|  | void BufferLayer::drawWithOpenGL(const RenderArea& renderArea, bool useIdentityTransform) const { | 
|  | ATRACE_CALL(); | 
|  | const State& s(getDrawingState()); | 
|  |  | 
|  | computeGeometry(renderArea, getBE().mMesh, useIdentityTransform); | 
|  |  | 
|  | /* | 
|  | * NOTE: the way we compute the texture coordinates here produces | 
|  | * different results than when we take the HWC path -- in the later case | 
|  | * the "source crop" is rounded to texel boundaries. | 
|  | * This can produce significantly different results when the texture | 
|  | * is scaled by a large amount. | 
|  | * | 
|  | * The GL code below is more logical (imho), and the difference with | 
|  | * HWC is due to a limitation of the HWC API to integers -- a question | 
|  | * is suspend is whether we should ignore this problem or revert to | 
|  | * GL composition when a buffer scaling is applied (maybe with some | 
|  | * minimal value)? Or, we could make GL behave like HWC -- but this feel | 
|  | * like more of a hack. | 
|  | */ | 
|  |  | 
|  | // Convert to Rect so that bounds are clipped to integers. | 
|  | const Rect win{computeCrop(Rect::INVALID_RECT)}; | 
|  | // computeCrop() returns the cropping rectangle in buffer space, so we | 
|  | // shouldn't use getBufferSize() since that may return a rectangle specified | 
|  | // in layer space. Otherwise we may compute incorrect texture coordinates. | 
|  | const float bufWidth = float(mActiveBuffer->getWidth()); | 
|  | const float bufHeight = float(mActiveBuffer->getHeight()); | 
|  |  | 
|  | const float left = win.left / bufWidth; | 
|  | const float top = win.top / bufHeight; | 
|  | const float right = win.right / bufWidth; | 
|  | const float bottom = win.bottom / bufHeight; | 
|  |  | 
|  | // TODO: we probably want to generate the texture coords with the mesh | 
|  | // here we assume that we only have 4 vertices | 
|  | renderengine::Mesh::VertexArray<vec2> texCoords(getBE().mMesh.getTexCoordArray<vec2>()); | 
|  | // flip texcoords vertically because BufferLayerConsumer expects them to be in GL convention | 
|  | texCoords[0] = vec2(left, 1.0f - top); | 
|  | texCoords[1] = vec2(left, 1.0f - bottom); | 
|  | texCoords[2] = vec2(right, 1.0f - bottom); | 
|  | texCoords[3] = vec2(right, 1.0f - top); | 
|  |  | 
|  | const auto roundedCornerState = getRoundedCornerState(); | 
|  | const auto cropRect = roundedCornerState.cropRect; | 
|  | setupRoundedCornersCropCoordinates(win, cropRect); | 
|  |  | 
|  | auto& engine(mFlinger->getRenderEngine()); | 
|  | engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */, | 
|  | getColor(), roundedCornerState.radius); | 
|  | engine.setSourceDataSpace(mCurrentDataSpace); | 
|  |  | 
|  | if (isHdrY410()) { | 
|  | engine.setSourceY410BT2020(true); | 
|  | } | 
|  |  | 
|  | engine.setupCornerRadiusCropSize(cropRect.getWidth(), cropRect.getHeight()); | 
|  |  | 
|  | engine.drawMesh(getBE().mMesh); | 
|  | engine.disableBlending(); | 
|  |  | 
|  | engine.setSourceY410BT2020(false); | 
|  | } | 
|  |  | 
|  | uint64_t BufferLayer::getHeadFrameNumber() const { | 
|  | if (hasFrameUpdate()) { | 
|  | return getFrameNumber(); | 
|  | } else { | 
|  | return mCurrentFrameNumber; | 
|  | } | 
|  | } | 
|  |  | 
|  | Rect BufferLayer::getBufferSize(const State& s) const { | 
|  | // If we have a sideband stream, or we are scaling the buffer then return the layer size since | 
|  | // we cannot determine the buffer size. | 
|  | if ((s.sidebandStream != nullptr) || | 
|  | (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { | 
|  | return Rect(getActiveWidth(s), getActiveHeight(s)); | 
|  | } | 
|  |  | 
|  | if (mActiveBuffer == nullptr) { | 
|  | return Rect::INVALID_RECT; | 
|  | } | 
|  |  | 
|  | uint32_t bufWidth = mActiveBuffer->getWidth(); | 
|  | uint32_t bufHeight = mActiveBuffer->getHeight(); | 
|  |  | 
|  | // Undo any transformations on the buffer and return the result. | 
|  | if (mCurrentTransform & ui::Transform::ROT_90) { | 
|  | std::swap(bufWidth, bufHeight); | 
|  | } | 
|  |  | 
|  | if (getTransformToDisplayInverse()) { | 
|  | uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
|  | if (invTransform & ui::Transform::ROT_90) { | 
|  | std::swap(bufWidth, bufHeight); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Rect(bufWidth, bufHeight); | 
|  | } | 
|  |  | 
|  | } // namespace android | 
|  |  | 
|  | #if defined(__gl_h_) | 
|  | #error "don't include gl/gl.h in this file" | 
|  | #endif | 
|  |  | 
|  | #if defined(__gl2_h_) | 
|  | #error "don't include gl2/gl2.h in this file" | 
|  | #endif |