|  | /* | 
|  | * Copyright (C) 2010 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "SensorDevice.h" | 
|  |  | 
|  | #include "android/hardware/sensors/2.0/ISensorsCallback.h" | 
|  | #include "android/hardware/sensors/2.0/types.h" | 
|  | #include "SensorService.h" | 
|  |  | 
|  | #include <android-base/logging.h> | 
|  | #include <sensors/convert.h> | 
|  | #include <cutils/atomic.h> | 
|  | #include <utils/Errors.h> | 
|  | #include <utils/Singleton.h> | 
|  |  | 
|  | #include <chrono> | 
|  | #include <cinttypes> | 
|  | #include <thread> | 
|  |  | 
|  | using namespace android::hardware::sensors; | 
|  | using namespace android::hardware::sensors::V1_0; | 
|  | using namespace android::hardware::sensors::V1_0::implementation; | 
|  | using android::hardware::sensors::V2_0::ISensorsCallback; | 
|  | using android::hardware::sensors::V2_0::EventQueueFlagBits; | 
|  | using android::hardware::sensors::V2_0::WakeLockQueueFlagBits; | 
|  | using android::hardware::hidl_vec; | 
|  | using android::hardware::Return; | 
|  | using android::SensorDeviceUtils::HidlServiceRegistrationWaiter; | 
|  |  | 
|  | namespace android { | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | ANDROID_SINGLETON_STATIC_INSTANCE(SensorDevice) | 
|  |  | 
|  | static status_t StatusFromResult(Result result) { | 
|  | switch (result) { | 
|  | case Result::OK: | 
|  | return OK; | 
|  | case Result::BAD_VALUE: | 
|  | return BAD_VALUE; | 
|  | case Result::PERMISSION_DENIED: | 
|  | return PERMISSION_DENIED; | 
|  | case Result::INVALID_OPERATION: | 
|  | return INVALID_OPERATION; | 
|  | case Result::NO_MEMORY: | 
|  | return NO_MEMORY; | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename EnumType> | 
|  | constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) { | 
|  | return static_cast<typename std::underlying_type<EnumType>::type>(value); | 
|  | } | 
|  |  | 
|  | // Used internally by the framework to wake the Event FMQ. These values must start after | 
|  | // the last value of EventQueueFlagBits | 
|  | enum EventQueueFlagBitsInternal : uint32_t { | 
|  | INTERNAL_WAKE =  1 << 16, | 
|  | }; | 
|  |  | 
|  | void SensorsHalDeathReceivier::serviceDied( | 
|  | uint64_t /* cookie */, | 
|  | const wp<::android::hidl::base::V1_0::IBase>& /* service */) { | 
|  | ALOGW("Sensors HAL died, attempting to reconnect."); | 
|  | SensorDevice::getInstance().prepareForReconnect(); | 
|  | } | 
|  |  | 
|  | struct SensorsCallback : public ISensorsCallback { | 
|  | using Result = ::android::hardware::sensors::V1_0::Result; | 
|  | Return<void> onDynamicSensorsConnected( | 
|  | const hidl_vec<SensorInfo> &dynamicSensorsAdded) override { | 
|  | return SensorDevice::getInstance().onDynamicSensorsConnected(dynamicSensorsAdded); | 
|  | } | 
|  |  | 
|  | Return<void> onDynamicSensorsDisconnected( | 
|  | const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) override { | 
|  | return SensorDevice::getInstance().onDynamicSensorsDisconnected( | 
|  | dynamicSensorHandlesRemoved); | 
|  | } | 
|  | }; | 
|  |  | 
|  | SensorDevice::SensorDevice() | 
|  | : mHidlTransportErrors(20), | 
|  | mRestartWaiter(new HidlServiceRegistrationWaiter()), | 
|  | mEventQueueFlag(nullptr), | 
|  | mWakeLockQueueFlag(nullptr), | 
|  | mReconnecting(false) { | 
|  | if (!connectHidlService()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | initializeSensorList(); | 
|  |  | 
|  | mIsDirectReportSupported = | 
|  | (checkReturn(mSensors->unregisterDirectChannel(-1)) != Result::INVALID_OPERATION); | 
|  | } | 
|  |  | 
|  | void SensorDevice::initializeSensorList() { | 
|  | float minPowerMa = 0.001; // 1 microAmp | 
|  |  | 
|  | checkReturn(mSensors->getSensorsList( | 
|  | [&](const auto &list) { | 
|  | const size_t count = list.size(); | 
|  |  | 
|  | mActivationCount.setCapacity(count); | 
|  | Info model; | 
|  | for (size_t i=0 ; i < count; i++) { | 
|  | sensor_t sensor; | 
|  | convertToSensor(list[i], &sensor); | 
|  | // Sanity check and clamp power if it is 0 (or close) | 
|  | if (sensor.power < minPowerMa) { | 
|  | ALOGE("Reported power %f not deemed sane, clamping to %f", | 
|  | sensor.power, minPowerMa); | 
|  | sensor.power = minPowerMa; | 
|  | } | 
|  | mSensorList.push_back(sensor); | 
|  |  | 
|  | mActivationCount.add(list[i].sensorHandle, model); | 
|  |  | 
|  | checkReturn(mSensors->activate(list[i].sensorHandle, 0 /* enabled */)); | 
|  | } | 
|  | })); | 
|  | } | 
|  |  | 
|  | SensorDevice::~SensorDevice() { | 
|  | if (mEventQueueFlag != nullptr) { | 
|  | hardware::EventFlag::deleteEventFlag(&mEventQueueFlag); | 
|  | mEventQueueFlag = nullptr; | 
|  | } | 
|  |  | 
|  | if (mWakeLockQueueFlag != nullptr) { | 
|  | hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag); | 
|  | mWakeLockQueueFlag = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SensorDevice::connectHidlService() { | 
|  | HalConnectionStatus status = connectHidlServiceV2_0(); | 
|  | if (status == HalConnectionStatus::DOES_NOT_EXIST) { | 
|  | status = connectHidlServiceV1_0(); | 
|  | } | 
|  | return (status == HalConnectionStatus::CONNECTED); | 
|  | } | 
|  |  | 
|  | SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV1_0() { | 
|  | // SensorDevice will wait for HAL service to start if HAL is declared in device manifest. | 
|  | size_t retry = 10; | 
|  | HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN; | 
|  |  | 
|  | while (retry-- > 0) { | 
|  | sp<V1_0::ISensors> sensors = V1_0::ISensors::getService(); | 
|  | if (sensors == nullptr) { | 
|  | // no sensor hidl service found | 
|  | connectionStatus = HalConnectionStatus::DOES_NOT_EXIST; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mSensors = new SensorServiceUtil::SensorsWrapperV1_0(sensors); | 
|  | mRestartWaiter->reset(); | 
|  | // Poke ISensor service. If it has lingering connection from previous generation of | 
|  | // system server, it will kill itself. There is no intention to handle the poll result, | 
|  | // which will be done since the size is 0. | 
|  | if(mSensors->poll(0, [](auto, const auto &, const auto &) {}).isOk()) { | 
|  | // ok to continue | 
|  | connectionStatus = HalConnectionStatus::CONNECTED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // hidl service is restarting, pointer is invalid. | 
|  | mSensors = nullptr; | 
|  | connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT; | 
|  | ALOGI("%s unsuccessful, remaining retry %zu.", __FUNCTION__, retry); | 
|  | mRestartWaiter->wait(); | 
|  | } | 
|  |  | 
|  | return connectionStatus; | 
|  | } | 
|  |  | 
|  | SensorDevice::HalConnectionStatus SensorDevice::connectHidlServiceV2_0() { | 
|  | HalConnectionStatus connectionStatus = HalConnectionStatus::UNKNOWN; | 
|  | sp<V2_0::ISensors> sensors = V2_0::ISensors::getService(); | 
|  |  | 
|  | if (sensors == nullptr) { | 
|  | connectionStatus = HalConnectionStatus::DOES_NOT_EXIST; | 
|  | } else { | 
|  | mSensors = new SensorServiceUtil::SensorsWrapperV2_0(sensors); | 
|  |  | 
|  | mEventQueue = std::make_unique<EventMessageQueue>( | 
|  | SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT, | 
|  | true /* configureEventFlagWord */); | 
|  |  | 
|  | mWakeLockQueue = std::make_unique<WakeLockQueue>( | 
|  | SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT, | 
|  | true /* configureEventFlagWord */); | 
|  |  | 
|  | hardware::EventFlag::deleteEventFlag(&mEventQueueFlag); | 
|  | hardware::EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag); | 
|  |  | 
|  | hardware::EventFlag::deleteEventFlag(&mWakeLockQueueFlag); | 
|  | hardware::EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), | 
|  | &mWakeLockQueueFlag); | 
|  |  | 
|  | CHECK(mSensors != nullptr && mEventQueue != nullptr && | 
|  | mWakeLockQueue != nullptr && mEventQueueFlag != nullptr && | 
|  | mWakeLockQueueFlag != nullptr); | 
|  |  | 
|  | status_t status = StatusFromResult(checkReturn(mSensors->initialize( | 
|  | *mEventQueue->getDesc(), | 
|  | *mWakeLockQueue->getDesc(), | 
|  | new SensorsCallback()))); | 
|  |  | 
|  | if (status != NO_ERROR) { | 
|  | connectionStatus = HalConnectionStatus::FAILED_TO_CONNECT; | 
|  | ALOGE("Failed to initialize Sensors HAL (%s)", strerror(-status)); | 
|  | } else { | 
|  | connectionStatus = HalConnectionStatus::CONNECTED; | 
|  | mSensorsHalDeathReceiver = new SensorsHalDeathReceivier(); | 
|  | sensors->linkToDeath(mSensorsHalDeathReceiver, 0 /* cookie */); | 
|  | } | 
|  | } | 
|  |  | 
|  | return connectionStatus; | 
|  | } | 
|  |  | 
|  | void SensorDevice::prepareForReconnect() { | 
|  | mReconnecting = true; | 
|  |  | 
|  | // Wake up the polling thread so it returns and allows the SensorService to initiate | 
|  | // a reconnect. | 
|  | mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE)); | 
|  | } | 
|  |  | 
|  | void SensorDevice::reconnect() { | 
|  | Mutex::Autolock _l(mLock); | 
|  | mSensors = nullptr; | 
|  |  | 
|  | auto previousActivations = mActivationCount; | 
|  | auto previousSensorList = mSensorList; | 
|  |  | 
|  | mActivationCount.clear(); | 
|  | mSensorList.clear(); | 
|  |  | 
|  | if (connectHidlServiceV2_0() == HalConnectionStatus::CONNECTED) { | 
|  | initializeSensorList(); | 
|  |  | 
|  | if (sensorHandlesChanged(previousSensorList, mSensorList)) { | 
|  | LOG_ALWAYS_FATAL("Sensor handles changed, cannot re-enable sensors."); | 
|  | } else { | 
|  | reactivateSensors(previousActivations); | 
|  | } | 
|  | } | 
|  | mReconnecting = false; | 
|  | } | 
|  |  | 
|  | bool SensorDevice::sensorHandlesChanged(const Vector<sensor_t>& oldSensorList, | 
|  | const Vector<sensor_t>& newSensorList) { | 
|  | bool didChange = false; | 
|  |  | 
|  | if (oldSensorList.size() != newSensorList.size()) { | 
|  | didChange = true; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < newSensorList.size() && !didChange; i++) { | 
|  | bool found = false; | 
|  | const sensor_t& newSensor = newSensorList[i]; | 
|  | for (size_t j = 0; j < oldSensorList.size() && !found; j++) { | 
|  | const sensor_t& prevSensor = oldSensorList[j]; | 
|  | if (prevSensor.handle == newSensor.handle) { | 
|  | found = true; | 
|  | if (!sensorIsEquivalent(prevSensor, newSensor)) { | 
|  | didChange = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!found) { | 
|  | // Could not find the new sensor in the old list of sensors, the lists must | 
|  | // have changed. | 
|  | didChange = true; | 
|  | } | 
|  | } | 
|  | return didChange; | 
|  | } | 
|  |  | 
|  | bool SensorDevice::sensorIsEquivalent(const sensor_t& prevSensor, const sensor_t& newSensor) { | 
|  | bool equivalent = true; | 
|  | if (prevSensor.handle != newSensor.handle || | 
|  | (strcmp(prevSensor.vendor, newSensor.vendor) != 0) || | 
|  | (strcmp(prevSensor.stringType, newSensor.stringType) != 0) || | 
|  | (strcmp(prevSensor.requiredPermission, newSensor.requiredPermission) != 0) || | 
|  | (prevSensor.version != newSensor.version) || | 
|  | (prevSensor.type != newSensor.type) || | 
|  | (std::abs(prevSensor.maxRange - newSensor.maxRange) > 0.001f) || | 
|  | (std::abs(prevSensor.resolution - newSensor.resolution) > 0.001f) || | 
|  | (std::abs(prevSensor.power - newSensor.power) > 0.001f) || | 
|  | (prevSensor.minDelay != newSensor.minDelay) || | 
|  | (prevSensor.fifoReservedEventCount != newSensor.fifoReservedEventCount) || | 
|  | (prevSensor.fifoMaxEventCount != newSensor.fifoMaxEventCount) || | 
|  | (prevSensor.maxDelay != newSensor.maxDelay) || | 
|  | (prevSensor.flags != newSensor.flags)) { | 
|  | equivalent = false; | 
|  | } | 
|  | return equivalent; | 
|  | } | 
|  |  | 
|  | void SensorDevice::reactivateSensors(const DefaultKeyedVector<int, Info>& previousActivations) { | 
|  | for (size_t i = 0; i < mSensorList.size(); i++) { | 
|  | int handle = mSensorList[i].handle; | 
|  | ssize_t activationIndex = previousActivations.indexOfKey(handle); | 
|  | if (activationIndex < 0 || previousActivations[activationIndex].numActiveClients() <= 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const Info& info = previousActivations[activationIndex]; | 
|  | for (size_t j = 0; j < info.batchParams.size(); j++) { | 
|  | const BatchParams& batchParams = info.batchParams[j]; | 
|  | status_t res = batchLocked(info.batchParams.keyAt(j), handle, 0 /* flags */, | 
|  | batchParams.mTSample, batchParams.mTBatch); | 
|  |  | 
|  | if (res == NO_ERROR) { | 
|  | activateLocked(info.batchParams.keyAt(j), handle, true /* enabled */); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SensorDevice::handleDynamicSensorConnection(int handle, bool connected) { | 
|  | // not need to check mSensors because this is is only called after successful poll() | 
|  | if (connected) { | 
|  | Info model; | 
|  | mActivationCount.add(handle, model); | 
|  | checkReturn(mSensors->activate(handle, 0 /* enabled */)); | 
|  | } else { | 
|  | mActivationCount.removeItem(handle); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string SensorDevice::dump() const { | 
|  | if (mSensors == nullptr) return "HAL not initialized\n"; | 
|  |  | 
|  | String8 result; | 
|  | result.appendFormat("Total %zu h/w sensors, %zu running:\n", | 
|  | mSensorList.size(), mActivationCount.size()); | 
|  |  | 
|  | Mutex::Autolock _l(mLock); | 
|  | for (const auto & s : mSensorList) { | 
|  | int32_t handle = s.handle; | 
|  | const Info& info = mActivationCount.valueFor(handle); | 
|  | if (info.batchParams.isEmpty()) continue; | 
|  |  | 
|  | result.appendFormat("0x%08x) active-count = %zu; ", handle, info.batchParams.size()); | 
|  |  | 
|  | result.append("sampling_period(ms) = {"); | 
|  | for (size_t j = 0; j < info.batchParams.size(); j++) { | 
|  | const BatchParams& params = info.batchParams[j]; | 
|  | result.appendFormat("%.1f%s", params.mTSample / 1e6f, | 
|  | j < info.batchParams.size() - 1 ? ", " : ""); | 
|  | } | 
|  | result.appendFormat("}, selected = %.2f ms; ", info.bestBatchParams.mTSample / 1e6f); | 
|  |  | 
|  | result.append("batching_period(ms) = {"); | 
|  | for (size_t j = 0; j < info.batchParams.size(); j++) { | 
|  | const BatchParams& params = info.batchParams[j]; | 
|  | result.appendFormat("%.1f%s", params.mTBatch / 1e6f, | 
|  | j < info.batchParams.size() - 1 ? ", " : ""); | 
|  | } | 
|  | result.appendFormat("}, selected = %.2f ms\n", info.bestBatchParams.mTBatch / 1e6f); | 
|  | } | 
|  |  | 
|  | return result.string(); | 
|  | } | 
|  |  | 
|  | ssize_t SensorDevice::getSensorList(sensor_t const** list) { | 
|  | *list = &mSensorList[0]; | 
|  |  | 
|  | return mSensorList.size(); | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::initCheck() const { | 
|  | return mSensors != nullptr ? NO_ERROR : NO_INIT; | 
|  | } | 
|  |  | 
|  | ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) { | 
|  | if (mSensors == nullptr) return NO_INIT; | 
|  |  | 
|  | ssize_t eventsRead = 0; | 
|  | if (mSensors->supportsMessageQueues()) { | 
|  | eventsRead = pollFmq(buffer, count); | 
|  | } else if (mSensors->supportsPolling()) { | 
|  | eventsRead = pollHal(buffer, count); | 
|  | } else { | 
|  | ALOGE("Must support polling or FMQ"); | 
|  | eventsRead = -1; | 
|  | } | 
|  | return eventsRead; | 
|  | } | 
|  |  | 
|  | ssize_t SensorDevice::pollHal(sensors_event_t* buffer, size_t count) { | 
|  | ssize_t err; | 
|  | int numHidlTransportErrors = 0; | 
|  | bool hidlTransportError = false; | 
|  |  | 
|  | do { | 
|  | auto ret = mSensors->poll( | 
|  | count, | 
|  | [&](auto result, | 
|  | const auto &events, | 
|  | const auto &dynamicSensorsAdded) { | 
|  | if (result == Result::OK) { | 
|  | convertToSensorEvents(events, dynamicSensorsAdded, buffer); | 
|  | err = (ssize_t)events.size(); | 
|  | } else { | 
|  | err = StatusFromResult(result); | 
|  | } | 
|  | }); | 
|  |  | 
|  | if (ret.isOk())  { | 
|  | hidlTransportError = false; | 
|  | } else { | 
|  | hidlTransportError = true; | 
|  | numHidlTransportErrors++; | 
|  | if (numHidlTransportErrors > 50) { | 
|  | // Log error and bail | 
|  | ALOGE("Max Hidl transport errors this cycle : %d", numHidlTransportErrors); | 
|  | handleHidlDeath(ret.description()); | 
|  | } else { | 
|  | std::this_thread::sleep_for(std::chrono::milliseconds(10)); | 
|  | } | 
|  | } | 
|  | } while (hidlTransportError); | 
|  |  | 
|  | if(numHidlTransportErrors > 0) { | 
|  | ALOGE("Saw %d Hidl transport failures", numHidlTransportErrors); | 
|  | HidlTransportErrorLog errLog(time(nullptr), numHidlTransportErrors); | 
|  | mHidlTransportErrors.add(errLog); | 
|  | mTotalHidlTransportErrors++; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | ssize_t SensorDevice::pollFmq(sensors_event_t* buffer, size_t maxNumEventsToRead) { | 
|  | ssize_t eventsRead = 0; | 
|  | size_t availableEvents = mEventQueue->availableToRead(); | 
|  |  | 
|  | if (availableEvents == 0) { | 
|  | uint32_t eventFlagState = 0; | 
|  |  | 
|  | // Wait for events to become available. This is necessary so that the Event FMQ's read() is | 
|  | // able to be called with the correct number of events to read. If the specified number of | 
|  | // events is not available, then read() would return no events, possibly introducing | 
|  | // additional latency in delivering events to applications. | 
|  | mEventQueueFlag->wait(asBaseType(EventQueueFlagBits::READ_AND_PROCESS) | | 
|  | asBaseType(INTERNAL_WAKE), &eventFlagState); | 
|  | availableEvents = mEventQueue->availableToRead(); | 
|  |  | 
|  | if ((eventFlagState & asBaseType(EventQueueFlagBits::READ_AND_PROCESS)) && | 
|  | availableEvents == 0) { | 
|  | ALOGW("Event FMQ wake without any events"); | 
|  | } | 
|  |  | 
|  | if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) { | 
|  | ALOGD("Event FMQ internal wake, returning from poll with no events"); | 
|  | return DEAD_OBJECT; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()}); | 
|  | if (eventsToRead > 0) { | 
|  | if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) { | 
|  | // Notify the Sensors HAL that sensor events have been read. This is required to support | 
|  | // the use of writeBlocking by the Sensors HAL. | 
|  | mEventQueueFlag->wake(asBaseType(EventQueueFlagBits::EVENTS_READ)); | 
|  |  | 
|  | for (size_t i = 0; i < eventsToRead; i++) { | 
|  | convertToSensorEvent(mEventBuffer[i], &buffer[i]); | 
|  | } | 
|  | eventsRead = eventsToRead; | 
|  | } else { | 
|  | ALOGW("Failed to read %zu events, currently %zu events available", | 
|  | eventsToRead, availableEvents); | 
|  | } | 
|  | } | 
|  |  | 
|  | return eventsRead; | 
|  | } | 
|  |  | 
|  | Return<void> SensorDevice::onDynamicSensorsConnected( | 
|  | const hidl_vec<SensorInfo> &dynamicSensorsAdded) { | 
|  | // Allocate a sensor_t structure for each dynamic sensor added and insert | 
|  | // it into the dictionary of connected dynamic sensors keyed by handle. | 
|  | for (size_t i = 0; i < dynamicSensorsAdded.size(); ++i) { | 
|  | const SensorInfo &info = dynamicSensorsAdded[i]; | 
|  |  | 
|  | auto it = mConnectedDynamicSensors.find(info.sensorHandle); | 
|  | CHECK(it == mConnectedDynamicSensors.end()); | 
|  |  | 
|  | sensor_t *sensor = new sensor_t(); | 
|  | convertToSensor(info, sensor); | 
|  |  | 
|  | mConnectedDynamicSensors.insert( | 
|  | std::make_pair(sensor->handle, sensor)); | 
|  | } | 
|  |  | 
|  | return Return<void>(); | 
|  | } | 
|  |  | 
|  | Return<void> SensorDevice::onDynamicSensorsDisconnected( | 
|  | const hidl_vec<int32_t> &dynamicSensorHandlesRemoved) { | 
|  | (void) dynamicSensorHandlesRemoved; | 
|  | // TODO: Currently dynamic sensors do not seem to be removed | 
|  | return Return<void>(); | 
|  | } | 
|  |  | 
|  | void SensorDevice::writeWakeLockHandled(uint32_t count) { | 
|  | if (mSensors != nullptr && mSensors->supportsMessageQueues()) { | 
|  | if (mWakeLockQueue->write(&count)) { | 
|  | mWakeLockQueueFlag->wake(asBaseType(WakeLockQueueFlagBits::DATA_WRITTEN)); | 
|  | } else { | 
|  | ALOGW("Failed to write wake lock handled"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SensorDevice::autoDisable(void *ident, int handle) { | 
|  | Mutex::Autolock _l(mLock); | 
|  | ssize_t activationIndex = mActivationCount.indexOfKey(handle); | 
|  | if (activationIndex < 0) { | 
|  | ALOGW("Handle %d cannot be found in activation record", handle); | 
|  | return; | 
|  | } | 
|  | Info& info(mActivationCount.editValueAt(activationIndex)); | 
|  | info.removeBatchParamsForIdent(ident); | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::activate(void* ident, int handle, int enabled) { | 
|  | if (mSensors == nullptr) return NO_INIT; | 
|  |  | 
|  | Mutex::Autolock _l(mLock); | 
|  | return activateLocked(ident, handle, enabled); | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::activateLocked(void* ident, int handle, int enabled) { | 
|  | bool actuateHardware = false; | 
|  |  | 
|  | status_t err(NO_ERROR); | 
|  |  | 
|  | ssize_t activationIndex = mActivationCount.indexOfKey(handle); | 
|  | if (activationIndex < 0) { | 
|  | ALOGW("Handle %d cannot be found in activation record", handle); | 
|  | return BAD_VALUE; | 
|  | } | 
|  | Info& info(mActivationCount.editValueAt(activationIndex)); | 
|  |  | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, | 
|  | "SensorDevice::activate: ident=%p, handle=0x%08x, enabled=%d, count=%zu", | 
|  | ident, handle, enabled, info.batchParams.size()); | 
|  |  | 
|  | if (enabled) { | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, "enable index=%zd", info.batchParams.indexOfKey(ident)); | 
|  |  | 
|  | if (isClientDisabledLocked(ident)) { | 
|  | ALOGE("SensorDevice::activate, isClientDisabledLocked(%p):true, handle:%d", | 
|  | ident, handle); | 
|  | return INVALID_OPERATION; | 
|  | } | 
|  |  | 
|  | if (info.batchParams.indexOfKey(ident) >= 0) { | 
|  | if (info.numActiveClients() == 1) { | 
|  | // This is the first connection, we need to activate the underlying h/w sensor. | 
|  | actuateHardware = true; | 
|  | } | 
|  | } else { | 
|  | // Log error. Every activate call should be preceded by a batch() call. | 
|  | ALOGE("\t >>>ERROR: activate called without batch"); | 
|  | } | 
|  | } else { | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, "disable index=%zd", info.batchParams.indexOfKey(ident)); | 
|  |  | 
|  | // If a connected dynamic sensor is deactivated, remove it from the | 
|  | // dictionary. | 
|  | auto it = mConnectedDynamicSensors.find(handle); | 
|  | if (it != mConnectedDynamicSensors.end()) { | 
|  | delete it->second; | 
|  | mConnectedDynamicSensors.erase(it); | 
|  | } | 
|  |  | 
|  | if (info.removeBatchParamsForIdent(ident) >= 0) { | 
|  | if (info.numActiveClients() == 0) { | 
|  | // This is the last connection, we need to de-activate the underlying h/w sensor. | 
|  | actuateHardware = true; | 
|  | } else { | 
|  | // Call batch for this sensor with the previously calculated best effort | 
|  | // batch_rate and timeout. One of the apps has unregistered for sensor | 
|  | // events, and the best effort batch parameters might have changed. | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, | 
|  | "\t>>> actuating h/w batch 0x%08x %" PRId64 " %" PRId64, handle, | 
|  | info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch); | 
|  | checkReturn(mSensors->batch( | 
|  | handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch)); | 
|  | } | 
|  | } else { | 
|  | // sensor wasn't enabled for this ident | 
|  | } | 
|  |  | 
|  | if (isClientDisabledLocked(ident)) { | 
|  | return NO_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (actuateHardware) { | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w activate handle=%d enabled=%d", handle, | 
|  | enabled); | 
|  | err = StatusFromResult(checkReturn(mSensors->activate(handle, enabled))); | 
|  | ALOGE_IF(err, "Error %s sensor %d (%s)", enabled ? "activating" : "disabling", handle, | 
|  | strerror(-err)); | 
|  |  | 
|  | if (err != NO_ERROR && enabled) { | 
|  | // Failure when enabling the sensor. Clean up on failure. | 
|  | info.removeBatchParamsForIdent(ident); | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::batch( | 
|  | void* ident, | 
|  | int handle, | 
|  | int flags, | 
|  | int64_t samplingPeriodNs, | 
|  | int64_t maxBatchReportLatencyNs) { | 
|  | if (mSensors == nullptr) return NO_INIT; | 
|  |  | 
|  | if (samplingPeriodNs < MINIMUM_EVENTS_PERIOD) { | 
|  | samplingPeriodNs = MINIMUM_EVENTS_PERIOD; | 
|  | } | 
|  | if (maxBatchReportLatencyNs < 0) { | 
|  | maxBatchReportLatencyNs = 0; | 
|  | } | 
|  |  | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, | 
|  | "SensorDevice::batch: ident=%p, handle=0x%08x, flags=%d, period_ns=%" PRId64 " timeout=%" PRId64, | 
|  | ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs); | 
|  |  | 
|  | Mutex::Autolock _l(mLock); | 
|  | return batchLocked(ident, handle, flags, samplingPeriodNs, maxBatchReportLatencyNs); | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::batchLocked(void* ident, int handle, int flags, int64_t samplingPeriodNs, | 
|  | int64_t maxBatchReportLatencyNs) { | 
|  | ssize_t activationIndex = mActivationCount.indexOfKey(handle); | 
|  | if (activationIndex < 0) { | 
|  | ALOGW("Handle %d cannot be found in activation record", handle); | 
|  | return BAD_VALUE; | 
|  | } | 
|  | Info& info(mActivationCount.editValueAt(activationIndex)); | 
|  |  | 
|  | if (info.batchParams.indexOfKey(ident) < 0) { | 
|  | BatchParams params(samplingPeriodNs, maxBatchReportLatencyNs); | 
|  | info.batchParams.add(ident, params); | 
|  | } else { | 
|  | // A batch has already been called with this ident. Update the batch parameters. | 
|  | info.setBatchParamsForIdent(ident, flags, samplingPeriodNs, maxBatchReportLatencyNs); | 
|  | } | 
|  |  | 
|  | BatchParams prevBestBatchParams = info.bestBatchParams; | 
|  | // Find the minimum of all timeouts and batch_rates for this sensor. | 
|  | info.selectBatchParams(); | 
|  |  | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, | 
|  | "\t>>> curr_period=%" PRId64 " min_period=%" PRId64 | 
|  | " curr_timeout=%" PRId64 " min_timeout=%" PRId64, | 
|  | prevBestBatchParams.mTSample, info.bestBatchParams.mTSample, | 
|  | prevBestBatchParams.mTBatch, info.bestBatchParams.mTBatch); | 
|  |  | 
|  | status_t err(NO_ERROR); | 
|  | // If the min period or min timeout has changed since the last batch call, call batch. | 
|  | if (prevBestBatchParams != info.bestBatchParams) { | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w BATCH 0x%08x %" PRId64 " %" PRId64, handle, | 
|  | info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch); | 
|  | err = StatusFromResult( | 
|  | checkReturn(mSensors->batch( | 
|  | handle, info.bestBatchParams.mTSample, info.bestBatchParams.mTBatch))); | 
|  | if (err != NO_ERROR) { | 
|  | ALOGE("sensor batch failed %p 0x%08x %" PRId64 " %" PRId64 " err=%s", | 
|  | mSensors.get(), handle, info.bestBatchParams.mTSample, | 
|  | info.bestBatchParams.mTBatch, strerror(-err)); | 
|  | info.removeBatchParamsForIdent(ident); | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::setDelay(void* ident, int handle, int64_t samplingPeriodNs) { | 
|  | return batch(ident, handle, 0, samplingPeriodNs, 0); | 
|  | } | 
|  |  | 
|  | int SensorDevice::getHalDeviceVersion() const { | 
|  | if (mSensors == nullptr) return -1; | 
|  | return SENSORS_DEVICE_API_VERSION_1_4; | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::flush(void* ident, int handle) { | 
|  | if (mSensors == nullptr) return NO_INIT; | 
|  | if (isClientDisabled(ident)) return INVALID_OPERATION; | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, "\t>>> actuating h/w flush %d", handle); | 
|  | return StatusFromResult(checkReturn(mSensors->flush(handle))); | 
|  | } | 
|  |  | 
|  | bool SensorDevice::isClientDisabled(void* ident) { | 
|  | Mutex::Autolock _l(mLock); | 
|  | return isClientDisabledLocked(ident); | 
|  | } | 
|  |  | 
|  | bool SensorDevice::isClientDisabledLocked(void* ident) { | 
|  | return mDisabledClients.indexOf(ident) >= 0; | 
|  | } | 
|  |  | 
|  | void SensorDevice::enableAllSensors() { | 
|  | if (mSensors == nullptr) return; | 
|  | Mutex::Autolock _l(mLock); | 
|  | mDisabledClients.clear(); | 
|  | ALOGI("cleared mDisabledClients"); | 
|  | for (size_t i = 0; i< mActivationCount.size(); ++i) { | 
|  | Info& info = mActivationCount.editValueAt(i); | 
|  | if (info.batchParams.isEmpty()) continue; | 
|  | info.selectBatchParams(); | 
|  | const int sensor_handle = mActivationCount.keyAt(i); | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, "\t>> reenable actuating h/w sensor enable handle=%d ", | 
|  | sensor_handle); | 
|  | status_t err = StatusFromResult( | 
|  | checkReturn(mSensors->batch( | 
|  | sensor_handle, | 
|  | info.bestBatchParams.mTSample, | 
|  | info.bestBatchParams.mTBatch))); | 
|  | ALOGE_IF(err, "Error calling batch on sensor %d (%s)", sensor_handle, strerror(-err)); | 
|  |  | 
|  | if (err == NO_ERROR) { | 
|  | err = StatusFromResult( | 
|  | checkReturn(mSensors->activate(sensor_handle, 1 /* enabled */))); | 
|  | ALOGE_IF(err, "Error activating sensor %d (%s)", sensor_handle, strerror(-err)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SensorDevice::disableAllSensors() { | 
|  | if (mSensors == nullptr) return; | 
|  | Mutex::Autolock _l(mLock); | 
|  | for (size_t i = 0; i< mActivationCount.size(); ++i) { | 
|  | const Info& info = mActivationCount.valueAt(i); | 
|  | // Check if this sensor has been activated previously and disable it. | 
|  | if (info.batchParams.size() > 0) { | 
|  | const int sensor_handle = mActivationCount.keyAt(i); | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, "\t>> actuating h/w sensor disable handle=%d ", | 
|  | sensor_handle); | 
|  | checkReturn(mSensors->activate(sensor_handle, 0 /* enabled */)); | 
|  |  | 
|  | // Add all the connections that were registered for this sensor to the disabled | 
|  | // clients list. | 
|  | for (size_t j = 0; j < info.batchParams.size(); ++j) { | 
|  | mDisabledClients.add(info.batchParams.keyAt(j)); | 
|  | ALOGI("added %p to mDisabledClients", info.batchParams.keyAt(j)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::injectSensorData( | 
|  | const sensors_event_t *injected_sensor_event) { | 
|  | if (mSensors == nullptr) return NO_INIT; | 
|  | ALOGD_IF(DEBUG_CONNECTIONS, | 
|  | "sensor_event handle=%d ts=%" PRId64 " data=%.2f, %.2f, %.2f %.2f %.2f %.2f", | 
|  | injected_sensor_event->sensor, | 
|  | injected_sensor_event->timestamp, injected_sensor_event->data[0], | 
|  | injected_sensor_event->data[1], injected_sensor_event->data[2], | 
|  | injected_sensor_event->data[3], injected_sensor_event->data[4], | 
|  | injected_sensor_event->data[5]); | 
|  |  | 
|  | Event ev; | 
|  | convertFromSensorEvent(*injected_sensor_event, &ev); | 
|  |  | 
|  | return StatusFromResult(checkReturn(mSensors->injectSensorData(ev))); | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::setMode(uint32_t mode) { | 
|  | if (mSensors == nullptr) return NO_INIT; | 
|  | return StatusFromResult( | 
|  | checkReturn(mSensors->setOperationMode( | 
|  | static_cast<hardware::sensors::V1_0::OperationMode>(mode)))); | 
|  | } | 
|  |  | 
|  | int32_t SensorDevice::registerDirectChannel(const sensors_direct_mem_t* memory) { | 
|  | if (mSensors == nullptr) return NO_INIT; | 
|  | Mutex::Autolock _l(mLock); | 
|  |  | 
|  | SharedMemType type; | 
|  | switch (memory->type) { | 
|  | case SENSOR_DIRECT_MEM_TYPE_ASHMEM: | 
|  | type = SharedMemType::ASHMEM; | 
|  | break; | 
|  | case SENSOR_DIRECT_MEM_TYPE_GRALLOC: | 
|  | type = SharedMemType::GRALLOC; | 
|  | break; | 
|  | default: | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | SharedMemFormat format; | 
|  | if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) { | 
|  | return BAD_VALUE; | 
|  | } | 
|  | format = SharedMemFormat::SENSORS_EVENT; | 
|  |  | 
|  | SharedMemInfo mem = { | 
|  | .type = type, | 
|  | .format = format, | 
|  | .size = static_cast<uint32_t>(memory->size), | 
|  | .memoryHandle = memory->handle, | 
|  | }; | 
|  |  | 
|  | int32_t ret; | 
|  | checkReturn(mSensors->registerDirectChannel(mem, | 
|  | [&ret](auto result, auto channelHandle) { | 
|  | if (result == Result::OK) { | 
|  | ret = channelHandle; | 
|  | } else { | 
|  | ret = StatusFromResult(result); | 
|  | } | 
|  | })); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void SensorDevice::unregisterDirectChannel(int32_t channelHandle) { | 
|  | if (mSensors == nullptr) return; | 
|  | Mutex::Autolock _l(mLock); | 
|  | checkReturn(mSensors->unregisterDirectChannel(channelHandle)); | 
|  | } | 
|  |  | 
|  | int32_t SensorDevice::configureDirectChannel(int32_t sensorHandle, | 
|  | int32_t channelHandle, const struct sensors_direct_cfg_t *config) { | 
|  | if (mSensors == nullptr) return NO_INIT; | 
|  | Mutex::Autolock _l(mLock); | 
|  |  | 
|  | RateLevel rate; | 
|  | switch(config->rate_level) { | 
|  | case SENSOR_DIRECT_RATE_STOP: | 
|  | rate = RateLevel::STOP; | 
|  | break; | 
|  | case SENSOR_DIRECT_RATE_NORMAL: | 
|  | rate = RateLevel::NORMAL; | 
|  | break; | 
|  | case SENSOR_DIRECT_RATE_FAST: | 
|  | rate = RateLevel::FAST; | 
|  | break; | 
|  | case SENSOR_DIRECT_RATE_VERY_FAST: | 
|  | rate = RateLevel::VERY_FAST; | 
|  | break; | 
|  | default: | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | int32_t ret; | 
|  | checkReturn(mSensors->configDirectReport(sensorHandle, channelHandle, rate, | 
|  | [&ret, rate] (auto result, auto token) { | 
|  | if (rate == RateLevel::STOP) { | 
|  | ret = StatusFromResult(result); | 
|  | } else { | 
|  | if (result == Result::OK) { | 
|  | ret = token; | 
|  | } else { | 
|  | ret = StatusFromResult(result); | 
|  | } | 
|  | } | 
|  | })); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | int SensorDevice::Info::numActiveClients() const { | 
|  | SensorDevice& device(SensorDevice::getInstance()); | 
|  | int num = 0; | 
|  | for (size_t i = 0; i < batchParams.size(); ++i) { | 
|  | if (!device.isClientDisabledLocked(batchParams.keyAt(i))) { | 
|  | ++num; | 
|  | } | 
|  | } | 
|  | return num; | 
|  | } | 
|  |  | 
|  | status_t SensorDevice::Info::setBatchParamsForIdent(void* ident, int, | 
|  | int64_t samplingPeriodNs, | 
|  | int64_t maxBatchReportLatencyNs) { | 
|  | ssize_t index = batchParams.indexOfKey(ident); | 
|  | if (index < 0) { | 
|  | ALOGE("Info::setBatchParamsForIdent(ident=%p, period_ns=%" PRId64 | 
|  | " timeout=%" PRId64 ") failed (%s)", | 
|  | ident, samplingPeriodNs, maxBatchReportLatencyNs, strerror(-index)); | 
|  | return BAD_INDEX; | 
|  | } | 
|  | BatchParams& params = batchParams.editValueAt(index); | 
|  | params.mTSample = samplingPeriodNs; | 
|  | params.mTBatch = maxBatchReportLatencyNs; | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | void SensorDevice::Info::selectBatchParams() { | 
|  | BatchParams bestParams; // default to max Tsample and max Tbatch | 
|  | SensorDevice& device(SensorDevice::getInstance()); | 
|  |  | 
|  | for (size_t i = 0; i < batchParams.size(); ++i) { | 
|  | if (device.isClientDisabledLocked(batchParams.keyAt(i))) { | 
|  | continue; | 
|  | } | 
|  | bestParams.merge(batchParams[i]); | 
|  | } | 
|  | // if mTBatch <= mTSample, it is in streaming mode. set mTbatch to 0 to demand this explicitly. | 
|  | if (bestParams.mTBatch <= bestParams.mTSample) { | 
|  | bestParams.mTBatch = 0; | 
|  | } | 
|  | bestBatchParams = bestParams; | 
|  | } | 
|  |  | 
|  | ssize_t SensorDevice::Info::removeBatchParamsForIdent(void* ident) { | 
|  | ssize_t idx = batchParams.removeItem(ident); | 
|  | if (idx >= 0) { | 
|  | selectBatchParams(); | 
|  | } | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | void SensorDevice::notifyConnectionDestroyed(void* ident) { | 
|  | Mutex::Autolock _l(mLock); | 
|  | mDisabledClients.remove(ident); | 
|  | } | 
|  |  | 
|  | bool SensorDevice::isDirectReportSupported() const { | 
|  | return mIsDirectReportSupported; | 
|  | } | 
|  |  | 
|  | void SensorDevice::convertToSensorEvent( | 
|  | const Event &src, sensors_event_t *dst) { | 
|  | ::android::hardware::sensors::V1_0::implementation::convertToSensorEvent( | 
|  | src, dst); | 
|  |  | 
|  | if (src.sensorType == SensorType::DYNAMIC_SENSOR_META) { | 
|  | const DynamicSensorInfo &dyn = src.u.dynamic; | 
|  |  | 
|  | dst->dynamic_sensor_meta.connected = dyn.connected; | 
|  | dst->dynamic_sensor_meta.handle = dyn.sensorHandle; | 
|  | if (dyn.connected) { | 
|  | auto it = mConnectedDynamicSensors.find(dyn.sensorHandle); | 
|  | CHECK(it != mConnectedDynamicSensors.end()); | 
|  |  | 
|  | dst->dynamic_sensor_meta.sensor = it->second; | 
|  |  | 
|  | memcpy(dst->dynamic_sensor_meta.uuid, | 
|  | dyn.uuid.data(), | 
|  | sizeof(dst->dynamic_sensor_meta.uuid)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SensorDevice::convertToSensorEvents( | 
|  | const hidl_vec<Event> &src, | 
|  | const hidl_vec<SensorInfo> &dynamicSensorsAdded, | 
|  | sensors_event_t *dst) { | 
|  |  | 
|  | if (dynamicSensorsAdded.size() > 0) { | 
|  | onDynamicSensorsConnected(dynamicSensorsAdded); | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < src.size(); ++i) { | 
|  | convertToSensorEvent(src[i], &dst[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SensorDevice::handleHidlDeath(const std::string & detail) { | 
|  | if (!SensorDevice::getInstance().mSensors->supportsMessageQueues()) { | 
|  | // restart is the only option at present. | 
|  | LOG_ALWAYS_FATAL("Abort due to ISensors hidl service failure, detail: %s.", detail.c_str()); | 
|  | } else { | 
|  | ALOGD("ISensors HAL died, death recipient will attempt reconnect"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | }; // namespace android |