|  | /* libs/opengles/primitives.cpp | 
|  | ** | 
|  | ** Copyright 2006, The Android Open Source Project | 
|  | ** | 
|  | ** Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | ** you may not use this file except in compliance with the License. | 
|  | ** You may obtain a copy of the License at | 
|  | ** | 
|  | **     http://www.apache.org/licenses/LICENSE-2.0 | 
|  | ** | 
|  | ** Unless required by applicable law or agreed to in writing, software | 
|  | ** distributed under the License is distributed on an "AS IS" BASIS, | 
|  | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | ** See the License for the specific language governing permissions and | 
|  | ** limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "context.h" | 
|  | #include "primitives.h" | 
|  | #include "light.h" | 
|  | #include "matrix.h" | 
|  | #include "vertex.h" | 
|  | #include "fp.h" | 
|  | #include "TextureObjectManager.h" | 
|  |  | 
|  | extern "C" void iterators0032(const void* that, | 
|  | int32_t* it, int32_t c0, int32_t c1, int32_t c2); | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | static void primitive_point(ogles_context_t* c, vertex_t* v); | 
|  | static void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1); | 
|  | static void primitive_clip_triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2); | 
|  |  | 
|  | static void primitive_nop_point(ogles_context_t* c, vertex_t* v); | 
|  | static void primitive_nop_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1); | 
|  | static void primitive_nop_triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2); | 
|  |  | 
|  | static inline bool cull_triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2); | 
|  |  | 
|  | static void lerp_triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2); | 
|  |  | 
|  | static void lerp_texcoords(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2); | 
|  |  | 
|  | static void lerp_texcoords_w(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2); | 
|  |  | 
|  | static void triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2); | 
|  |  | 
|  | static void clip_triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2); | 
|  |  | 
|  | static unsigned int clip_line(ogles_context_t* c, | 
|  | vertex_t* s, vertex_t* p); | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #endif | 
|  |  | 
|  | static void lightTriangleDarkSmooth(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | if (!(v0->flags & vertex_t::LIT)) { | 
|  | v0->flags |= vertex_t::LIT; | 
|  | const GLvoid* cp = c->arrays.color.element( | 
|  | v0->index & vertex_cache_t::INDEX_MASK); | 
|  | c->arrays.color.fetch(c, v0->color.v, cp); | 
|  | } | 
|  | if (!(v1->flags & vertex_t::LIT)) { | 
|  | v1->flags |= vertex_t::LIT; | 
|  | const GLvoid* cp = c->arrays.color.element( | 
|  | v1->index & vertex_cache_t::INDEX_MASK); | 
|  | c->arrays.color.fetch(c, v1->color.v, cp); | 
|  | } | 
|  | if(!(v2->flags & vertex_t::LIT)) { | 
|  | v2->flags |= vertex_t::LIT; | 
|  | const GLvoid* cp = c->arrays.color.element( | 
|  | v2->index & vertex_cache_t::INDEX_MASK); | 
|  | c->arrays.color.fetch(c, v2->color.v, cp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lightTriangleDarkFlat(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | if (!(v2->flags & vertex_t::LIT)) { | 
|  | v2->flags |= vertex_t::LIT; | 
|  | const GLvoid* cp = c->arrays.color.element( | 
|  | v2->index & vertex_cache_t::INDEX_MASK); | 
|  | c->arrays.color.fetch(c, v2->color.v, cp); | 
|  | } | 
|  | // configure the rasterizer here, before we clip | 
|  | c->rasterizer.procs.color4xv(c, v2->color.v); | 
|  | } | 
|  |  | 
|  | static void lightTriangleSmooth(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | if (!(v0->flags & vertex_t::LIT)) | 
|  | c->lighting.lightVertex(c, v0); | 
|  | if (!(v1->flags & vertex_t::LIT)) | 
|  | c->lighting.lightVertex(c, v1); | 
|  | if(!(v2->flags & vertex_t::LIT)) | 
|  | c->lighting.lightVertex(c, v2); | 
|  | } | 
|  |  | 
|  | static void lightTriangleFlat(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | if (!(v2->flags & vertex_t::LIT)) | 
|  | c->lighting.lightVertex(c, v2); | 
|  | // configure the rasterizer here, before we clip | 
|  | c->rasterizer.procs.color4xv(c, v2->color.v); | 
|  | } | 
|  |  | 
|  | // The fog versions... | 
|  |  | 
|  | static inline | 
|  | void lightVertexDarkSmoothFog(ogles_context_t* c, vertex_t* v) | 
|  | { | 
|  | if (!(v->flags & vertex_t::LIT)) { | 
|  | v->flags |= vertex_t::LIT; | 
|  | v->fog = c->fog.fog(c, v->eye.z); | 
|  | const GLvoid* cp = c->arrays.color.element( | 
|  | v->index & vertex_cache_t::INDEX_MASK); | 
|  | c->arrays.color.fetch(c, v->color.v, cp); | 
|  | } | 
|  | } | 
|  | static inline | 
|  | void lightVertexDarkFlatFog(ogles_context_t* c, vertex_t* v) | 
|  | { | 
|  | if (!(v->flags & vertex_t::LIT)) { | 
|  | v->flags |= vertex_t::LIT; | 
|  | v->fog = c->fog.fog(c, v->eye.z); | 
|  | } | 
|  | } | 
|  | static inline | 
|  | void lightVertexSmoothFog(ogles_context_t* c, vertex_t* v) | 
|  | { | 
|  | if (!(v->flags & vertex_t::LIT)) { | 
|  | v->fog = c->fog.fog(c, v->eye.z); | 
|  | c->lighting.lightVertex(c, v); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void lightTriangleDarkSmoothFog(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | lightVertexDarkSmoothFog(c, v0); | 
|  | lightVertexDarkSmoothFog(c, v1); | 
|  | lightVertexDarkSmoothFog(c, v2); | 
|  | } | 
|  |  | 
|  | static void lightTriangleDarkFlatFog(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | lightVertexDarkFlatFog(c, v0); | 
|  | lightVertexDarkFlatFog(c, v1); | 
|  | lightVertexDarkSmoothFog(c, v2); | 
|  | // configure the rasterizer here, before we clip | 
|  | c->rasterizer.procs.color4xv(c, v2->color.v); | 
|  | } | 
|  |  | 
|  | static void lightTriangleSmoothFog(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | lightVertexSmoothFog(c, v0); | 
|  | lightVertexSmoothFog(c, v1); | 
|  | lightVertexSmoothFog(c, v2); | 
|  | } | 
|  |  | 
|  | static void lightTriangleFlatFog(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | lightVertexDarkFlatFog(c, v0); | 
|  | lightVertexDarkFlatFog(c, v1); | 
|  | lightVertexSmoothFog(c, v2); | 
|  | // configure the rasterizer here, before we clip | 
|  | c->rasterizer.procs.color4xv(c, v2->color.v); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | typedef void (*light_primitive_t)(ogles_context_t*, | 
|  | vertex_t*, vertex_t*, vertex_t*); | 
|  |  | 
|  | // fog 0x4, light 0x2, smooth 0x1 | 
|  | static const light_primitive_t lightPrimitive[8] = { | 
|  | lightTriangleDarkFlat,          // no fog | dark  | flat | 
|  | lightTriangleDarkSmooth,        // no fog | dark  | smooth | 
|  | lightTriangleFlat,              // no fog | light | flat | 
|  | lightTriangleSmooth,            // no fog | light | smooth | 
|  | lightTriangleDarkFlatFog,       // fog    | dark  | flat | 
|  | lightTriangleDarkSmoothFog,     // fog    | dark  | smooth | 
|  | lightTriangleFlatFog,           // fog    | light | flat | 
|  | lightTriangleSmoothFog          // fog    | light | smooth | 
|  | }; | 
|  |  | 
|  | void ogles_validate_primitives(ogles_context_t* c) | 
|  | { | 
|  | const uint32_t enables = c->rasterizer.state.enables; | 
|  |  | 
|  | // set up the lighting/shading/smoothing/fogging function | 
|  | int index = enables & GGL_ENABLE_SMOOTH ? 0x1 : 0; | 
|  | index |= c->lighting.enable ? 0x2 : 0; | 
|  | index |= enables & GGL_ENABLE_FOG ? 0x4 : 0; | 
|  | c->lighting.lightTriangle = lightPrimitive[index]; | 
|  |  | 
|  | // set up the primitive renderers | 
|  | if (ggl_likely(c->arrays.vertex.enable)) { | 
|  | c->prims.renderPoint    = primitive_point; | 
|  | c->prims.renderLine     = primitive_line; | 
|  | c->prims.renderTriangle = primitive_clip_triangle; | 
|  | } else { | 
|  | c->prims.renderPoint    = primitive_nop_point; | 
|  | c->prims.renderLine     = primitive_nop_line; | 
|  | c->prims.renderTriangle = primitive_nop_triangle; | 
|  | } | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | void compute_iterators_t::initTriangle( | 
|  | vertex_t const* v0, vertex_t const* v1, vertex_t const* v2) | 
|  | { | 
|  | m_dx01 = v1->window.x - v0->window.x; | 
|  | m_dy10 = v0->window.y - v1->window.y; | 
|  | m_dx20 = v0->window.x - v2->window.x; | 
|  | m_dy02 = v2->window.y - v0->window.y; | 
|  | m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20; | 
|  | } | 
|  |  | 
|  | void compute_iterators_t::initLine( | 
|  | vertex_t const* v0, vertex_t const* v1) | 
|  | { | 
|  | m_dx01 = m_dy02 = v1->window.x - v0->window.x; | 
|  | m_dy10 = m_dx20 = v0->window.y - v1->window.y; | 
|  | m_area = m_dx01*m_dy02 + (-m_dy10)*m_dx20; | 
|  | } | 
|  |  | 
|  | void compute_iterators_t::initLerp(vertex_t const* v0, uint32_t enables) | 
|  | { | 
|  | m_x0 = v0->window.x; | 
|  | m_y0 = v0->window.y; | 
|  | const GGLcoord area = (m_area + TRI_HALF) >> TRI_FRACTION_BITS; | 
|  | const GGLcoord minArea = 2; // cannot be inverted | 
|  | // triangles with an area smaller than 1.0 are not smooth-shaded | 
|  |  | 
|  | int q=0, s=0, d=0; | 
|  | if (abs(area) >= minArea) { | 
|  | // Here we do some voodoo magic, to compute a suitable scale | 
|  | // factor for deltas/area: | 
|  |  | 
|  | // First compute the 1/area with full 32-bits precision, | 
|  | // gglRecipQNormalized returns a number [-0.5, 0.5[ and an exponent. | 
|  | d = gglRecipQNormalized(area, &q); | 
|  |  | 
|  | // Then compute the minimum left-shift to not overflow the muls | 
|  | // below. | 
|  | s = 32 - gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20)); | 
|  |  | 
|  | // We'll keep 16-bits of precision for deltas/area. So we need | 
|  | // to shift everything left an extra 15 bits. | 
|  | s += 15; | 
|  |  | 
|  | // make sure all final shifts are not > 32, because gglMulx | 
|  | // can't handle it. | 
|  | if (s < q) s = q; | 
|  | if (s > 32) { | 
|  | d >>= 32-s; | 
|  | s = 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | m_dx01 = gglMulx(m_dx01, d, s); | 
|  | m_dy10 = gglMulx(m_dy10, d, s); | 
|  | m_dx20 = gglMulx(m_dx20, d, s); | 
|  | m_dy02 = gglMulx(m_dy02, d, s); | 
|  | m_area_scale = 32 + q - s; | 
|  | m_scale = 0; | 
|  |  | 
|  | if (enables & GGL_ENABLE_TMUS) { | 
|  | const int A = gglClz(abs(m_dy02)|abs(m_dy10)|abs(m_dx01)|abs(m_dx20)); | 
|  | const int B = gglClz(abs(m_x0)|abs(m_y0)); | 
|  | m_scale = max(0, 32 - (A + 16)) + | 
|  | max(0, 32 - (B + TRI_FRACTION_BITS)) + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | int compute_iterators_t::iteratorsScale(GGLfixed* it, | 
|  | int32_t c0, int32_t c1, int32_t c2) const | 
|  | { | 
|  | int32_t dc01 = c1 - c0; | 
|  | int32_t dc02 = c2 - c0; | 
|  | const int A = gglClz(abs(c0)); | 
|  | const int B = gglClz(abs(dc01)|abs(dc02)); | 
|  | const int scale = min(A, B - m_scale) - 2; | 
|  | if (scale >= 0) { | 
|  | c0   <<= scale; | 
|  | dc01 <<= scale; | 
|  | dc02 <<= scale; | 
|  | } else { | 
|  | c0   >>= -scale; | 
|  | dc01 >>= -scale; | 
|  | dc02 >>= -scale; | 
|  | } | 
|  | const int s = m_area_scale; | 
|  | int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s); | 
|  | int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s); | 
|  | int32_t c = c0 - (gglMulAddx(dcdx, m_x0, | 
|  | gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS)); | 
|  | it[0] = c; | 
|  | it[1] = dcdx; | 
|  | it[2] = dcdy; | 
|  | return scale; | 
|  | } | 
|  |  | 
|  | void compute_iterators_t::iterators1616(GGLfixed* it, | 
|  | GGLfixed c0, GGLfixed c1, GGLfixed c2) const | 
|  | { | 
|  | const GGLfixed dc01 = c1 - c0; | 
|  | const GGLfixed dc02 = c2 - c0; | 
|  | // 16.16 x 16.16 == 32.32 --> 16.16 | 
|  | const int s = m_area_scale; | 
|  | int32_t dcdx = gglMulAddx(dc01, m_dy02, gglMulx(dc02, m_dy10, s), s); | 
|  | int32_t dcdy = gglMulAddx(dc02, m_dx01, gglMulx(dc01, m_dx20, s), s); | 
|  | int32_t c = c0 - (gglMulAddx(dcdx, m_x0, | 
|  | gglMulx(dcdy, m_y0, TRI_FRACTION_BITS), TRI_FRACTION_BITS)); | 
|  | it[0] = c; | 
|  | it[1] = dcdx; | 
|  | it[2] = dcdy; | 
|  | } | 
|  |  | 
|  | void compute_iterators_t::iterators0032(int64_t* it, | 
|  | int32_t c0, int32_t c1, int32_t c2) const | 
|  | { | 
|  | const int s = m_area_scale - 16; | 
|  | int32_t dc01 = (c1 - c0)>>s; | 
|  | int32_t dc02 = (c2 - c0)>>s; | 
|  | // 16.16 x 16.16 == 32.32 | 
|  | int64_t dcdx = gglMulii(dc01, m_dy02) + gglMulii(dc02, m_dy10); | 
|  | int64_t dcdy = gglMulii(dc02, m_dx01) + gglMulii(dc01, m_dx20); | 
|  | it[ 0] = (c0<<16) - ((dcdx*m_x0 + dcdy*m_y0)>>4); | 
|  | it[ 1] = dcdx; | 
|  | it[ 2] = dcdy; | 
|  | } | 
|  |  | 
|  | #if defined(__arm__) && !defined(__thumb__) | 
|  | inline void compute_iterators_t::iterators0032(int32_t* it, | 
|  | int32_t c0, int32_t c1, int32_t c2) const | 
|  | { | 
|  | ::iterators0032(this, it, c0, c1, c2); | 
|  | } | 
|  | #else | 
|  | void compute_iterators_t::iterators0032(int32_t* it, | 
|  | int32_t c0, int32_t c1, int32_t c2) const | 
|  | { | 
|  | int64_t it64[3]; | 
|  | iterators0032(it64, c0, c1, c2); | 
|  | it[0] = it64[0]; | 
|  | it[1] = it64[1]; | 
|  | it[2] = it64[2]; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | static inline int32_t clampZ(GLfixed z) CONST; | 
|  | int32_t clampZ(GLfixed z) { | 
|  | z = (z & ~(z>>31)); | 
|  | if (z >= 0x10000) | 
|  | z = 0xFFFF; | 
|  | return z; | 
|  | } | 
|  |  | 
|  | static __attribute__((noinline)) | 
|  | void fetch_texcoord_impl(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | vertex_t* const vtx[3] = { v0, v1, v2 }; | 
|  | array_t const * const texcoordArray = c->arrays.texture; | 
|  |  | 
|  | for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) { | 
|  | if (!(c->rasterizer.state.texture[i].enable)) | 
|  | continue; | 
|  |  | 
|  | for (int j=0 ; j<3 ; j++) { | 
|  | vertex_t* const v = vtx[j]; | 
|  | if (v->flags & vertex_t::TT) | 
|  | continue; | 
|  |  | 
|  | // NOTE: here we could compute automatic texgen | 
|  | // such as sphere/cube maps, instead of fetching them | 
|  | // from the textcoord array. | 
|  |  | 
|  | vec4_t& coords = v->texture[i]; | 
|  | const GLubyte* tp = texcoordArray[i].element( | 
|  | v->index & vertex_cache_t::INDEX_MASK); | 
|  | texcoordArray[i].fetch(c, coords.v, tp); | 
|  |  | 
|  | // transform texture coordinates... | 
|  | coords.Q = 0x10000; | 
|  | const transform_t& tr = c->transforms.texture[i].transform; | 
|  | if (ggl_unlikely(tr.ops)) { | 
|  | c->arrays.tex_transform[i](&tr, &coords, &coords); | 
|  | } | 
|  |  | 
|  | // divide by Q | 
|  | const GGLfixed q = coords.Q; | 
|  | if (ggl_unlikely(q != 0x10000)) { | 
|  | const int32_t qinv = gglRecip28(q); | 
|  | coords.S = gglMulx(coords.S, qinv, 28); | 
|  | coords.T = gglMulx(coords.T, qinv, 28); | 
|  | } | 
|  | } | 
|  | } | 
|  | v0->flags |= vertex_t::TT; | 
|  | v1->flags |= vertex_t::TT; | 
|  | v2->flags |= vertex_t::TT; | 
|  | } | 
|  |  | 
|  | inline void fetch_texcoord(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | const uint32_t enables = c->rasterizer.state.enables; | 
|  | if (!(enables & GGL_ENABLE_TMUS)) | 
|  | return; | 
|  |  | 
|  | // Fetch & transform texture coordinates... | 
|  | if (ggl_likely(v0->flags & v1->flags & v2->flags & vertex_t::TT)) { | 
|  | // already done for all three vertices, bail... | 
|  | return; | 
|  | } | 
|  | fetch_texcoord_impl(c, v0, v1, v2); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Point | 
|  | #endif | 
|  |  | 
|  | void primitive_nop_point(ogles_context_t*, vertex_t*) { | 
|  | } | 
|  |  | 
|  | void primitive_point(ogles_context_t* c, vertex_t* v) | 
|  | { | 
|  | // lighting & clamping... | 
|  | const uint32_t enables = c->rasterizer.state.enables; | 
|  |  | 
|  | if (ggl_unlikely(!(v->flags & vertex_t::LIT))) { | 
|  | if (c->lighting.enable) { | 
|  | c->lighting.lightVertex(c, v); | 
|  | } else { | 
|  | v->flags |= vertex_t::LIT; | 
|  | const GLvoid* cp = c->arrays.color.element( | 
|  | v->index & vertex_cache_t::INDEX_MASK); | 
|  | c->arrays.color.fetch(c, v->color.v, cp); | 
|  | } | 
|  | if (enables & GGL_ENABLE_FOG) { | 
|  | v->fog = c->fog.fog(c, v->eye.z); | 
|  | } | 
|  | } | 
|  |  | 
|  | // XXX: we don't need to do that each-time | 
|  | // if color array and lighting not enabled | 
|  | c->rasterizer.procs.color4xv(c, v->color.v); | 
|  |  | 
|  | // XXX: look into ES point-sprite extension | 
|  | if (enables & GGL_ENABLE_TMUS) { | 
|  | fetch_texcoord(c, v,v,v); | 
|  | for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) { | 
|  | if (!c->rasterizer.state.texture[i].enable) | 
|  | continue; | 
|  | int32_t itt[8]; | 
|  | itt[1] = itt[2] = itt[4] = itt[5] = 0; | 
|  | itt[6] = itt[7] = 16; // XXX: check that | 
|  | if (c->rasterizer.state.texture[i].s_wrap == GGL_CLAMP) { | 
|  | int width = c->textures.tmu[i].texture->surface.width; | 
|  | itt[0] = v->texture[i].S * width; | 
|  | itt[6] = 0; | 
|  | } | 
|  | if (c->rasterizer.state.texture[i].t_wrap == GGL_CLAMP) { | 
|  | int height = c->textures.tmu[i].texture->surface.height; | 
|  | itt[3] = v->texture[i].T * height; | 
|  | itt[7] = 0; | 
|  | } | 
|  | c->rasterizer.procs.texCoordGradScale8xv(c, i, itt); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (enables & GGL_ENABLE_DEPTH_TEST) { | 
|  | int32_t itz[3]; | 
|  | itz[0] = clampZ(v->window.z) * 0x00010001; | 
|  | itz[1] = itz[2] = 0; | 
|  | c->rasterizer.procs.zGrad3xv(c, itz); | 
|  | } | 
|  |  | 
|  | if (enables & GGL_ENABLE_FOG) { | 
|  | GLfixed itf[3]; | 
|  | itf[0] = v->fog; | 
|  | itf[1] = itf[2] = 0; | 
|  | c->rasterizer.procs.fogGrad3xv(c, itf); | 
|  | } | 
|  |  | 
|  | // Render our point... | 
|  | c->rasterizer.procs.pointx(c, v->window.v, c->point.size); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Line | 
|  | #endif | 
|  |  | 
|  | void primitive_nop_line(ogles_context_t*, vertex_t*, vertex_t*) { | 
|  | } | 
|  |  | 
|  | void primitive_line(ogles_context_t* c, vertex_t* v0, vertex_t* v1) | 
|  | { | 
|  | // get texture coordinates | 
|  | fetch_texcoord(c, v0, v1, v1); | 
|  |  | 
|  | // light/shade the vertices first (they're copied below) | 
|  | c->lighting.lightTriangle(c, v0, v1, v1); | 
|  |  | 
|  | // clip the line if needed | 
|  | if (ggl_unlikely((v0->flags | v1->flags) & vertex_t::CLIP_ALL)) { | 
|  | unsigned int count = clip_line(c, v0, v1); | 
|  | if (ggl_unlikely(count == 0)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // compute iterators... | 
|  | const uint32_t enables = c->rasterizer.state.enables; | 
|  | const uint32_t mask =   GGL_ENABLE_TMUS | | 
|  | GGL_ENABLE_SMOOTH | | 
|  | GGL_ENABLE_W | | 
|  | GGL_ENABLE_FOG | | 
|  | GGL_ENABLE_DEPTH_TEST; | 
|  |  | 
|  | if (ggl_unlikely(enables & mask)) { | 
|  | c->lerp.initLine(v0, v1); | 
|  | lerp_triangle(c, v0, v1, v0); | 
|  | } | 
|  |  | 
|  | // render our line | 
|  | c->rasterizer.procs.linex(c, v0->window.v, v1->window.v, c->line.width); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | #if 0 | 
|  | #pragma mark - | 
|  | #pragma mark Triangle | 
|  | #endif | 
|  |  | 
|  | void primitive_nop_triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) { | 
|  | } | 
|  |  | 
|  | void primitive_clip_triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | uint32_t cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL; | 
|  | if (ggl_likely(!cc)) { | 
|  | // code below must be as optimized as possible, this is the | 
|  | // common code path. | 
|  |  | 
|  | // This triangle is not clipped, test if it's culled | 
|  | // unclipped triangle... | 
|  | c->lerp.initTriangle(v0, v1, v2); | 
|  | if (cull_triangle(c, v0, v1, v2)) | 
|  | return; // culled! | 
|  |  | 
|  | // Fetch all texture coordinates if needed | 
|  | fetch_texcoord(c, v0, v1, v2); | 
|  |  | 
|  | // light (or shade) our triangle! | 
|  | c->lighting.lightTriangle(c, v0, v1, v2); | 
|  |  | 
|  | triangle(c, v0, v1, v2); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The assumption here is that we're not going to clip very often, | 
|  | // and even more rarely will we clip a triangle that ends up | 
|  | // being culled out. So it's okay to light the vertices here, even though | 
|  | // in a few cases we won't render the triangle (if culled). | 
|  |  | 
|  | // Fetch texture coordinates... | 
|  | fetch_texcoord(c, v0, v1, v2); | 
|  |  | 
|  | // light (or shade) our triangle! | 
|  | c->lighting.lightTriangle(c, v0, v1, v2); | 
|  |  | 
|  | clip_triangle(c, v0, v1, v2); | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------- | 
|  |  | 
|  | void triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | // compute iterators... | 
|  | const uint32_t enables = c->rasterizer.state.enables; | 
|  | const uint32_t mask =   GGL_ENABLE_TMUS | | 
|  | GGL_ENABLE_SMOOTH | | 
|  | GGL_ENABLE_W | | 
|  | GGL_ENABLE_FOG | | 
|  | GGL_ENABLE_DEPTH_TEST; | 
|  |  | 
|  | if (ggl_likely(enables & mask)) | 
|  | lerp_triangle(c, v0, v1, v2); | 
|  |  | 
|  | c->rasterizer.procs.trianglex(c, v0->window.v, v1->window.v, v2->window.v); | 
|  | } | 
|  |  | 
|  | void lerp_triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | const uint32_t enables = c->rasterizer.state.enables; | 
|  | c->lerp.initLerp(v0, enables); | 
|  |  | 
|  | // set up texture iterators | 
|  | if (enables & GGL_ENABLE_TMUS) { | 
|  | if (enables & GGL_ENABLE_W) { | 
|  | lerp_texcoords_w(c, v0, v1, v2); | 
|  | } else { | 
|  | lerp_texcoords(c, v0, v1, v2); | 
|  | } | 
|  | } | 
|  |  | 
|  | // set up the color iterators | 
|  | const compute_iterators_t& lerp = c->lerp; | 
|  | if (enables & GGL_ENABLE_SMOOTH) { | 
|  | GLfixed itc[12]; | 
|  | for (int i=0 ; i<4 ; i++) { | 
|  | const GGLcolor c0 = v0->color.v[i] * 255; | 
|  | const GGLcolor c1 = v1->color.v[i] * 255; | 
|  | const GGLcolor c2 = v2->color.v[i] * 255; | 
|  | lerp.iterators1616(&itc[i*3], c0, c1, c2); | 
|  | } | 
|  | c->rasterizer.procs.colorGrad12xv(c, itc); | 
|  | } | 
|  |  | 
|  | if (enables & GGL_ENABLE_DEPTH_TEST) { | 
|  | int32_t itz[3]; | 
|  | const int32_t v0z = clampZ(v0->window.z); | 
|  | const int32_t v1z = clampZ(v1->window.z); | 
|  | const int32_t v2z = clampZ(v2->window.z); | 
|  | if (ggl_unlikely(c->polygonOffset.enable)) { | 
|  | const int32_t units = (c->polygonOffset.units << 16); | 
|  | const GLfixed factor = c->polygonOffset.factor; | 
|  | if (factor) { | 
|  | int64_t itz64[3]; | 
|  | lerp.iterators0032(itz64, v0z, v1z, v2z); | 
|  | int64_t maxDepthSlope = max(itz64[1], itz64[2]); | 
|  | itz[0] = uint32_t(itz64[0]) | 
|  | + uint32_t((maxDepthSlope*factor)>>16) + units; | 
|  | itz[1] = uint32_t(itz64[1]); | 
|  | itz[2] = uint32_t(itz64[2]); | 
|  | } else { | 
|  | lerp.iterators0032(itz, v0z, v1z, v2z); | 
|  | itz[0] += units; | 
|  | } | 
|  | } else { | 
|  | lerp.iterators0032(itz, v0z, v1z, v2z); | 
|  | } | 
|  | c->rasterizer.procs.zGrad3xv(c, itz); | 
|  | } | 
|  |  | 
|  | if (ggl_unlikely(enables & GGL_ENABLE_FOG)) { | 
|  | GLfixed itf[3]; | 
|  | lerp.iterators1616(itf, v0->fog, v1->fog, v2->fog); | 
|  | c->rasterizer.procs.fogGrad3xv(c, itf); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline | 
|  | int compute_lod(ogles_context_t* c, int i, | 
|  | int32_t s0, int32_t t0, int32_t s1, int32_t t1, int32_t s2, int32_t t2) | 
|  | { | 
|  | // Compute mipmap level / primitive | 
|  | // rho = sqrt( texelArea / area ) | 
|  | // lod = log2( rho ) | 
|  | // lod = log2( texelArea / area ) / 2 | 
|  | // lod = (log2( texelArea ) - log2( area )) / 2 | 
|  | const compute_iterators_t& lerp = c->lerp; | 
|  | const GGLcoord area = abs(lerp.area()); | 
|  | const int w = c->textures.tmu[i].texture->surface.width; | 
|  | const int h = c->textures.tmu[i].texture->surface.height; | 
|  | const int shift = 16 + (16 - TRI_FRACTION_BITS); | 
|  | int32_t texelArea = abs( gglMulx(s1-s0, t2-t0, shift) - | 
|  | gglMulx(s2-s0, t1-t0, shift) )*w*h; | 
|  | int log2TArea = (32-TRI_FRACTION_BITS  -1) - gglClz(texelArea); | 
|  | int log2Area  = (32-TRI_FRACTION_BITS*2-1) - gglClz(area); | 
|  | int lod = (log2TArea - log2Area + 1) >> 1; | 
|  | return lod; | 
|  | } | 
|  |  | 
|  | void lerp_texcoords(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | const compute_iterators_t& lerp = c->lerp; | 
|  | int32_t itt[8] __attribute__((aligned(16))); | 
|  | for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) { | 
|  | const texture_t& tmu = c->rasterizer.state.texture[i]; | 
|  | if (!tmu.enable) | 
|  | continue; | 
|  |  | 
|  | // compute the jacobians using block floating-point | 
|  | int32_t s0 = v0->texture[i].S; | 
|  | int32_t t0 = v0->texture[i].T; | 
|  | int32_t s1 = v1->texture[i].S; | 
|  | int32_t t1 = v1->texture[i].T; | 
|  | int32_t s2 = v2->texture[i].S; | 
|  | int32_t t2 = v2->texture[i].T; | 
|  |  | 
|  | const GLenum min_filter = c->textures.tmu[i].texture->min_filter; | 
|  | if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) { | 
|  | int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2); | 
|  | c->rasterizer.procs.bindTextureLod(c, i, | 
|  | &c->textures.tmu[i].texture->mip(lod)); | 
|  | } | 
|  |  | 
|  | // premultiply (s,t) when clampling | 
|  | if (tmu.s_wrap == GGL_CLAMP) { | 
|  | const int width = tmu.surface.width; | 
|  | s0 *= width; | 
|  | s1 *= width; | 
|  | s2 *= width; | 
|  | } | 
|  | if (tmu.t_wrap == GGL_CLAMP) { | 
|  | const int height = tmu.surface.height; | 
|  | t0 *= height; | 
|  | t1 *= height; | 
|  | t2 *= height; | 
|  | } | 
|  | itt[6] = -lerp.iteratorsScale(itt+0, s0, s1, s2); | 
|  | itt[7] = -lerp.iteratorsScale(itt+3, t0, t1, t2); | 
|  | c->rasterizer.procs.texCoordGradScale8xv(c, i, itt); | 
|  | } | 
|  | } | 
|  |  | 
|  | void lerp_texcoords_w(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | const compute_iterators_t& lerp = c->lerp; | 
|  | int32_t itt[8] __attribute__((aligned(16))); | 
|  | int32_t itw[3]; | 
|  |  | 
|  | // compute W's scale to 2.30 | 
|  | int32_t w0 = v0->window.w; | 
|  | int32_t w1 = v1->window.w; | 
|  | int32_t w2 = v2->window.w; | 
|  | int wscale = 32 - gglClz(w0|w1|w2); | 
|  |  | 
|  | // compute the jacobian using block floating-point | 
|  | int sc = lerp.iteratorsScale(itw, w0, w1, w2); | 
|  | sc +=  wscale - 16; | 
|  | c->rasterizer.procs.wGrad3xv(c, itw); | 
|  |  | 
|  | for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; i++) { | 
|  | const texture_t& tmu = c->rasterizer.state.texture[i]; | 
|  | if (!tmu.enable) | 
|  | continue; | 
|  |  | 
|  | // compute the jacobians using block floating-point | 
|  | int32_t s0 = v0->texture[i].S; | 
|  | int32_t t0 = v0->texture[i].T; | 
|  | int32_t s1 = v1->texture[i].S; | 
|  | int32_t t1 = v1->texture[i].T; | 
|  | int32_t s2 = v2->texture[i].S; | 
|  | int32_t t2 = v2->texture[i].T; | 
|  |  | 
|  | const GLenum min_filter = c->textures.tmu[i].texture->min_filter; | 
|  | if (ggl_unlikely(min_filter >= GL_NEAREST_MIPMAP_NEAREST)) { | 
|  | int lod = compute_lod(c, i, s0, t0, s1, t1, s2, t2); | 
|  | c->rasterizer.procs.bindTextureLod(c, i, | 
|  | &c->textures.tmu[i].texture->mip(lod)); | 
|  | } | 
|  |  | 
|  | // premultiply (s,t) when clampling | 
|  | if (tmu.s_wrap == GGL_CLAMP) { | 
|  | const int width = tmu.surface.width; | 
|  | s0 *= width; | 
|  | s1 *= width; | 
|  | s2 *= width; | 
|  | } | 
|  | if (tmu.t_wrap == GGL_CLAMP) { | 
|  | const int height = tmu.surface.height; | 
|  | t0 *= height; | 
|  | t1 *= height; | 
|  | t2 *= height; | 
|  | } | 
|  |  | 
|  | s0 = gglMulx(s0, w0, wscale); | 
|  | t0 = gglMulx(t0, w0, wscale); | 
|  | s1 = gglMulx(s1, w1, wscale); | 
|  | t1 = gglMulx(t1, w1, wscale); | 
|  | s2 = gglMulx(s2, w2, wscale); | 
|  | t2 = gglMulx(t2, w2, wscale); | 
|  |  | 
|  | itt[6] = sc - lerp.iteratorsScale(itt+0, s0, s1, s2); | 
|  | itt[7] = sc - lerp.iteratorsScale(itt+3, t0, t1, t2); | 
|  | c->rasterizer.procs.texCoordGradScale8xv(c, i, itt); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline | 
|  | bool cull_triangle(ogles_context_t* c, vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | if (ggl_likely(c->cull.enable)) { | 
|  | const GLenum winding = (c->lerp.area() > 0) ? GL_CW : GL_CCW; | 
|  | const GLenum face = (winding == c->cull.frontFace) ? GL_FRONT : GL_BACK; | 
|  | if (face == c->cull.cullFace) | 
|  | return true; // culled! | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline | 
|  | GLfixed frustumPlaneDist(int plane, const vec4_t& s) | 
|  | { | 
|  | const GLfixed d = s.v[ plane >> 1 ]; | 
|  | return  ((plane & 1) ? (s.w - d) : (s.w + d)); | 
|  | } | 
|  |  | 
|  | static inline | 
|  | int32_t clipDivide(GLfixed a, GLfixed b) { | 
|  | // returns a 4.28 fixed-point | 
|  | return gglMulDivi(1LU<<28, a, b); | 
|  | } | 
|  |  | 
|  | void clip_triangle(ogles_context_t* c, | 
|  | vertex_t* v0, vertex_t* v1, vertex_t* v2) | 
|  | { | 
|  | uint32_t all_cc = (v0->flags | v1->flags | v2->flags) & vertex_t::CLIP_ALL; | 
|  |  | 
|  | vertex_t *p0, *p1, *p2; | 
|  | const int MAX_CLIPPING_PLANES = 6 + OGLES_MAX_CLIP_PLANES; | 
|  | const int MAX_VERTICES = 3; | 
|  |  | 
|  | // Temporary buffer to hold the new vertices. Each plane can add up to | 
|  | // two new vertices (because the polygon is convex). | 
|  | // We need one extra element, to handle an overflow case when | 
|  | // the polygon degenerates into something non convex. | 
|  | vertex_t buffer[MAX_CLIPPING_PLANES * 2 + 1];   // ~3KB | 
|  | vertex_t* buf = buffer; | 
|  |  | 
|  | // original list of vertices (polygon to clip, in fact this | 
|  | // function works with an arbitrary polygon). | 
|  | vertex_t* in[3] = { v0, v1, v2 }; | 
|  |  | 
|  | // output lists (we need 2, which we use back and forth) | 
|  | // (maximum outpout list's size is MAX_CLIPPING_PLANES + MAX_VERTICES) | 
|  | // 2 more elements for overflow when non convex polygons. | 
|  | vertex_t* out[2][MAX_CLIPPING_PLANES + MAX_VERTICES + 2]; | 
|  | unsigned int outi = 0; | 
|  |  | 
|  | // current input list | 
|  | vertex_t** ivl = in; | 
|  |  | 
|  | // 3 input vertices, 0 in the output list, first plane | 
|  | unsigned int ic = 3; | 
|  |  | 
|  | // User clip-planes first, the clipping is always done in eye-coordinate | 
|  | // this is basically the same algorithm than for the view-volume | 
|  | // clipping, except for the computation of the distance (vertex, plane) | 
|  | // and the fact that we need to compute the eye-coordinates of each | 
|  | // new vertex we create. | 
|  |  | 
|  | if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL)) | 
|  | { | 
|  | unsigned int plane = 0; | 
|  | uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8; | 
|  | do { | 
|  | if (cc & 1) { | 
|  | // pointers to our output list (head and current) | 
|  | vertex_t** const ovl = &out[outi][0]; | 
|  | vertex_t** output = ovl; | 
|  | unsigned int oc = 0; | 
|  | unsigned int sentinel = 0; | 
|  | // previous vertex, compute distance to the plane | 
|  | vertex_t* s = ivl[ic-1]; | 
|  | const vec4_t& equation = c->clipPlanes.plane[plane].equation; | 
|  | GLfixed sd = dot4(equation.v, s->eye.v); | 
|  | // clip each vertex against this plane... | 
|  | for (unsigned int i=0 ; i<ic ; i++) { | 
|  | vertex_t* p = ivl[i]; | 
|  | const GLfixed pd = dot4(equation.v, p->eye.v); | 
|  | if (sd >= 0) { | 
|  | if (pd >= 0) { | 
|  | // both inside | 
|  | *output++ = p; | 
|  | oc++; | 
|  | } else { | 
|  | // s inside, p outside (exiting) | 
|  | const GLfixed t = clipDivide(sd, sd-pd); | 
|  | c->arrays.clipEye(c, buf, t, p, s); | 
|  | *output++ = buf++; | 
|  | oc++; | 
|  | if (++sentinel >= 3) | 
|  | return; // non-convex polygon! | 
|  | } | 
|  | } else { | 
|  | if (pd >= 0) { | 
|  | // s outside (entering) | 
|  | if (pd) { | 
|  | const GLfixed t = clipDivide(pd, pd-sd); | 
|  | c->arrays.clipEye(c, buf, t, s, p); | 
|  | *output++ = buf++; | 
|  | oc++; | 
|  | if (++sentinel >= 3) | 
|  | return; // non-convex polygon! | 
|  | } | 
|  | *output++ = p; | 
|  | oc++; | 
|  | } else { | 
|  | // both outside | 
|  | } | 
|  | } | 
|  | s = p; | 
|  | sd = pd; | 
|  | } | 
|  | // output list become the new input list | 
|  | if (oc<3) | 
|  | return; // less than 3 vertices left? we're done! | 
|  | ivl = ovl; | 
|  | ic = oc; | 
|  | outi = 1-outi; | 
|  | } | 
|  | cc >>= 1; | 
|  | plane++; | 
|  | } while (cc); | 
|  | } | 
|  |  | 
|  | // frustum clip-planes | 
|  | if (all_cc & vertex_t::FRUSTUM_CLIP_ALL) | 
|  | { | 
|  | unsigned int plane = 0; | 
|  | uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL; | 
|  | do { | 
|  | if (cc & 1) { | 
|  | // pointers to our output list (head and current) | 
|  | vertex_t** const ovl = &out[outi][0]; | 
|  | vertex_t** output = ovl; | 
|  | unsigned int oc = 0; | 
|  | unsigned int sentinel = 0; | 
|  | // previous vertex, compute distance to the plane | 
|  | vertex_t* s = ivl[ic-1]; | 
|  | GLfixed sd = frustumPlaneDist(plane, s->clip); | 
|  | // clip each vertex against this plane... | 
|  | for (unsigned int i=0 ; i<ic ; i++) { | 
|  | vertex_t* p = ivl[i]; | 
|  | const GLfixed pd = frustumPlaneDist(plane, p->clip); | 
|  | if (sd >= 0) { | 
|  | if (pd >= 0) { | 
|  | // both inside | 
|  | *output++ = p; | 
|  | oc++; | 
|  | } else { | 
|  | // s inside, p outside (exiting) | 
|  | const GLfixed t = clipDivide(sd, sd-pd); | 
|  | c->arrays.clipVertex(c, buf, t, p, s); | 
|  | *output++ = buf++; | 
|  | oc++; | 
|  | if (++sentinel >= 3) | 
|  | return; // non-convex polygon! | 
|  | } | 
|  | } else { | 
|  | if (pd >= 0) { | 
|  | // s outside (entering) | 
|  | if (pd) { | 
|  | const GLfixed t = clipDivide(pd, pd-sd); | 
|  | c->arrays.clipVertex(c, buf, t, s, p); | 
|  | *output++ = buf++; | 
|  | oc++; | 
|  | if (++sentinel >= 3) | 
|  | return; // non-convex polygon! | 
|  | } | 
|  | *output++ = p; | 
|  | oc++; | 
|  | } else { | 
|  | // both outside | 
|  | } | 
|  | } | 
|  | s = p; | 
|  | sd = pd; | 
|  | } | 
|  | // output list become the new input list | 
|  | if (oc<3) | 
|  | return; // less than 3 vertices left? we're done! | 
|  | ivl = ovl; | 
|  | ic = oc; | 
|  | outi = 1-outi; | 
|  | } | 
|  | cc >>= 1; | 
|  | plane++; | 
|  | } while (cc); | 
|  | } | 
|  |  | 
|  | // finally we can render our triangles... | 
|  | p0 = ivl[0]; | 
|  | p1 = ivl[1]; | 
|  | for (unsigned int i=2 ; i<ic ; i++) { | 
|  | p2 = ivl[i]; | 
|  | c->lerp.initTriangle(p0, p1, p2); | 
|  | if (cull_triangle(c, p0, p1, p2)) { | 
|  | p1 = p2; | 
|  | continue; // culled! | 
|  | } | 
|  | triangle(c, p0, p1, p2); | 
|  | p1 = p2; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned int clip_line(ogles_context_t* c, vertex_t* s, vertex_t* p) | 
|  | { | 
|  | const uint32_t all_cc = (s->flags | p->flags) & vertex_t::CLIP_ALL; | 
|  |  | 
|  | if (ggl_unlikely(all_cc & vertex_t::USER_CLIP_ALL)) | 
|  | { | 
|  | unsigned int plane = 0; | 
|  | uint32_t cc = (all_cc & vertex_t::USER_CLIP_ALL) >> 8; | 
|  | do { | 
|  | if (cc & 1) { | 
|  | const vec4_t& equation = c->clipPlanes.plane[plane].equation; | 
|  | const GLfixed sd = dot4(equation.v, s->eye.v); | 
|  | const GLfixed pd = dot4(equation.v, p->eye.v); | 
|  | if (sd >= 0) { | 
|  | if (pd >= 0) { | 
|  | // both inside | 
|  | } else { | 
|  | // s inside, p outside (exiting) | 
|  | const GLfixed t = clipDivide(sd, sd-pd); | 
|  | c->arrays.clipEye(c, p, t, p, s); | 
|  | } | 
|  | } else { | 
|  | if (pd >= 0) { | 
|  | // s outside (entering) | 
|  | if (pd) { | 
|  | const GLfixed t = clipDivide(pd, pd-sd); | 
|  | c->arrays.clipEye(c, s, t, s, p); | 
|  | } | 
|  | } else { | 
|  | // both outside | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | cc >>= 1; | 
|  | plane++; | 
|  | } while (cc); | 
|  | } | 
|  |  | 
|  | // frustum clip-planes | 
|  | if (all_cc & vertex_t::FRUSTUM_CLIP_ALL) | 
|  | { | 
|  | unsigned int plane = 0; | 
|  | uint32_t cc = all_cc & vertex_t::FRUSTUM_CLIP_ALL; | 
|  | do { | 
|  | if (cc & 1) { | 
|  | const GLfixed sd = frustumPlaneDist(plane, s->clip); | 
|  | const GLfixed pd = frustumPlaneDist(plane, p->clip); | 
|  | if (sd >= 0) { | 
|  | if (pd >= 0) { | 
|  | // both inside | 
|  | } else { | 
|  | // s inside, p outside (exiting) | 
|  | const GLfixed t = clipDivide(sd, sd-pd); | 
|  | c->arrays.clipVertex(c, p, t, p, s); | 
|  | } | 
|  | } else { | 
|  | if (pd >= 0) { | 
|  | // s outside (entering) | 
|  | if (pd) { | 
|  | const GLfixed t = clipDivide(pd, pd-sd); | 
|  | c->arrays.clipVertex(c, s, t, s, p); | 
|  | } | 
|  | } else { | 
|  | // both outside | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | cc >>= 1; | 
|  | plane++; | 
|  | } while (cc); | 
|  | } | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  |  | 
|  | }; // namespace android |