| /* | 
 |  * Copyright (C) 2017 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | //#define LOG_NDEBUG 0 | 
 | #undef LOG_TAG | 
 | #define LOG_TAG "BufferLayer" | 
 | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
 |  | 
 | #include <cmath> | 
 | #include <cstdlib> | 
 | #include <mutex> | 
 |  | 
 | #include <compositionengine/CompositionEngine.h> | 
 | #include <compositionengine/Display.h> | 
 | #include <compositionengine/Layer.h> | 
 | #include <compositionengine/LayerCreationArgs.h> | 
 | #include <compositionengine/OutputLayer.h> | 
 | #include <compositionengine/impl/LayerCompositionState.h> | 
 | #include <compositionengine/impl/OutputLayerCompositionState.h> | 
 | #include <cutils/compiler.h> | 
 | #include <cutils/native_handle.h> | 
 | #include <cutils/properties.h> | 
 | #include <gui/BufferItem.h> | 
 | #include <gui/BufferQueue.h> | 
 | #include <gui/LayerDebugInfo.h> | 
 | #include <gui/Surface.h> | 
 | #include <renderengine/RenderEngine.h> | 
 | #include <ui/DebugUtils.h> | 
 | #include <utils/Errors.h> | 
 | #include <utils/Log.h> | 
 | #include <utils/NativeHandle.h> | 
 | #include <utils/StopWatch.h> | 
 | #include <utils/Trace.h> | 
 |  | 
 | #include "BufferLayer.h" | 
 | #include "Colorizer.h" | 
 | #include "DisplayDevice.h" | 
 | #include "LayerRejecter.h" | 
 |  | 
 | #include "TimeStats/TimeStats.h" | 
 |  | 
 | namespace android { | 
 |  | 
 | BufferLayer::BufferLayer(const LayerCreationArgs& args) | 
 |       : Layer(args), | 
 |         mTextureName(args.flinger->getNewTexture()), | 
 |         mCompositionLayer{mFlinger->getCompositionEngine().createLayer( | 
 |                 compositionengine::LayerCreationArgs{this})} { | 
 |     ALOGV("Creating Layer %s", args.name.string()); | 
 |  | 
 |     mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied); | 
 |  | 
 |     mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow; | 
 |     mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp; | 
 | } | 
 |  | 
 | BufferLayer::~BufferLayer() { | 
 |     mFlinger->deleteTextureAsync(mTextureName); | 
 |     mFlinger->mTimeStats->onDestroy(getSequence()); | 
 | } | 
 |  | 
 | void BufferLayer::useSurfaceDamage() { | 
 |     if (mFlinger->mForceFullDamage) { | 
 |         surfaceDamageRegion = Region::INVALID_REGION; | 
 |     } else { | 
 |         surfaceDamageRegion = getDrawingSurfaceDamage(); | 
 |     } | 
 | } | 
 |  | 
 | void BufferLayer::useEmptyDamage() { | 
 |     surfaceDamageRegion.clear(); | 
 | } | 
 |  | 
 | bool BufferLayer::isOpaque(const Layer::State& s) const { | 
 |     // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the | 
 |     // layer's opaque flag. | 
 |     if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // if the layer has the opaque flag, then we're always opaque, | 
 |     // otherwise we use the current buffer's format. | 
 |     return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat()); | 
 | } | 
 |  | 
 | bool BufferLayer::isVisible() const { | 
 |     bool visible = !(isHiddenByPolicy()) && getAlpha() > 0.0f && | 
 |             (mActiveBuffer != nullptr || mSidebandStream != nullptr); | 
 |     mFlinger->mScheduler->setLayerVisibility(mSchedulerLayerHandle, visible); | 
 |  | 
 |     return visible; | 
 | } | 
 |  | 
 | bool BufferLayer::isFixedSize() const { | 
 |     return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; | 
 | } | 
 |  | 
 | bool BufferLayer::usesSourceCrop() const { | 
 |     return true; | 
 | } | 
 |  | 
 | static constexpr mat4 inverseOrientation(uint32_t transform) { | 
 |     const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); | 
 |     const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1); | 
 |     const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1); | 
 |     mat4 tr; | 
 |  | 
 |     if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
 |         tr = tr * rot90; | 
 |     } | 
 |     if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { | 
 |         tr = tr * flipH; | 
 |     } | 
 |     if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { | 
 |         tr = tr * flipV; | 
 |     } | 
 |     return inverse(tr); | 
 | } | 
 |  | 
 | bool BufferLayer::prepareClientLayer(const RenderArea& renderArea, const Region& clip, | 
 |                                      bool useIdentityTransform, Region& clearRegion, | 
 |                                      const bool supportProtectedContent, | 
 |                                      renderengine::LayerSettings& layer) { | 
 |     ATRACE_CALL(); | 
 |     Layer::prepareClientLayer(renderArea, clip, useIdentityTransform, clearRegion, | 
 |                               supportProtectedContent, layer); | 
 |     if (CC_UNLIKELY(mActiveBuffer == 0)) { | 
 |         // the texture has not been created yet, this Layer has | 
 |         // in fact never been drawn into. This happens frequently with | 
 |         // SurfaceView because the WindowManager can't know when the client | 
 |         // has drawn the first time. | 
 |  | 
 |         // If there is nothing under us, we paint the screen in black, otherwise | 
 |         // we just skip this update. | 
 |  | 
 |         // figure out if there is something below us | 
 |         Region under; | 
 |         bool finished = false; | 
 |         mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) { | 
 |             if (finished || layer == static_cast<BufferLayer const*>(this)) { | 
 |                 finished = true; | 
 |                 return; | 
 |             } | 
 |             under.orSelf(layer->visibleRegion); | 
 |         }); | 
 |         // if not everything below us is covered, we plug the holes! | 
 |         Region holes(clip.subtract(under)); | 
 |         if (!holes.isEmpty()) { | 
 |             clearRegion.orSelf(holes); | 
 |         } | 
 |         return false; | 
 |     } | 
 |     bool blackOutLayer = | 
 |             (isProtected() && !supportProtectedContent) || (isSecure() && !renderArea.isSecure()); | 
 |     const State& s(getDrawingState()); | 
 |     if (!blackOutLayer) { | 
 |         layer.source.buffer.buffer = mActiveBuffer; | 
 |         layer.source.buffer.isOpaque = isOpaque(s); | 
 |         layer.source.buffer.fence = mActiveBufferFence; | 
 |         layer.source.buffer.textureName = mTextureName; | 
 |         layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha(); | 
 |         layer.source.buffer.isY410BT2020 = isHdrY410(); | 
 |         // TODO: we could be more subtle with isFixedSize() | 
 |         const bool useFiltering = needsFiltering(renderArea.getDisplayDevice()) || | 
 |                 renderArea.needsFiltering() || isFixedSize(); | 
 |  | 
 |         // Query the texture matrix given our current filtering mode. | 
 |         float textureMatrix[16]; | 
 |         setFilteringEnabled(useFiltering); | 
 |         getDrawingTransformMatrix(textureMatrix); | 
 |  | 
 |         if (getTransformToDisplayInverse()) { | 
 |             /* | 
 |              * the code below applies the primary display's inverse transform to | 
 |              * the texture transform | 
 |              */ | 
 |             uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
 |             mat4 tr = inverseOrientation(transform); | 
 |  | 
 |             /** | 
 |              * TODO(b/36727915): This is basically a hack. | 
 |              * | 
 |              * Ensure that regardless of the parent transformation, | 
 |              * this buffer is always transformed from native display | 
 |              * orientation to display orientation. For example, in the case | 
 |              * of a camera where the buffer remains in native orientation, | 
 |              * we want the pixels to always be upright. | 
 |              */ | 
 |             sp<Layer> p = mDrawingParent.promote(); | 
 |             if (p != nullptr) { | 
 |                 const auto parentTransform = p->getTransform(); | 
 |                 tr = tr * inverseOrientation(parentTransform.getOrientation()); | 
 |             } | 
 |  | 
 |             // and finally apply it to the original texture matrix | 
 |             const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); | 
 |             memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); | 
 |         } | 
 |  | 
 |         const Rect win{getBounds()}; | 
 |         float bufferWidth = getBufferSize(s).getWidth(); | 
 |         float bufferHeight = getBufferSize(s).getHeight(); | 
 |  | 
 |         // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has | 
 |         // been set and there is no parent layer bounds. In that case, the scale is meaningless so | 
 |         // ignore them. | 
 |         if (!getBufferSize(s).isValid()) { | 
 |             bufferWidth = float(win.right) - float(win.left); | 
 |             bufferHeight = float(win.bottom) - float(win.top); | 
 |         } | 
 |  | 
 |         const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight; | 
 |         const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth; | 
 |         const float translateY = float(win.top) / bufferHeight; | 
 |         const float translateX = float(win.left) / bufferWidth; | 
 |  | 
 |         // Flip y-coordinates because GLConsumer expects OpenGL convention. | 
 |         mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) * | 
 |                 mat4::translate(vec4(-.5, -.5, 0, 1)) * | 
 |                 mat4::translate(vec4(translateX, translateY, 0, 1)) * | 
 |                 mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0)); | 
 |  | 
 |         layer.source.buffer.useTextureFiltering = useFiltering; | 
 |         layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr; | 
 |     } else { | 
 |         // If layer is blacked out, force alpha to 1 so that we draw a black color | 
 |         // layer. | 
 |         layer.source.buffer.buffer = nullptr; | 
 |         layer.alpha = 1.0; | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | bool BufferLayer::isHdrY410() const { | 
 |     // pixel format is HDR Y410 masquerading as RGBA_1010102 | 
 |     return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ && | 
 |             getDrawingApi() == NATIVE_WINDOW_API_MEDIA && | 
 |             mActiveBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102); | 
 | } | 
 |  | 
 | void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice, | 
 |                                   const ui::Transform& transform, const Rect& viewport, | 
 |                                   int32_t supportedPerFrameMetadata, | 
 |                                   const ui::Dataspace targetDataspace) { | 
 |     RETURN_IF_NO_HWC_LAYER(displayDevice); | 
 |  | 
 |     // Apply this display's projection's viewport to the visible region | 
 |     // before giving it to the HWC HAL. | 
 |     Region visible = transform.transform(visibleRegion.intersect(viewport)); | 
 |  | 
 |     const auto outputLayer = findOutputLayerForDisplay(displayDevice); | 
 |     LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc); | 
 |  | 
 |     auto& hwcLayer = (*outputLayer->getState().hwc).hwcLayer; | 
 |     auto error = hwcLayer->setVisibleRegion(visible); | 
 |     if (error != HWC2::Error::None) { | 
 |         ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         visible.dump(LOG_TAG); | 
 |     } | 
 |     outputLayer->editState().visibleRegion = visible; | 
 |  | 
 |     auto& layerCompositionState = getCompositionLayer()->editState().frontEnd; | 
 |  | 
 |     error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); | 
 |     if (error != HWC2::Error::None) { | 
 |         ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |         surfaceDamageRegion.dump(LOG_TAG); | 
 |     } | 
 |     layerCompositionState.surfaceDamage = surfaceDamageRegion; | 
 |  | 
 |     // Sideband layers | 
 |     if (layerCompositionState.sidebandStream.get()) { | 
 |         setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::SIDEBAND); | 
 |         ALOGV("[%s] Requesting Sideband composition", mName.string()); | 
 |         error = hwcLayer->setSidebandStream(layerCompositionState.sidebandStream->handle()); | 
 |         if (error != HWC2::Error::None) { | 
 |             ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(), | 
 |                   layerCompositionState.sidebandStream->handle(), to_string(error).c_str(), | 
 |                   static_cast<int32_t>(error)); | 
 |         } | 
 |         layerCompositionState.compositionType = Hwc2::IComposerClient::Composition::SIDEBAND; | 
 |         return; | 
 |     } | 
 |  | 
 |     // Device or Cursor layers | 
 |     if (mPotentialCursor) { | 
 |         ALOGV("[%s] Requesting Cursor composition", mName.string()); | 
 |         setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CURSOR); | 
 |     } else { | 
 |         ALOGV("[%s] Requesting Device composition", mName.string()); | 
 |         setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::DEVICE); | 
 |     } | 
 |  | 
 |     ui::Dataspace dataspace = isColorSpaceAgnostic() && targetDataspace != ui::Dataspace::UNKNOWN | 
 |             ? targetDataspace | 
 |             : mCurrentDataSpace; | 
 |     error = hwcLayer->setDataspace(dataspace); | 
 |     if (error != HWC2::Error::None) { | 
 |         ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), dataspace, | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     const HdrMetadata& metadata = getDrawingHdrMetadata(); | 
 |     error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata); | 
 |     if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) { | 
 |         ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(), | 
 |               to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |  | 
 |     error = hwcLayer->setColorTransform(getColorTransform()); | 
 |     if (error == HWC2::Error::Unsupported) { | 
 |         // If per layer color transform is not supported, we use GPU composition. | 
 |         setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CLIENT); | 
 |     } else if (error != HWC2::Error::None) { | 
 |         ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(), | 
 |                 to_string(error).c_str(), static_cast<int32_t>(error)); | 
 |     } | 
 |     layerCompositionState.dataspace = mCurrentDataSpace; | 
 |     layerCompositionState.colorTransform = getColorTransform(); | 
 |     layerCompositionState.hdrMetadata = metadata; | 
 |  | 
 |     setHwcLayerBuffer(displayDevice); | 
 | } | 
 |  | 
 | bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) { | 
 |     if (mBufferLatched) { | 
 |         Mutex::Autolock lock(mFrameEventHistoryMutex); | 
 |         mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); | 
 |     } | 
 |     mRefreshPending = false; | 
 |     return hasReadyFrame(); | 
 | } | 
 |  | 
 | bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId, | 
 |                                     const std::shared_ptr<FenceTime>& glDoneFence, | 
 |                                     const std::shared_ptr<FenceTime>& presentFence, | 
 |                                     const CompositorTiming& compositorTiming) { | 
 |     // mFrameLatencyNeeded is true when a new frame was latched for the | 
 |     // composition. | 
 |     if (!mFrameLatencyNeeded) return false; | 
 |  | 
 |     // Update mFrameEventHistory. | 
 |     { | 
 |         Mutex::Autolock lock(mFrameEventHistoryMutex); | 
 |         mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence, | 
 |                                               compositorTiming); | 
 |     } | 
 |  | 
 |     // Update mFrameTracker. | 
 |     nsecs_t desiredPresentTime = getDesiredPresentTime(); | 
 |     mFrameTracker.setDesiredPresentTime(desiredPresentTime); | 
 |  | 
 |     const int32_t layerID = getSequence(); | 
 |     mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime); | 
 |  | 
 |     std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime(); | 
 |     if (frameReadyFence->isValid()) { | 
 |         mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); | 
 |     } else { | 
 |         // There was no fence for this frame, so assume that it was ready | 
 |         // to be presented at the desired present time. | 
 |         mFrameTracker.setFrameReadyTime(desiredPresentTime); | 
 |     } | 
 |  | 
 |     if (presentFence->isValid()) { | 
 |         mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence); | 
 |         mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence)); | 
 |     } else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) { | 
 |         // The HWC doesn't support present fences, so use the refresh | 
 |         // timestamp instead. | 
 |         const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId); | 
 |         mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime); | 
 |         mFrameTracker.setActualPresentTime(actualPresentTime); | 
 |     } | 
 |  | 
 |     mFrameTracker.advanceFrame(); | 
 |     mFrameLatencyNeeded = false; | 
 |     return true; | 
 | } | 
 |  | 
 | bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) { | 
 |     ATRACE_CALL(); | 
 |  | 
 |     bool refreshRequired = latchSidebandStream(recomputeVisibleRegions); | 
 |  | 
 |     if (refreshRequired) { | 
 |         return refreshRequired; | 
 |     } | 
 |  | 
 |     if (!hasReadyFrame()) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // if we've already called updateTexImage() without going through | 
 |     // a composition step, we have to skip this layer at this point | 
 |     // because we cannot call updateTeximage() without a corresponding | 
 |     // compositionComplete() call. | 
 |     // we'll trigger an update in onPreComposition(). | 
 |     if (mRefreshPending) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // If the head buffer's acquire fence hasn't signaled yet, return and | 
 |     // try again later | 
 |     if (!fenceHasSignaled()) { | 
 |         ATRACE_NAME("!fenceHasSignaled()"); | 
 |         mFlinger->signalLayerUpdate(); | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Capture the old state of the layer for comparisons later | 
 |     const State& s(getDrawingState()); | 
 |     const bool oldOpacity = isOpaque(s); | 
 |     sp<GraphicBuffer> oldBuffer = mActiveBuffer; | 
 |  | 
 |     if (!allTransactionsSignaled()) { | 
 |         mFlinger->setTransactionFlags(eTraversalNeeded); | 
 |         return false; | 
 |     } | 
 |  | 
 |     status_t err = updateTexImage(recomputeVisibleRegions, latchTime); | 
 |     if (err != NO_ERROR) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     err = updateActiveBuffer(); | 
 |     if (err != NO_ERROR) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     mBufferLatched = true; | 
 |  | 
 |     err = updateFrameNumber(latchTime); | 
 |     if (err != NO_ERROR) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     mRefreshPending = true; | 
 |     mFrameLatencyNeeded = true; | 
 |     if (oldBuffer == nullptr) { | 
 |         // the first time we receive a buffer, we need to trigger a | 
 |         // geometry invalidation. | 
 |         recomputeVisibleRegions = true; | 
 |     } | 
 |  | 
 |     ui::Dataspace dataSpace = getDrawingDataSpace(); | 
 |     // translate legacy dataspaces to modern dataspaces | 
 |     switch (dataSpace) { | 
 |         case ui::Dataspace::SRGB: | 
 |             dataSpace = ui::Dataspace::V0_SRGB; | 
 |             break; | 
 |         case ui::Dataspace::SRGB_LINEAR: | 
 |             dataSpace = ui::Dataspace::V0_SRGB_LINEAR; | 
 |             break; | 
 |         case ui::Dataspace::JFIF: | 
 |             dataSpace = ui::Dataspace::V0_JFIF; | 
 |             break; | 
 |         case ui::Dataspace::BT601_625: | 
 |             dataSpace = ui::Dataspace::V0_BT601_625; | 
 |             break; | 
 |         case ui::Dataspace::BT601_525: | 
 |             dataSpace = ui::Dataspace::V0_BT601_525; | 
 |             break; | 
 |         case ui::Dataspace::BT709: | 
 |             dataSpace = ui::Dataspace::V0_BT709; | 
 |             break; | 
 |         default: | 
 |             break; | 
 |     } | 
 |     mCurrentDataSpace = dataSpace; | 
 |  | 
 |     Rect crop(getDrawingCrop()); | 
 |     const uint32_t transform(getDrawingTransform()); | 
 |     const uint32_t scalingMode(getDrawingScalingMode()); | 
 |     const bool transformToDisplayInverse(getTransformToDisplayInverse()); | 
 |     if ((crop != mCurrentCrop) || (transform != mCurrentTransform) || | 
 |         (scalingMode != mCurrentScalingMode) || | 
 |         (transformToDisplayInverse != mTransformToDisplayInverse)) { | 
 |         mCurrentCrop = crop; | 
 |         mCurrentTransform = transform; | 
 |         mCurrentScalingMode = scalingMode; | 
 |         mTransformToDisplayInverse = transformToDisplayInverse; | 
 |         recomputeVisibleRegions = true; | 
 |     } | 
 |  | 
 |     if (oldBuffer != nullptr) { | 
 |         uint32_t bufWidth = mActiveBuffer->getWidth(); | 
 |         uint32_t bufHeight = mActiveBuffer->getHeight(); | 
 |         if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) { | 
 |             recomputeVisibleRegions = true; | 
 |         } | 
 |     } | 
 |  | 
 |     if (oldOpacity != isOpaque(s)) { | 
 |         recomputeVisibleRegions = true; | 
 |     } | 
 |  | 
 |     // Remove any sync points corresponding to the buffer which was just | 
 |     // latched | 
 |     { | 
 |         Mutex::Autolock lock(mLocalSyncPointMutex); | 
 |         auto point = mLocalSyncPoints.begin(); | 
 |         while (point != mLocalSyncPoints.end()) { | 
 |             if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) { | 
 |                 // This sync point must have been added since we started | 
 |                 // latching. Don't drop it yet. | 
 |                 ++point; | 
 |                 continue; | 
 |             } | 
 |  | 
 |             if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { | 
 |                 point = mLocalSyncPoints.erase(point); | 
 |             } else { | 
 |                 ++point; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | // transaction | 
 | void BufferLayer::notifyAvailableFrames() { | 
 |     const auto headFrameNumber = getHeadFrameNumber(); | 
 |     const bool headFenceSignaled = fenceHasSignaled(); | 
 |     const bool presentTimeIsCurrent = framePresentTimeIsCurrent(); | 
 |     Mutex::Autolock lock(mLocalSyncPointMutex); | 
 |     for (auto& point : mLocalSyncPoints) { | 
 |         if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled && | 
 |             presentTimeIsCurrent) { | 
 |             point->setFrameAvailable(); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | bool BufferLayer::hasReadyFrame() const { | 
 |     return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh(); | 
 | } | 
 |  | 
 | uint32_t BufferLayer::getEffectiveScalingMode() const { | 
 |     if (mOverrideScalingMode >= 0) { | 
 |         return mOverrideScalingMode; | 
 |     } | 
 |  | 
 |     return mCurrentScalingMode; | 
 | } | 
 |  | 
 | bool BufferLayer::isProtected() const { | 
 |     const sp<GraphicBuffer>& buffer(mActiveBuffer); | 
 |     return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED); | 
 | } | 
 |  | 
 | bool BufferLayer::latchUnsignaledBuffers() { | 
 |     static bool propertyLoaded = false; | 
 |     static bool latch = false; | 
 |     static std::mutex mutex; | 
 |     std::lock_guard<std::mutex> lock(mutex); | 
 |     if (!propertyLoaded) { | 
 |         char value[PROPERTY_VALUE_MAX] = {}; | 
 |         property_get("debug.sf.latch_unsignaled", value, "0"); | 
 |         latch = atoi(value); | 
 |         propertyLoaded = true; | 
 |     } | 
 |     return latch; | 
 | } | 
 |  | 
 | // h/w composer set-up | 
 | bool BufferLayer::allTransactionsSignaled() { | 
 |     auto headFrameNumber = getHeadFrameNumber(); | 
 |     bool matchingFramesFound = false; | 
 |     bool allTransactionsApplied = true; | 
 |     Mutex::Autolock lock(mLocalSyncPointMutex); | 
 |  | 
 |     for (auto& point : mLocalSyncPoints) { | 
 |         if (point->getFrameNumber() > headFrameNumber) { | 
 |             break; | 
 |         } | 
 |         matchingFramesFound = true; | 
 |  | 
 |         if (!point->frameIsAvailable()) { | 
 |             // We haven't notified the remote layer that the frame for | 
 |             // this point is available yet. Notify it now, and then | 
 |             // abort this attempt to latch. | 
 |             point->setFrameAvailable(); | 
 |             allTransactionsApplied = false; | 
 |             break; | 
 |         } | 
 |  | 
 |         allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); | 
 |     } | 
 |     return !matchingFramesFound || allTransactionsApplied; | 
 | } | 
 |  | 
 | // As documented in libhardware header, formats in the range | 
 | // 0x100 - 0x1FF are specific to the HAL implementation, and | 
 | // are known to have no alpha channel | 
 | // TODO: move definition for device-specific range into | 
 | // hardware.h, instead of using hard-coded values here. | 
 | #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) | 
 |  | 
 | bool BufferLayer::getOpacityForFormat(uint32_t format) { | 
 |     if (HARDWARE_IS_DEVICE_FORMAT(format)) { | 
 |         return true; | 
 |     } | 
 |     switch (format) { | 
 |         case HAL_PIXEL_FORMAT_RGBA_8888: | 
 |         case HAL_PIXEL_FORMAT_BGRA_8888: | 
 |         case HAL_PIXEL_FORMAT_RGBA_FP16: | 
 |         case HAL_PIXEL_FORMAT_RGBA_1010102: | 
 |             return false; | 
 |     } | 
 |     // in all other case, we have no blending (also for unknown formats) | 
 |     return true; | 
 | } | 
 |  | 
 | bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const { | 
 |     // If we are not capturing based on the state of a known display device, we | 
 |     // only return mNeedsFiltering | 
 |     if (displayDevice == nullptr) { | 
 |         return mNeedsFiltering; | 
 |     } | 
 |  | 
 |     const auto outputLayer = findOutputLayerForDisplay(displayDevice); | 
 |     if (outputLayer == nullptr) { | 
 |         return mNeedsFiltering; | 
 |     } | 
 |  | 
 |     const auto& compositionState = outputLayer->getState(); | 
 |     const auto displayFrame = compositionState.displayFrame; | 
 |     const auto sourceCrop = compositionState.sourceCrop; | 
 |     return mNeedsFiltering || sourceCrop.getHeight() != displayFrame.getHeight() || | 
 |             sourceCrop.getWidth() != displayFrame.getWidth(); | 
 | } | 
 |  | 
 | uint64_t BufferLayer::getHeadFrameNumber() const { | 
 |     if (hasFrameUpdate()) { | 
 |         return getFrameNumber(); | 
 |     } else { | 
 |         return mCurrentFrameNumber; | 
 |     } | 
 | } | 
 |  | 
 | Rect BufferLayer::getBufferSize(const State& s) const { | 
 |     // If we have a sideband stream, or we are scaling the buffer then return the layer size since | 
 |     // we cannot determine the buffer size. | 
 |     if ((s.sidebandStream != nullptr) || | 
 |         (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { | 
 |         return Rect(getActiveWidth(s), getActiveHeight(s)); | 
 |     } | 
 |  | 
 |     if (mActiveBuffer == nullptr) { | 
 |         return Rect::INVALID_RECT; | 
 |     } | 
 |  | 
 |     uint32_t bufWidth = mActiveBuffer->getWidth(); | 
 |     uint32_t bufHeight = mActiveBuffer->getHeight(); | 
 |  | 
 |     // Undo any transformations on the buffer and return the result. | 
 |     if (mCurrentTransform & ui::Transform::ROT_90) { | 
 |         std::swap(bufWidth, bufHeight); | 
 |     } | 
 |  | 
 |     if (getTransformToDisplayInverse()) { | 
 |         uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
 |         if (invTransform & ui::Transform::ROT_90) { | 
 |             std::swap(bufWidth, bufHeight); | 
 |         } | 
 |     } | 
 |  | 
 |     return Rect(bufWidth, bufHeight); | 
 | } | 
 |  | 
 | std::shared_ptr<compositionengine::Layer> BufferLayer::getCompositionLayer() const { | 
 |     return mCompositionLayer; | 
 | } | 
 |  | 
 | FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const { | 
 |     const State& s(getDrawingState()); | 
 |  | 
 |     // If we have a sideband stream, or we are scaling the buffer then return the layer size since | 
 |     // we cannot determine the buffer size. | 
 |     if ((s.sidebandStream != nullptr) || | 
 |         (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) { | 
 |         return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s)); | 
 |     } | 
 |  | 
 |     if (mActiveBuffer == nullptr) { | 
 |         return parentBounds; | 
 |     } | 
 |  | 
 |     uint32_t bufWidth = mActiveBuffer->getWidth(); | 
 |     uint32_t bufHeight = mActiveBuffer->getHeight(); | 
 |  | 
 |     // Undo any transformations on the buffer and return the result. | 
 |     if (mCurrentTransform & ui::Transform::ROT_90) { | 
 |         std::swap(bufWidth, bufHeight); | 
 |     } | 
 |  | 
 |     if (getTransformToDisplayInverse()) { | 
 |         uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
 |         if (invTransform & ui::Transform::ROT_90) { | 
 |             std::swap(bufWidth, bufHeight); | 
 |         } | 
 |     } | 
 |  | 
 |     return FloatRect(0, 0, bufWidth, bufHeight); | 
 | } | 
 |  | 
 | } // namespace android | 
 |  | 
 | #if defined(__gl_h_) | 
 | #error "don't include gl/gl.h in this file" | 
 | #endif | 
 |  | 
 | #if defined(__gl2_h_) | 
 | #error "don't include gl2/gl2.h in this file" | 
 | #endif |