| /* | 
 |  * Copyright 2019 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <SurfaceFlingerProperties.sysprop.h> | 
 | #include <android-base/stringprintf.h> | 
 | #include <compositionengine/CompositionEngine.h> | 
 | #include <compositionengine/CompositionRefreshArgs.h> | 
 | #include <compositionengine/DisplayColorProfile.h> | 
 | #include <compositionengine/LayerFE.h> | 
 | #include <compositionengine/LayerFECompositionState.h> | 
 | #include <compositionengine/RenderSurface.h> | 
 | #include <compositionengine/impl/HwcAsyncWorker.h> | 
 | #include <compositionengine/impl/Output.h> | 
 | #include <compositionengine/impl/OutputCompositionState.h> | 
 | #include <compositionengine/impl/OutputLayer.h> | 
 | #include <compositionengine/impl/OutputLayerCompositionState.h> | 
 | #include <compositionengine/impl/planner/Planner.h> | 
 | #include <ftl/future.h> | 
 |  | 
 | #include <thread> | 
 |  | 
 | #include "renderengine/ExternalTexture.h" | 
 |  | 
 | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
 | #pragma clang diagnostic push | 
 | #pragma clang diagnostic ignored "-Wconversion" | 
 |  | 
 | #include <renderengine/DisplaySettings.h> | 
 | #include <renderengine/RenderEngine.h> | 
 |  | 
 | // TODO(b/129481165): remove the #pragma below and fix conversion issues | 
 | #pragma clang diagnostic pop // ignored "-Wconversion" | 
 |  | 
 | #include <android-base/properties.h> | 
 | #include <ui/DebugUtils.h> | 
 | #include <ui/HdrCapabilities.h> | 
 | #include <utils/Trace.h> | 
 |  | 
 | #include "TracedOrdinal.h" | 
 |  | 
 | using aidl::android::hardware::graphics::composer3::Composition; | 
 |  | 
 | namespace android::compositionengine { | 
 |  | 
 | Output::~Output() = default; | 
 |  | 
 | namespace impl { | 
 | using CompositionStrategyPredictionState = | 
 |         OutputCompositionState::CompositionStrategyPredictionState; | 
 | namespace { | 
 |  | 
 | template <typename T> | 
 | class Reversed { | 
 | public: | 
 |     explicit Reversed(const T& container) : mContainer(container) {} | 
 |     auto begin() { return mContainer.rbegin(); } | 
 |     auto end() { return mContainer.rend(); } | 
 |  | 
 | private: | 
 |     const T& mContainer; | 
 | }; | 
 |  | 
 | // Helper for enumerating over a container in reverse order | 
 | template <typename T> | 
 | Reversed<T> reversed(const T& c) { | 
 |     return Reversed<T>(c); | 
 | } | 
 |  | 
 | struct ScaleVector { | 
 |     float x; | 
 |     float y; | 
 | }; | 
 |  | 
 | // Returns a ScaleVector (x, y) such that from.scale(x, y) = to', | 
 | // where to' will have the same size as "to". In the case where "from" and "to" | 
 | // start at the origin to'=to. | 
 | ScaleVector getScale(const Rect& from, const Rect& to) { | 
 |     return {.x = static_cast<float>(to.width()) / from.width(), | 
 |             .y = static_cast<float>(to.height()) / from.height()}; | 
 | } | 
 |  | 
 | } // namespace | 
 |  | 
 | std::shared_ptr<Output> createOutput( | 
 |         const compositionengine::CompositionEngine& compositionEngine) { | 
 |     return createOutputTemplated<Output>(compositionEngine); | 
 | } | 
 |  | 
 | Output::~Output() = default; | 
 |  | 
 | bool Output::isValid() const { | 
 |     return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface && | 
 |             mRenderSurface->isValid(); | 
 | } | 
 |  | 
 | std::optional<DisplayId> Output::getDisplayId() const { | 
 |     return {}; | 
 | } | 
 |  | 
 | const std::string& Output::getName() const { | 
 |     return mName; | 
 | } | 
 |  | 
 | void Output::setName(const std::string& name) { | 
 |     mName = name; | 
 | } | 
 |  | 
 | void Output::setCompositionEnabled(bool enabled) { | 
 |     auto& outputState = editState(); | 
 |     if (outputState.isEnabled == enabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     outputState.isEnabled = enabled; | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setLayerCachingEnabled(bool enabled) { | 
 |     if (enabled == (mPlanner != nullptr)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (enabled) { | 
 |         mPlanner = std::make_unique<planner::Planner>(getCompositionEngine().getRenderEngine()); | 
 |         if (mRenderSurface) { | 
 |             mPlanner->setDisplaySize(mRenderSurface->getSize()); | 
 |         } | 
 |     } else { | 
 |         mPlanner.reset(); | 
 |     } | 
 |  | 
 |     for (auto* outputLayer : getOutputLayersOrderedByZ()) { | 
 |         if (!outputLayer) { | 
 |             continue; | 
 |         } | 
 |  | 
 |         outputLayer->editState().overrideInfo = {}; | 
 |     } | 
 | } | 
 |  | 
 | void Output::setLayerCachingTexturePoolEnabled(bool enabled) { | 
 |     if (mPlanner) { | 
 |         mPlanner->setTexturePoolEnabled(enabled); | 
 |     } | 
 | } | 
 |  | 
 | void Output::setProjection(ui::Rotation orientation, const Rect& layerStackSpaceRect, | 
 |                            const Rect& orientedDisplaySpaceRect) { | 
 |     auto& outputState = editState(); | 
 |  | 
 |     outputState.displaySpace.setOrientation(orientation); | 
 |     LOG_FATAL_IF(outputState.displaySpace.getBoundsAsRect() == Rect::INVALID_RECT, | 
 |                  "The display bounds are unknown."); | 
 |  | 
 |     // Compute orientedDisplaySpace | 
 |     ui::Size orientedSize = outputState.displaySpace.getBounds(); | 
 |     if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) { | 
 |         std::swap(orientedSize.width, orientedSize.height); | 
 |     } | 
 |     outputState.orientedDisplaySpace.setBounds(orientedSize); | 
 |     outputState.orientedDisplaySpace.setContent(orientedDisplaySpaceRect); | 
 |  | 
 |     // Compute displaySpace.content | 
 |     const uint32_t transformOrientationFlags = ui::Transform::toRotationFlags(orientation); | 
 |     ui::Transform rotation; | 
 |     if (transformOrientationFlags != ui::Transform::ROT_INVALID) { | 
 |         const auto displaySize = outputState.displaySpace.getBoundsAsRect(); | 
 |         rotation.set(transformOrientationFlags, displaySize.width(), displaySize.height()); | 
 |     } | 
 |     outputState.displaySpace.setContent(rotation.transform(orientedDisplaySpaceRect)); | 
 |  | 
 |     // Compute framebufferSpace | 
 |     outputState.framebufferSpace.setOrientation(orientation); | 
 |     LOG_FATAL_IF(outputState.framebufferSpace.getBoundsAsRect() == Rect::INVALID_RECT, | 
 |                  "The framebuffer bounds are unknown."); | 
 |     const auto scale = getScale(outputState.displaySpace.getBoundsAsRect(), | 
 |                                 outputState.framebufferSpace.getBoundsAsRect()); | 
 |     outputState.framebufferSpace.setContent( | 
 |             outputState.displaySpace.getContent().scale(scale.x, scale.y)); | 
 |  | 
 |     // Compute layerStackSpace | 
 |     outputState.layerStackSpace.setContent(layerStackSpaceRect); | 
 |     outputState.layerStackSpace.setBounds( | 
 |             ui::Size(layerStackSpaceRect.getWidth(), layerStackSpaceRect.getHeight())); | 
 |  | 
 |     outputState.transform = outputState.layerStackSpace.getTransform(outputState.displaySpace); | 
 |     outputState.needsFiltering = outputState.transform.needsBilinearFiltering(); | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setNextBrightness(float brightness) { | 
 |     editState().displayBrightness = brightness; | 
 | } | 
 |  | 
 | void Output::setDisplaySize(const ui::Size& size) { | 
 |     mRenderSurface->setDisplaySize(size); | 
 |  | 
 |     auto& state = editState(); | 
 |  | 
 |     // Update framebuffer space | 
 |     const ui::Size newBounds(size); | 
 |     state.framebufferSpace.setBounds(newBounds); | 
 |  | 
 |     // Update display space | 
 |     state.displaySpace.setBounds(newBounds); | 
 |     state.transform = state.layerStackSpace.getTransform(state.displaySpace); | 
 |  | 
 |     // Update oriented display space | 
 |     const auto orientation = state.displaySpace.getOrientation(); | 
 |     ui::Size orientedSize = size; | 
 |     if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) { | 
 |         std::swap(orientedSize.width, orientedSize.height); | 
 |     } | 
 |     const ui::Size newOrientedBounds(orientedSize); | 
 |     state.orientedDisplaySpace.setBounds(newOrientedBounds); | 
 |  | 
 |     if (mPlanner) { | 
 |         mPlanner->setDisplaySize(size); | 
 |     } | 
 |  | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | ui::Transform::RotationFlags Output::getTransformHint() const { | 
 |     return static_cast<ui::Transform::RotationFlags>(getState().transform.getOrientation()); | 
 | } | 
 |  | 
 | void Output::setLayerFilter(ui::LayerFilter filter) { | 
 |     editState().layerFilter = filter; | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) { | 
 |     auto& colorTransformMatrix = editState().colorTransformMatrix; | 
 |     if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) { | 
 |         return; | 
 |     } | 
 |  | 
 |     colorTransformMatrix = *args.colorTransformMatrix; | 
 |  | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setColorProfile(const ColorProfile& colorProfile) { | 
 |     ui::Dataspace targetDataspace = | 
 |             getDisplayColorProfile()->getTargetDataspace(colorProfile.mode, colorProfile.dataspace, | 
 |                                                          colorProfile.colorSpaceAgnosticDataspace); | 
 |  | 
 |     auto& outputState = editState(); | 
 |     if (outputState.colorMode == colorProfile.mode && | 
 |         outputState.dataspace == colorProfile.dataspace && | 
 |         outputState.renderIntent == colorProfile.renderIntent && | 
 |         outputState.targetDataspace == targetDataspace) { | 
 |         return; | 
 |     } | 
 |  | 
 |     outputState.colorMode = colorProfile.mode; | 
 |     outputState.dataspace = colorProfile.dataspace; | 
 |     outputState.renderIntent = colorProfile.renderIntent; | 
 |     outputState.targetDataspace = targetDataspace; | 
 |  | 
 |     mRenderSurface->setBufferDataspace(colorProfile.dataspace); | 
 |  | 
 |     ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)", | 
 |           decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode, | 
 |           decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent); | 
 |  | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::setDisplayBrightness(float sdrWhitePointNits, float displayBrightnessNits) { | 
 |     auto& outputState = editState(); | 
 |     if (outputState.sdrWhitePointNits == sdrWhitePointNits && | 
 |         outputState.displayBrightnessNits == displayBrightnessNits) { | 
 |         // Nothing changed | 
 |         return; | 
 |     } | 
 |     outputState.sdrWhitePointNits = sdrWhitePointNits; | 
 |     outputState.displayBrightnessNits = displayBrightnessNits; | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::dump(std::string& out) const { | 
 |     base::StringAppendF(&out, "Output \"%s\"", mName.c_str()); | 
 |     out.append("\n   Composition Output State:\n"); | 
 |  | 
 |     dumpBase(out); | 
 | } | 
 |  | 
 | void Output::dumpBase(std::string& out) const { | 
 |     dumpState(out); | 
 |     out += '\n'; | 
 |  | 
 |     if (mDisplayColorProfile) { | 
 |         mDisplayColorProfile->dump(out); | 
 |     } else { | 
 |         out.append("    No display color profile!\n"); | 
 |     } | 
 |  | 
 |     out += '\n'; | 
 |  | 
 |     if (mRenderSurface) { | 
 |         mRenderSurface->dump(out); | 
 |     } else { | 
 |         out.append("    No render surface!\n"); | 
 |     } | 
 |  | 
 |     base::StringAppendF(&out, "\n   %zu Layers\n", getOutputLayerCount()); | 
 |     for (const auto* outputLayer : getOutputLayersOrderedByZ()) { | 
 |         if (!outputLayer) { | 
 |             continue; | 
 |         } | 
 |         outputLayer->dump(out); | 
 |     } | 
 | } | 
 |  | 
 | void Output::dumpPlannerInfo(const Vector<String16>& args, std::string& out) const { | 
 |     if (!mPlanner) { | 
 |         out.append("Planner is disabled\n"); | 
 |         return; | 
 |     } | 
 |     base::StringAppendF(&out, "Planner info for display [%s]\n", mName.c_str()); | 
 |     mPlanner->dump(args, out); | 
 | } | 
 |  | 
 | compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const { | 
 |     return mDisplayColorProfile.get(); | 
 | } | 
 |  | 
 | void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) { | 
 |     mDisplayColorProfile = std::move(mode); | 
 | } | 
 |  | 
 | const Output::ReleasedLayers& Output::getReleasedLayersForTest() const { | 
 |     return mReleasedLayers; | 
 | } | 
 |  | 
 | void Output::setDisplayColorProfileForTest( | 
 |         std::unique_ptr<compositionengine::DisplayColorProfile> mode) { | 
 |     mDisplayColorProfile = std::move(mode); | 
 | } | 
 |  | 
 | compositionengine::RenderSurface* Output::getRenderSurface() const { | 
 |     return mRenderSurface.get(); | 
 | } | 
 |  | 
 | void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) { | 
 |     mRenderSurface = std::move(surface); | 
 |     const auto size = mRenderSurface->getSize(); | 
 |     editState().framebufferSpace.setBounds(size); | 
 |     if (mPlanner) { | 
 |         mPlanner->setDisplaySize(size); | 
 |     } | 
 |     dirtyEntireOutput(); | 
 | } | 
 |  | 
 | void Output::cacheClientCompositionRequests(uint32_t cacheSize) { | 
 |     if (cacheSize == 0) { | 
 |         mClientCompositionRequestCache.reset(); | 
 |     } else { | 
 |         mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize); | 
 |     } | 
 | }; | 
 |  | 
 | void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) { | 
 |     mRenderSurface = std::move(surface); | 
 | } | 
 |  | 
 | Region Output::getDirtyRegion() const { | 
 |     const auto& outputState = getState(); | 
 |     return outputState.dirtyRegion.intersect(outputState.layerStackSpace.getContent()); | 
 | } | 
 |  | 
 | bool Output::includesLayer(ui::LayerFilter filter) const { | 
 |     return getState().layerFilter.includes(filter); | 
 | } | 
 |  | 
 | bool Output::includesLayer(const sp<LayerFE>& layerFE) const { | 
 |     const auto* layerFEState = layerFE->getCompositionState(); | 
 |     return layerFEState && includesLayer(layerFEState->outputFilter); | 
 | } | 
 |  | 
 | std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer( | 
 |         const sp<LayerFE>& layerFE) const { | 
 |     return impl::createOutputLayer(*this, layerFE); | 
 | } | 
 |  | 
 | compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const { | 
 |     auto index = findCurrentOutputLayerForLayer(layerFE); | 
 |     return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr; | 
 | } | 
 |  | 
 | std::optional<size_t> Output::findCurrentOutputLayerForLayer( | 
 |         const sp<compositionengine::LayerFE>& layer) const { | 
 |     for (size_t i = 0; i < getOutputLayerCount(); i++) { | 
 |         auto outputLayer = getOutputLayerOrderedByZByIndex(i); | 
 |         if (outputLayer && &outputLayer->getLayerFE() == layer.get()) { | 
 |             return i; | 
 |         } | 
 |     } | 
 |     return std::nullopt; | 
 | } | 
 |  | 
 | void Output::setReleasedLayers(Output::ReleasedLayers&& layers) { | 
 |     mReleasedLayers = std::move(layers); | 
 | } | 
 |  | 
 | void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs, | 
 |                      LayerFESet& geomSnapshots) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     rebuildLayerStacks(refreshArgs, geomSnapshots); | 
 | } | 
 |  | 
 | void Output::present(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     updateColorProfile(refreshArgs); | 
 |     updateCompositionState(refreshArgs); | 
 |     planComposition(); | 
 |     writeCompositionState(refreshArgs); | 
 |     setColorTransform(refreshArgs); | 
 |     beginFrame(); | 
 |  | 
 |     GpuCompositionResult result; | 
 |     const bool predictCompositionStrategy = canPredictCompositionStrategy(refreshArgs); | 
 |     if (predictCompositionStrategy) { | 
 |         result = prepareFrameAsync(refreshArgs); | 
 |     } else { | 
 |         prepareFrame(); | 
 |     } | 
 |  | 
 |     devOptRepaintFlash(refreshArgs); | 
 |     finishFrame(refreshArgs, std::move(result)); | 
 |     postFramebuffer(); | 
 |     renderCachedSets(refreshArgs); | 
 | } | 
 |  | 
 | void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs, | 
 |                                 LayerFESet& layerFESet) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     auto& outputState = editState(); | 
 |  | 
 |     // Do nothing if this output is not enabled or there is no need to perform this update | 
 |     if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Process the layers to determine visibility and coverage | 
 |     compositionengine::Output::CoverageState coverage{layerFESet}; | 
 |     collectVisibleLayers(refreshArgs, coverage); | 
 |  | 
 |     // Compute the resulting coverage for this output, and store it for later | 
 |     const ui::Transform& tr = outputState.transform; | 
 |     Region undefinedRegion{outputState.displaySpace.getBoundsAsRect()}; | 
 |     undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers)); | 
 |  | 
 |     outputState.undefinedRegion = undefinedRegion; | 
 |     outputState.dirtyRegion.orSelf(coverage.dirtyRegion); | 
 | } | 
 |  | 
 | void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs, | 
 |                                   compositionengine::Output::CoverageState& coverage) { | 
 |     // Evaluate the layers from front to back to determine what is visible. This | 
 |     // also incrementally calculates the coverage information for each layer as | 
 |     // well as the entire output. | 
 |     for (auto layer : reversed(refreshArgs.layers)) { | 
 |         // Incrementally process the coverage for each layer | 
 |         ensureOutputLayerIfVisible(layer, coverage); | 
 |  | 
 |         // TODO(b/121291683): Stop early if the output is completely covered and | 
 |         // no more layers could even be visible underneath the ones on top. | 
 |     } | 
 |  | 
 |     setReleasedLayers(refreshArgs); | 
 |  | 
 |     finalizePendingOutputLayers(); | 
 | } | 
 |  | 
 | void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE, | 
 |                                         compositionengine::Output::CoverageState& coverage) { | 
 |     // Ensure we have a snapshot of the basic geometry layer state. Limit the | 
 |     // snapshots to once per frame for each candidate layer, as layers may | 
 |     // appear on multiple outputs. | 
 |     if (!coverage.latchedLayers.count(layerFE)) { | 
 |         coverage.latchedLayers.insert(layerFE); | 
 |     } | 
 |  | 
 |     // Only consider the layers on this output | 
 |     if (!includesLayer(layerFE)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Obtain a read-only pointer to the front-end layer state | 
 |     const auto* layerFEState = layerFE->getCompositionState(); | 
 |     if (CC_UNLIKELY(!layerFEState)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // handle hidden surfaces by setting the visible region to empty | 
 |     if (CC_UNLIKELY(!layerFEState->isVisible)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     /* | 
 |      * opaqueRegion: area of a surface that is fully opaque. | 
 |      */ | 
 |     Region opaqueRegion; | 
 |  | 
 |     /* | 
 |      * visibleRegion: area of a surface that is visible on screen and not fully | 
 |      * transparent. This is essentially the layer's footprint minus the opaque | 
 |      * regions above it. Areas covered by a translucent surface are considered | 
 |      * visible. | 
 |      */ | 
 |     Region visibleRegion; | 
 |  | 
 |     /* | 
 |      * coveredRegion: area of a surface that is covered by all visible regions | 
 |      * above it (which includes the translucent areas). | 
 |      */ | 
 |     Region coveredRegion; | 
 |  | 
 |     /* | 
 |      * transparentRegion: area of a surface that is hinted to be completely | 
 |      * transparent. | 
 |      * This is used to tell when the layer has no visible non-transparent | 
 |      * regions and can be removed from the layer list. It does not affect the | 
 |      * visibleRegion of this layer or any layers beneath it. The hint may not | 
 |      * be correct if apps don't respect the SurfaceView restrictions (which, | 
 |      * sadly, some don't). | 
 |      * | 
 |      * In addition, it is used on DISPLAY_DECORATION layers to specify the | 
 |      * blockingRegion, allowing the DPU to skip it to save power. Once we have | 
 |      * hardware that supports a blockingRegion on frames with AFBC, it may be | 
 |      * useful to use this for other layers, too, so long as we can prevent | 
 |      * regressions on b/7179570. | 
 |      */ | 
 |     Region transparentRegion; | 
 |  | 
 |     /* | 
 |      * shadowRegion: Region cast by the layer's shadow. | 
 |      */ | 
 |     Region shadowRegion; | 
 |  | 
 |     const ui::Transform& tr = layerFEState->geomLayerTransform; | 
 |  | 
 |     // Get the visible region | 
 |     // TODO(b/121291683): Is it worth creating helper methods on LayerFEState | 
 |     // for computations like this? | 
 |     const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds)); | 
 |     visibleRegion.set(visibleRect); | 
 |  | 
 |     if (layerFEState->shadowRadius > 0.0f) { | 
 |         // if the layer casts a shadow, offset the layers visible region and | 
 |         // calculate the shadow region. | 
 |         const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowRadius) * -1.0f); | 
 |         Rect visibleRectWithShadows(visibleRect); | 
 |         visibleRectWithShadows.inset(inset, inset, inset, inset); | 
 |         visibleRegion.set(visibleRectWithShadows); | 
 |         shadowRegion = visibleRegion.subtract(visibleRect); | 
 |     } | 
 |  | 
 |     if (visibleRegion.isEmpty()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Remove the transparent area from the visible region | 
 |     if (!layerFEState->isOpaque) { | 
 |         if (tr.preserveRects()) { | 
 |             // Clip the transparent region to geomLayerBounds first | 
 |             // The transparent region may be influenced by applications, for | 
 |             // instance, by overriding ViewGroup#gatherTransparentRegion with a | 
 |             // custom view. Once the layer stack -> display mapping is known, we | 
 |             // must guard against very wrong inputs to prevent underflow or | 
 |             // overflow errors. We do this here by constraining the transparent | 
 |             // region to be within the pre-transform layer bounds, since the | 
 |             // layer bounds are expected to play nicely with the full | 
 |             // transform. | 
 |             const Region clippedTransparentRegionHint = | 
 |                     layerFEState->transparentRegionHint.intersect( | 
 |                             Rect(layerFEState->geomLayerBounds)); | 
 |  | 
 |             if (clippedTransparentRegionHint.isEmpty()) { | 
 |                 if (!layerFEState->transparentRegionHint.isEmpty()) { | 
 |                     ALOGD("Layer: %s had an out of bounds transparent region", | 
 |                           layerFE->getDebugName()); | 
 |                     layerFEState->transparentRegionHint.dump("transparentRegionHint"); | 
 |                 } | 
 |                 transparentRegion.clear(); | 
 |             } else { | 
 |                 transparentRegion = tr.transform(clippedTransparentRegionHint); | 
 |             } | 
 |         } else { | 
 |             // transformation too complex, can't do the | 
 |             // transparent region optimization. | 
 |             transparentRegion.clear(); | 
 |         } | 
 |     } | 
 |  | 
 |     // compute the opaque region | 
 |     const auto layerOrientation = tr.getOrientation(); | 
 |     if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) { | 
 |         // If we one of the simple category of transforms (0/90/180/270 rotation | 
 |         // + any flip), then the opaque region is the layer's footprint. | 
 |         // Otherwise we don't try and compute the opaque region since there may | 
 |         // be errors at the edges, and we treat the entire layer as | 
 |         // translucent. | 
 |         opaqueRegion.set(visibleRect); | 
 |     } | 
 |  | 
 |     // Clip the covered region to the visible region | 
 |     coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion); | 
 |  | 
 |     // Update accumAboveCoveredLayers for next (lower) layer | 
 |     coverage.aboveCoveredLayers.orSelf(visibleRegion); | 
 |  | 
 |     // subtract the opaque region covered by the layers above us | 
 |     visibleRegion.subtractSelf(coverage.aboveOpaqueLayers); | 
 |  | 
 |     if (visibleRegion.isEmpty()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     // Get coverage information for the layer as previously displayed, | 
 |     // also taking over ownership from mOutputLayersorderedByZ. | 
 |     auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE); | 
 |     auto prevOutputLayer = | 
 |             prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr; | 
 |  | 
 |     //  Get coverage information for the layer as previously displayed | 
 |     // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h | 
 |     const Region kEmptyRegion; | 
 |     const Region& oldVisibleRegion = | 
 |             prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion; | 
 |     const Region& oldCoveredRegion = | 
 |             prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion; | 
 |  | 
 |     // compute this layer's dirty region | 
 |     Region dirty; | 
 |     if (layerFEState->contentDirty) { | 
 |         // we need to invalidate the whole region | 
 |         dirty = visibleRegion; | 
 |         // as well, as the old visible region | 
 |         dirty.orSelf(oldVisibleRegion); | 
 |     } else { | 
 |         /* compute the exposed region: | 
 |          *   the exposed region consists of two components: | 
 |          *   1) what's VISIBLE now and was COVERED before | 
 |          *   2) what's EXPOSED now less what was EXPOSED before | 
 |          * | 
 |          * note that (1) is conservative, we start with the whole visible region | 
 |          * but only keep what used to be covered by something -- which mean it | 
 |          * may have been exposed. | 
 |          * | 
 |          * (2) handles areas that were not covered by anything but got exposed | 
 |          * because of a resize. | 
 |          * | 
 |          */ | 
 |         const Region newExposed = visibleRegion - coveredRegion; | 
 |         const Region oldExposed = oldVisibleRegion - oldCoveredRegion; | 
 |         dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed); | 
 |     } | 
 |     dirty.subtractSelf(coverage.aboveOpaqueLayers); | 
 |  | 
 |     // accumulate to the screen dirty region | 
 |     coverage.dirtyRegion.orSelf(dirty); | 
 |  | 
 |     // Update accumAboveOpaqueLayers for next (lower) layer | 
 |     coverage.aboveOpaqueLayers.orSelf(opaqueRegion); | 
 |  | 
 |     // Compute the visible non-transparent region | 
 |     Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion); | 
 |  | 
 |     // Perform the final check to see if this layer is visible on this output | 
 |     // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below) | 
 |     const auto& outputState = getState(); | 
 |     Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion)); | 
 |     drawRegion.andSelf(outputState.displaySpace.getBoundsAsRect()); | 
 |     if (drawRegion.isEmpty()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion); | 
 |  | 
 |     // The layer is visible. Either reuse the existing outputLayer if we have | 
 |     // one, or create a new one if we do not. | 
 |     auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE); | 
 |  | 
 |     // Store the layer coverage information into the layer state as some of it | 
 |     // is useful later. | 
 |     auto& outputLayerState = result->editState(); | 
 |     outputLayerState.visibleRegion = visibleRegion; | 
 |     outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion; | 
 |     outputLayerState.coveredRegion = coveredRegion; | 
 |     outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform( | 
 |             visibleNonShadowRegion.intersect(outputState.layerStackSpace.getContent())); | 
 |     outputLayerState.shadowRegion = shadowRegion; | 
 |     outputLayerState.outputSpaceBlockingRegionHint = | 
 |             layerFEState->compositionType == Composition::DISPLAY_DECORATION | 
 |             ? outputState.transform.transform( | 
 |                       transparentRegion.intersect(outputState.layerStackSpace.getContent())) | 
 |             : Region(); | 
 | } | 
 |  | 
 | void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) { | 
 |     // The base class does nothing with this call. | 
 | } | 
 |  | 
 | void Output::updateCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     if (!getState().isEnabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition(); | 
 |     bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr; | 
 |  | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame, | 
 |                                       refreshArgs.devOptForceClientComposition || | 
 |                                               forceClientComposition, | 
 |                                       refreshArgs.internalDisplayRotationFlags); | 
 |  | 
 |         if (mLayerRequestingBackgroundBlur == layer) { | 
 |             forceClientComposition = false; | 
 |         } | 
 |     } | 
 |  | 
 |     updateCompositionStateForBorder(refreshArgs); | 
 | } | 
 |  | 
 | void Output::updateCompositionStateForBorder( | 
 |         const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     std::unordered_map<int32_t, const Region*> layerVisibleRegionMap; | 
 |     // Store a map of layerId to their computed visible region. | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         int layerId = (layer->getLayerFE()).getSequence(); | 
 |         layerVisibleRegionMap[layerId] = &((layer->getState()).visibleRegion); | 
 |     } | 
 |     OutputCompositionState& outputCompositionState = editState(); | 
 |     outputCompositionState.borderInfoList.clear(); | 
 |     bool clientComposeTopLayer = false; | 
 |     for (const auto& borderInfo : refreshArgs.borderInfoList) { | 
 |         renderengine::BorderRenderInfo info; | 
 |         for (const auto& id : borderInfo.layerIds) { | 
 |             info.combinedRegion.orSelf(*(layerVisibleRegionMap[id])); | 
 |         } | 
 |  | 
 |         if (!info.combinedRegion.isEmpty()) { | 
 |             info.width = borderInfo.width; | 
 |             info.color = borderInfo.color; | 
 |             outputCompositionState.borderInfoList.emplace_back(std::move(info)); | 
 |             clientComposeTopLayer = true; | 
 |         } | 
 |     } | 
 |  | 
 |     // In this situation we must client compose the top layer instead of using hwc | 
 |     // because we want to draw the border above all else. | 
 |     // This could potentially cause a bit of a performance regression if the top | 
 |     // layer would have been rendered using hwc originally. | 
 |     // TODO(b/227656283): Measure system's performance before enabling the border feature | 
 |     if (clientComposeTopLayer) { | 
 |         auto topLayer = getOutputLayerOrderedByZByIndex(getOutputLayerCount() - 1); | 
 |         (topLayer->editState()).forceClientComposition = true; | 
 |     } | 
 | } | 
 |  | 
 | void Output::planComposition() { | 
 |     if (!mPlanner || !getState().isEnabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     mPlanner->plan(getOutputLayersOrderedByZ()); | 
 | } | 
 |  | 
 | void Output::writeCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     if (!getState().isEnabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     editState().earliestPresentTime = refreshArgs.earliestPresentTime; | 
 |     editState().previousPresentFence = refreshArgs.previousPresentFence; | 
 |     editState().expectedPresentTime = refreshArgs.expectedPresentTime; | 
 |  | 
 |     compositionengine::OutputLayer* peekThroughLayer = nullptr; | 
 |     sp<GraphicBuffer> previousOverride = nullptr; | 
 |     bool includeGeometry = refreshArgs.updatingGeometryThisFrame; | 
 |     uint32_t z = 0; | 
 |     bool overrideZ = false; | 
 |     uint64_t outputLayerHash = 0; | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         if (layer == peekThroughLayer) { | 
 |             // No longer needed, although it should not show up again, so | 
 |             // resetting it is not truly needed either. | 
 |             peekThroughLayer = nullptr; | 
 |  | 
 |             // peekThroughLayer was already drawn ahead of its z order. | 
 |             continue; | 
 |         } | 
 |         bool skipLayer = false; | 
 |         const auto& overrideInfo = layer->getState().overrideInfo; | 
 |         if (overrideInfo.buffer != nullptr) { | 
 |             if (previousOverride && overrideInfo.buffer->getBuffer() == previousOverride) { | 
 |                 ALOGV("Skipping redundant buffer"); | 
 |                 skipLayer = true; | 
 |             } else { | 
 |                 // First layer with the override buffer. | 
 |                 if (overrideInfo.peekThroughLayer) { | 
 |                     peekThroughLayer = overrideInfo.peekThroughLayer; | 
 |  | 
 |                     // Draw peekThroughLayer first. | 
 |                     overrideZ = true; | 
 |                     includeGeometry = true; | 
 |                     constexpr bool isPeekingThrough = true; | 
 |                     peekThroughLayer->writeStateToHWC(includeGeometry, false, z++, overrideZ, | 
 |                                                       isPeekingThrough); | 
 |                     outputLayerHash ^= android::hashCombine( | 
 |                             reinterpret_cast<uint64_t>(&peekThroughLayer->getLayerFE()), | 
 |                             z, includeGeometry, overrideZ, isPeekingThrough, | 
 |                             peekThroughLayer->requiresClientComposition()); | 
 |                 } | 
 |  | 
 |                 previousOverride = overrideInfo.buffer->getBuffer(); | 
 |             } | 
 |         } | 
 |  | 
 |         constexpr bool isPeekingThrough = false; | 
 |         layer->writeStateToHWC(includeGeometry, skipLayer, z++, overrideZ, isPeekingThrough); | 
 |         if (!skipLayer) { | 
 |             outputLayerHash ^= android::hashCombine( | 
 |                     reinterpret_cast<uint64_t>(&layer->getLayerFE()), | 
 |                     z, includeGeometry, overrideZ, isPeekingThrough, | 
 |                     layer->requiresClientComposition()); | 
 |         } | 
 |     } | 
 |     editState().outputLayerHash = outputLayerHash; | 
 | } | 
 |  | 
 | compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const { | 
 |     compositionengine::OutputLayer* layerRequestingBgComposition = nullptr; | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         auto* compState = layer->getLayerFE().getCompositionState(); | 
 |  | 
 |         // If any layer has a sideband stream, we will disable blurs. In that case, we don't | 
 |         // want to force client composition because of the blur. | 
 |         if (compState->sidebandStream != nullptr) { | 
 |             return nullptr; | 
 |         } | 
 |         if (compState->isOpaque) { | 
 |             continue; | 
 |         } | 
 |         if (compState->backgroundBlurRadius > 0 || compState->blurRegions.size() > 0) { | 
 |             layerRequestingBgComposition = layer; | 
 |         } | 
 |     } | 
 |     return layerRequestingBgComposition; | 
 | } | 
 |  | 
 | void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     setColorProfile(pickColorProfile(refreshArgs)); | 
 | } | 
 |  | 
 | // Returns a data space that fits all visible layers.  The returned data space | 
 | // can only be one of | 
 | //  - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced) | 
 | //  - Dataspace::DISPLAY_P3 | 
 | //  - Dataspace::DISPLAY_BT2020 | 
 | // The returned HDR data space is one of | 
 | //  - Dataspace::UNKNOWN | 
 | //  - Dataspace::BT2020_HLG | 
 | //  - Dataspace::BT2020_PQ | 
 | ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace, | 
 |                                        bool* outIsHdrClientComposition) const { | 
 |     ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB; | 
 |     *outHdrDataSpace = ui::Dataspace::UNKNOWN; | 
 |  | 
 |     // An Output's layers may be stale when it is disabled. As a consequence, the layers returned by | 
 |     // getOutputLayersOrderedByZ may not be in a valid state and it is not safe to access their | 
 |     // properties. Return a default dataspace value in this case. | 
 |     if (!getState().isEnabled) { | 
 |         return ui::Dataspace::V0_SRGB; | 
 |     } | 
 |  | 
 |     for (const auto* layer : getOutputLayersOrderedByZ()) { | 
 |         switch (layer->getLayerFE().getCompositionState()->dataspace) { | 
 |             case ui::Dataspace::V0_SCRGB: | 
 |             case ui::Dataspace::V0_SCRGB_LINEAR: | 
 |             case ui::Dataspace::BT2020: | 
 |             case ui::Dataspace::BT2020_ITU: | 
 |             case ui::Dataspace::BT2020_LINEAR: | 
 |             case ui::Dataspace::DISPLAY_BT2020: | 
 |                 bestDataSpace = ui::Dataspace::DISPLAY_BT2020; | 
 |                 break; | 
 |             case ui::Dataspace::DISPLAY_P3: | 
 |                 bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
 |                 break; | 
 |             case ui::Dataspace::BT2020_PQ: | 
 |             case ui::Dataspace::BT2020_ITU_PQ: | 
 |                 bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
 |                 *outHdrDataSpace = ui::Dataspace::BT2020_PQ; | 
 |                 *outIsHdrClientComposition = | 
 |                         layer->getLayerFE().getCompositionState()->forceClientComposition; | 
 |                 break; | 
 |             case ui::Dataspace::BT2020_HLG: | 
 |             case ui::Dataspace::BT2020_ITU_HLG: | 
 |                 bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
 |                 // When there's mixed PQ content and HLG content, we set the HDR | 
 |                 // data space to be BT2020_PQ and convert HLG to PQ. | 
 |                 if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) { | 
 |                     *outHdrDataSpace = ui::Dataspace::BT2020_HLG; | 
 |                 } | 
 |                 break; | 
 |             default: | 
 |                 break; | 
 |         } | 
 |     } | 
 |  | 
 |     return bestDataSpace; | 
 | } | 
 |  | 
 | compositionengine::Output::ColorProfile Output::pickColorProfile( | 
 |         const compositionengine::CompositionRefreshArgs& refreshArgs) const { | 
 |     if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) { | 
 |         return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN, | 
 |                             ui::RenderIntent::COLORIMETRIC, | 
 |                             refreshArgs.colorSpaceAgnosticDataspace}; | 
 |     } | 
 |  | 
 |     ui::Dataspace hdrDataSpace; | 
 |     bool isHdrClientComposition = false; | 
 |     ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition); | 
 |  | 
 |     switch (refreshArgs.forceOutputColorMode) { | 
 |         case ui::ColorMode::SRGB: | 
 |             bestDataSpace = ui::Dataspace::V0_SRGB; | 
 |             break; | 
 |         case ui::ColorMode::DISPLAY_P3: | 
 |             bestDataSpace = ui::Dataspace::DISPLAY_P3; | 
 |             break; | 
 |         default: | 
 |             break; | 
 |     } | 
 |  | 
 |     // respect hdrDataSpace only when there is no legacy HDR support | 
 |     const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN && | 
 |             !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition; | 
 |     if (isHdr) { | 
 |         bestDataSpace = hdrDataSpace; | 
 |     } | 
 |  | 
 |     ui::RenderIntent intent; | 
 |     switch (refreshArgs.outputColorSetting) { | 
 |         case OutputColorSetting::kManaged: | 
 |         case OutputColorSetting::kUnmanaged: | 
 |             intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC | 
 |                            : ui::RenderIntent::COLORIMETRIC; | 
 |             break; | 
 |         case OutputColorSetting::kEnhanced: | 
 |             intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE; | 
 |             break; | 
 |         default: // vendor display color setting | 
 |             intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting); | 
 |             break; | 
 |     } | 
 |  | 
 |     ui::ColorMode outMode; | 
 |     ui::Dataspace outDataSpace; | 
 |     ui::RenderIntent outRenderIntent; | 
 |     mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode, | 
 |                                            &outRenderIntent); | 
 |  | 
 |     return ColorProfile{outMode, outDataSpace, outRenderIntent, | 
 |                         refreshArgs.colorSpaceAgnosticDataspace}; | 
 | } | 
 |  | 
 | void Output::beginFrame() { | 
 |     auto& outputState = editState(); | 
 |     const bool dirty = !getDirtyRegion().isEmpty(); | 
 |     const bool empty = getOutputLayerCount() == 0; | 
 |     const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers; | 
 |  | 
 |     // If nothing has changed (!dirty), don't recompose. | 
 |     // If something changed, but we don't currently have any visible layers, | 
 |     //   and didn't when we last did a composition, then skip it this time. | 
 |     // The second rule does two things: | 
 |     // - When all layers are removed from a display, we'll emit one black | 
 |     //   frame, then nothing more until we get new layers. | 
 |     // - When a display is created with a private layer stack, we won't | 
 |     //   emit any black frames until a layer is added to the layer stack. | 
 |     mMustRecompose = dirty && !(empty && wasEmpty); | 
 |  | 
 |     const char flagPrefix[] = {'-', '+'}; | 
 |     static_cast<void>(flagPrefix); | 
 |     ALOGV("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __func__, | 
 |           mMustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty], | 
 |           flagPrefix[empty], flagPrefix[wasEmpty]); | 
 |  | 
 |     mRenderSurface->beginFrame(mMustRecompose); | 
 |  | 
 |     if (mMustRecompose) { | 
 |         outputState.lastCompositionHadVisibleLayers = !empty; | 
 |     } | 
 | } | 
 |  | 
 | void Output::prepareFrame() { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     auto& outputState = editState(); | 
 |     if (!outputState.isEnabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     std::optional<android::HWComposer::DeviceRequestedChanges> changes; | 
 |     bool success = chooseCompositionStrategy(&changes); | 
 |     resetCompositionStrategy(); | 
 |     outputState.strategyPrediction = CompositionStrategyPredictionState::DISABLED; | 
 |     outputState.previousDeviceRequestedChanges = changes; | 
 |     outputState.previousDeviceRequestedSuccess = success; | 
 |     if (success) { | 
 |         applyCompositionStrategy(changes); | 
 |     } | 
 |     finishPrepareFrame(); | 
 | } | 
 |  | 
 | std::future<bool> Output::chooseCompositionStrategyAsync( | 
 |         std::optional<android::HWComposer::DeviceRequestedChanges>* changes) { | 
 |     return mHwComposerAsyncWorker->send( | 
 |             [&, changes]() { return chooseCompositionStrategy(changes); }); | 
 | } | 
 |  | 
 | GpuCompositionResult Output::prepareFrameAsync(const CompositionRefreshArgs& refreshArgs) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |     auto& state = editState(); | 
 |     const auto& previousChanges = state.previousDeviceRequestedChanges; | 
 |     std::optional<android::HWComposer::DeviceRequestedChanges> changes; | 
 |     resetCompositionStrategy(); | 
 |     auto hwcResult = chooseCompositionStrategyAsync(&changes); | 
 |     if (state.previousDeviceRequestedSuccess) { | 
 |         applyCompositionStrategy(previousChanges); | 
 |     } | 
 |     finishPrepareFrame(); | 
 |  | 
 |     base::unique_fd bufferFence; | 
 |     std::shared_ptr<renderengine::ExternalTexture> buffer; | 
 |     updateProtectedContentState(); | 
 |     const bool dequeueSucceeded = dequeueRenderBuffer(&bufferFence, &buffer); | 
 |     GpuCompositionResult compositionResult; | 
 |     if (dequeueSucceeded) { | 
 |         std::optional<base::unique_fd> optFd = | 
 |                 composeSurfaces(Region::INVALID_REGION, refreshArgs, buffer, bufferFence); | 
 |         if (optFd) { | 
 |             compositionResult.fence = std::move(*optFd); | 
 |         } | 
 |     } | 
 |  | 
 |     auto chooseCompositionSuccess = hwcResult.get(); | 
 |     const bool predictionSucceeded = dequeueSucceeded && changes == previousChanges; | 
 |     state.strategyPrediction = predictionSucceeded ? CompositionStrategyPredictionState::SUCCESS | 
 |                                                    : CompositionStrategyPredictionState::FAIL; | 
 |     if (!predictionSucceeded) { | 
 |         ATRACE_NAME("CompositionStrategyPredictionMiss"); | 
 |         resetCompositionStrategy(); | 
 |         if (chooseCompositionSuccess) { | 
 |             applyCompositionStrategy(changes); | 
 |         } | 
 |         finishPrepareFrame(); | 
 |         // Track the dequeued buffer to reuse so we don't need to dequeue another one. | 
 |         compositionResult.buffer = buffer; | 
 |     } else { | 
 |         ATRACE_NAME("CompositionStrategyPredictionHit"); | 
 |     } | 
 |     state.previousDeviceRequestedChanges = std::move(changes); | 
 |     state.previousDeviceRequestedSuccess = chooseCompositionSuccess; | 
 |     return compositionResult; | 
 | } | 
 |  | 
 | void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) { | 
 |     if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (getState().isEnabled) { | 
 |         if (const auto dirtyRegion = getDirtyRegion(); !dirtyRegion.isEmpty()) { | 
 |             base::unique_fd bufferFence; | 
 |             std::shared_ptr<renderengine::ExternalTexture> buffer; | 
 |             updateProtectedContentState(); | 
 |             dequeueRenderBuffer(&bufferFence, &buffer); | 
 |             static_cast<void>(composeSurfaces(dirtyRegion, refreshArgs, buffer, bufferFence)); | 
 |             mRenderSurface->queueBuffer(base::unique_fd()); | 
 |         } | 
 |     } | 
 |  | 
 |     postFramebuffer(); | 
 |  | 
 |     std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay); | 
 |  | 
 |     prepareFrame(); | 
 | } | 
 |  | 
 | void Output::finishFrame(const CompositionRefreshArgs& refreshArgs, GpuCompositionResult&& result) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |     const auto& outputState = getState(); | 
 |     if (!outputState.isEnabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     std::optional<base::unique_fd> optReadyFence; | 
 |     std::shared_ptr<renderengine::ExternalTexture> buffer; | 
 |     base::unique_fd bufferFence; | 
 |     if (outputState.strategyPrediction == CompositionStrategyPredictionState::SUCCESS) { | 
 |         optReadyFence = std::move(result.fence); | 
 |     } else { | 
 |         if (result.bufferAvailable()) { | 
 |             buffer = std::move(result.buffer); | 
 |             bufferFence = std::move(result.fence); | 
 |         } else { | 
 |             updateProtectedContentState(); | 
 |             if (!dequeueRenderBuffer(&bufferFence, &buffer)) { | 
 |                 return; | 
 |             } | 
 |         } | 
 |         // Repaint the framebuffer (if needed), getting the optional fence for when | 
 |         // the composition completes. | 
 |         optReadyFence = composeSurfaces(Region::INVALID_REGION, refreshArgs, buffer, bufferFence); | 
 |     } | 
 |     if (!optReadyFence) { | 
 |         return; | 
 |     } | 
 |  | 
 |     if (isPowerHintSessionEnabled()) { | 
 |         // get fence end time to know when gpu is complete in display | 
 |         setHintSessionGpuFence( | 
 |                 std::make_unique<FenceTime>(sp<Fence>::make(dup(optReadyFence->get())))); | 
 |     } | 
 |     // swap buffers (presentation) | 
 |     mRenderSurface->queueBuffer(std::move(*optReadyFence)); | 
 | } | 
 |  | 
 | void Output::updateProtectedContentState() { | 
 |     const auto& outputState = getState(); | 
 |     auto& renderEngine = getCompositionEngine().getRenderEngine(); | 
 |     const bool supportsProtectedContent = renderEngine.supportsProtectedContent(); | 
 |  | 
 |     // If we the display is secure, protected content support is enabled, and at | 
 |     // least one layer has protected content, we need to use a secure back | 
 |     // buffer. | 
 |     if (outputState.isSecure && supportsProtectedContent) { | 
 |         auto layers = getOutputLayersOrderedByZ(); | 
 |         bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) { | 
 |             return layer->getLayerFE().getCompositionState()->hasProtectedContent; | 
 |         }); | 
 |         if (needsProtected != mRenderSurface->isProtected()) { | 
 |             mRenderSurface->setProtected(needsProtected); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | bool Output::dequeueRenderBuffer(base::unique_fd* bufferFence, | 
 |                                  std::shared_ptr<renderengine::ExternalTexture>* tex) { | 
 |     const auto& outputState = getState(); | 
 |  | 
 |     // If we aren't doing client composition on this output, but do have a | 
 |     // flipClientTarget request for this frame on this output, we still need to | 
 |     // dequeue a buffer. | 
 |     if (outputState.usesClientComposition || outputState.flipClientTarget) { | 
 |         *tex = mRenderSurface->dequeueBuffer(bufferFence); | 
 |         if (*tex == nullptr) { | 
 |             ALOGW("Dequeuing buffer for display [%s] failed, bailing out of " | 
 |                   "client composition for this frame", | 
 |                   mName.c_str()); | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | std::optional<base::unique_fd> Output::composeSurfaces( | 
 |         const Region& debugRegion, const compositionengine::CompositionRefreshArgs& refreshArgs, | 
 |         std::shared_ptr<renderengine::ExternalTexture> tex, base::unique_fd& fd) { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     const auto& outputState = getState(); | 
 |     const TracedOrdinal<bool> hasClientComposition = {"hasClientComposition", | 
 |                                                       outputState.usesClientComposition}; | 
 |     if (!hasClientComposition) { | 
 |         setExpensiveRenderingExpected(false); | 
 |         return base::unique_fd(); | 
 |     } | 
 |  | 
 |     if (tex == nullptr) { | 
 |         ALOGW("Buffer not valid for display [%s], bailing out of " | 
 |               "client composition for this frame", | 
 |               mName.c_str()); | 
 |         return {}; | 
 |     } | 
 |  | 
 |     ALOGV("hasClientComposition"); | 
 |  | 
 |     renderengine::DisplaySettings clientCompositionDisplay = | 
 |             generateClientCompositionDisplaySettings(); | 
 |  | 
 |     // Generate the client composition requests for the layers on this output. | 
 |     auto& renderEngine = getCompositionEngine().getRenderEngine(); | 
 |     const bool supportsProtectedContent = renderEngine.supportsProtectedContent(); | 
 |     std::vector<LayerFE*> clientCompositionLayersFE; | 
 |     std::vector<LayerFE::LayerSettings> clientCompositionLayers = | 
 |             generateClientCompositionRequests(supportsProtectedContent, | 
 |                                               clientCompositionDisplay.outputDataspace, | 
 |                                               clientCompositionLayersFE); | 
 |     appendRegionFlashRequests(debugRegion, clientCompositionLayers); | 
 |  | 
 |     OutputCompositionState& outputCompositionState = editState(); | 
 |     // Check if the client composition requests were rendered into the provided graphic buffer. If | 
 |     // so, we can reuse the buffer and avoid client composition. | 
 |     if (mClientCompositionRequestCache) { | 
 |         if (mClientCompositionRequestCache->exists(tex->getBuffer()->getId(), | 
 |                                                    clientCompositionDisplay, | 
 |                                                    clientCompositionLayers)) { | 
 |             ATRACE_NAME("ClientCompositionCacheHit"); | 
 |             outputCompositionState.reusedClientComposition = true; | 
 |             setExpensiveRenderingExpected(false); | 
 |             // b/239944175 pass the fence associated with the buffer. | 
 |             return base::unique_fd(std::move(fd)); | 
 |         } | 
 |         ATRACE_NAME("ClientCompositionCacheMiss"); | 
 |         mClientCompositionRequestCache->add(tex->getBuffer()->getId(), clientCompositionDisplay, | 
 |                                             clientCompositionLayers); | 
 |     } | 
 |  | 
 |     // We boost GPU frequency here because there will be color spaces conversion | 
 |     // or complex GPU shaders and it's expensive. We boost the GPU frequency so that | 
 |     // GPU composition can finish in time. We must reset GPU frequency afterwards, | 
 |     // because high frequency consumes extra battery. | 
 |     const bool expensiveBlurs = | 
 |             refreshArgs.blursAreExpensive && mLayerRequestingBackgroundBlur != nullptr; | 
 |     const bool expensiveRenderingExpected = expensiveBlurs || | 
 |             std::any_of(clientCompositionLayers.begin(), clientCompositionLayers.end(), | 
 |                         [outputDataspace = | 
 |                                  clientCompositionDisplay.outputDataspace](const auto& layer) { | 
 |                             return layer.sourceDataspace != outputDataspace; | 
 |                         }); | 
 |     if (expensiveRenderingExpected) { | 
 |         setExpensiveRenderingExpected(true); | 
 |     } | 
 |  | 
 |     std::vector<renderengine::LayerSettings> clientRenderEngineLayers; | 
 |     clientRenderEngineLayers.reserve(clientCompositionLayers.size()); | 
 |     std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(), | 
 |                    std::back_inserter(clientRenderEngineLayers), | 
 |                    [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings { | 
 |                        return settings; | 
 |                    }); | 
 |  | 
 |     const nsecs_t renderEngineStart = systemTime(); | 
 |     // Only use the framebuffer cache when rendering to an internal display | 
 |     // TODO(b/173560331): This is only to help mitigate memory leaks from virtual displays because | 
 |     // right now we don't have a concrete eviction policy for output buffers: GLESRenderEngine | 
 |     // bounds its framebuffer cache but Skia RenderEngine has no current policy. The best fix is | 
 |     // probably to encapsulate the output buffer into a structure that dispatches resource cleanup | 
 |     // over to RenderEngine, in which case this flag can be removed from the drawLayers interface. | 
 |     const bool useFramebufferCache = outputState.layerFilter.toInternalDisplay; | 
 |  | 
 |     auto fenceResult = renderEngine | 
 |                                .drawLayers(clientCompositionDisplay, clientRenderEngineLayers, tex, | 
 |                                            useFramebufferCache, std::move(fd)) | 
 |                                .get(); | 
 |  | 
 |     if (mClientCompositionRequestCache && fenceStatus(fenceResult) != NO_ERROR) { | 
 |         // If rendering was not successful, remove the request from the cache. | 
 |         mClientCompositionRequestCache->remove(tex->getBuffer()->getId()); | 
 |     } | 
 |  | 
 |     const auto fence = std::move(fenceResult).value_or(Fence::NO_FENCE); | 
 |  | 
 |     if (auto timeStats = getCompositionEngine().getTimeStats()) { | 
 |         if (fence->isValid()) { | 
 |             timeStats->recordRenderEngineDuration(renderEngineStart, | 
 |                                                   std::make_shared<FenceTime>(fence)); | 
 |         } else { | 
 |             timeStats->recordRenderEngineDuration(renderEngineStart, systemTime()); | 
 |         } | 
 |     } | 
 |  | 
 |     for (auto* clientComposedLayer : clientCompositionLayersFE) { | 
 |         clientComposedLayer->setWasClientComposed(fence); | 
 |     } | 
 |  | 
 |     return base::unique_fd(fence->dup()); | 
 | } | 
 |  | 
 | renderengine::DisplaySettings Output::generateClientCompositionDisplaySettings() const { | 
 |     const auto& outputState = getState(); | 
 |  | 
 |     renderengine::DisplaySettings clientCompositionDisplay; | 
 |     clientCompositionDisplay.physicalDisplay = outputState.framebufferSpace.getContent(); | 
 |     clientCompositionDisplay.clip = outputState.layerStackSpace.getContent(); | 
 |     clientCompositionDisplay.orientation = | 
 |             ui::Transform::toRotationFlags(outputState.displaySpace.getOrientation()); | 
 |     clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut() | 
 |             ? outputState.dataspace | 
 |             : ui::Dataspace::UNKNOWN; | 
 |  | 
 |     // If we have a valid current display brightness use that, otherwise fall back to the | 
 |     // display's max desired | 
 |     clientCompositionDisplay.currentLuminanceNits = outputState.displayBrightnessNits > 0.f | 
 |             ? outputState.displayBrightnessNits | 
 |             : mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance(); | 
 |     clientCompositionDisplay.maxLuminance = | 
 |             mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance(); | 
 |     clientCompositionDisplay.targetLuminanceNits = | 
 |             outputState.clientTargetBrightness * outputState.displayBrightnessNits; | 
 |     clientCompositionDisplay.dimmingStage = outputState.clientTargetDimmingStage; | 
 |     clientCompositionDisplay.renderIntent = | 
 |             static_cast<aidl::android::hardware::graphics::composer3::RenderIntent>( | 
 |                     outputState.renderIntent); | 
 |  | 
 |     // Compute the global color transform matrix. | 
 |     clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix; | 
 |     for (auto& info : outputState.borderInfoList) { | 
 |         renderengine::BorderRenderInfo borderInfo; | 
 |         borderInfo.width = info.width; | 
 |         borderInfo.color = info.color; | 
 |         borderInfo.combinedRegion = info.combinedRegion; | 
 |         clientCompositionDisplay.borderInfoList.emplace_back(std::move(borderInfo)); | 
 |     } | 
 |     clientCompositionDisplay.deviceHandlesColorTransform = | 
 |             outputState.usesDeviceComposition || getSkipColorTransform(); | 
 |     return clientCompositionDisplay; | 
 | } | 
 |  | 
 | std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests( | 
 |       bool supportsProtectedContent, ui::Dataspace outputDataspace, std::vector<LayerFE*>& outLayerFEs) { | 
 |     std::vector<LayerFE::LayerSettings> clientCompositionLayers; | 
 |     ALOGV("Rendering client layers"); | 
 |  | 
 |     const auto& outputState = getState(); | 
 |     const Region viewportRegion(outputState.layerStackSpace.getContent()); | 
 |     bool firstLayer = true; | 
 |  | 
 |     bool disableBlurs = false; | 
 |     uint64_t previousOverrideBufferId = 0; | 
 |  | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         const auto& layerState = layer->getState(); | 
 |         const auto* layerFEState = layer->getLayerFE().getCompositionState(); | 
 |         auto& layerFE = layer->getLayerFE(); | 
 |         layerFE.setWasClientComposed(nullptr); | 
 |  | 
 |         const Region clip(viewportRegion.intersect(layerState.visibleRegion)); | 
 |         ALOGV("Layer: %s", layerFE.getDebugName()); | 
 |         if (clip.isEmpty()) { | 
 |             ALOGV("  Skipping for empty clip"); | 
 |             firstLayer = false; | 
 |             continue; | 
 |         } | 
 |  | 
 |         disableBlurs |= layerFEState->sidebandStream != nullptr; | 
 |  | 
 |         const bool clientComposition = layer->requiresClientComposition(); | 
 |  | 
 |         // We clear the client target for non-client composed layers if | 
 |         // requested by the HWC. We skip this if the layer is not an opaque | 
 |         // rectangle, as by definition the layer must blend with whatever is | 
 |         // underneath. We also skip the first layer as the buffer target is | 
 |         // guaranteed to start out cleared. | 
 |         const bool clearClientComposition = | 
 |                 layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer; | 
 |  | 
 |         ALOGV("  Composition type: client %d clear %d", clientComposition, clearClientComposition); | 
 |  | 
 |         // If the layer casts a shadow but the content casting the shadow is occluded, skip | 
 |         // composing the non-shadow content and only draw the shadows. | 
 |         const bool realContentIsVisible = clientComposition && | 
 |                 !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty(); | 
 |  | 
 |         if (clientComposition || clearClientComposition) { | 
 |             if (auto overrideSettings = layer->getOverrideCompositionSettings()) { | 
 |                 if (overrideSettings->bufferId != previousOverrideBufferId) { | 
 |                     previousOverrideBufferId = overrideSettings->bufferId; | 
 |                     clientCompositionLayers.push_back(std::move(*overrideSettings)); | 
 |                     ALOGV("Replacing [%s] with override in RE", layer->getLayerFE().getDebugName()); | 
 |                 } else { | 
 |                     ALOGV("Skipping redundant override buffer for [%s] in RE", | 
 |                           layer->getLayerFE().getDebugName()); | 
 |                 } | 
 |             } else { | 
 |                 LayerFE::ClientCompositionTargetSettings::BlurSetting blurSetting = disableBlurs | 
 |                         ? LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled | 
 |                         : (layer->getState().overrideInfo.disableBackgroundBlur | 
 |                                    ? LayerFE::ClientCompositionTargetSettings::BlurSetting:: | 
 |                                              BlurRegionsOnly | 
 |                                    : LayerFE::ClientCompositionTargetSettings::BlurSetting:: | 
 |                                              Enabled); | 
 |                 compositionengine::LayerFE::ClientCompositionTargetSettings | 
 |                         targetSettings{.clip = clip, | 
 |                                        .needsFiltering = layerNeedsFiltering(layer) || | 
 |                                                outputState.needsFiltering, | 
 |                                        .isSecure = outputState.isSecure, | 
 |                                        .supportsProtectedContent = supportsProtectedContent, | 
 |                                        .viewport = outputState.layerStackSpace.getContent(), | 
 |                                        .dataspace = outputDataspace, | 
 |                                        .realContentIsVisible = realContentIsVisible, | 
 |                                        .clearContent = !clientComposition, | 
 |                                        .blurSetting = blurSetting, | 
 |                                        .whitePointNits = layerState.whitePointNits, | 
 |                                        .treat170mAsSrgb = outputState.treat170mAsSrgb}; | 
 |                 if (auto clientCompositionSettings = | 
 |                             layerFE.prepareClientComposition(targetSettings)) { | 
 |                     clientCompositionLayers.push_back(std::move(*clientCompositionSettings)); | 
 |                     if (realContentIsVisible) { | 
 |                         layer->editState().clientCompositionTimestamp = systemTime(); | 
 |                     } | 
 |                 } | 
 |             } | 
 |  | 
 |             if (clientComposition) { | 
 |                 outLayerFEs.push_back(&layerFE); | 
 |             } | 
 |         } | 
 |  | 
 |         firstLayer = false; | 
 |     } | 
 |  | 
 |     return clientCompositionLayers; | 
 | } | 
 |  | 
 | bool Output::layerNeedsFiltering(const compositionengine::OutputLayer* layer) const { | 
 |     return layer->needsFiltering(); | 
 | } | 
 |  | 
 | void Output::appendRegionFlashRequests( | 
 |         const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) { | 
 |     if (flashRegion.isEmpty()) { | 
 |         return; | 
 |     } | 
 |  | 
 |     LayerFE::LayerSettings layerSettings; | 
 |     layerSettings.source.buffer.buffer = nullptr; | 
 |     layerSettings.source.solidColor = half3(1.0, 0.0, 1.0); | 
 |     layerSettings.alpha = half(1.0); | 
 |  | 
 |     for (const auto& rect : flashRegion) { | 
 |         layerSettings.geometry.boundaries = rect.toFloatRect(); | 
 |         clientCompositionLayers.push_back(layerSettings); | 
 |     } | 
 | } | 
 |  | 
 | void Output::setExpensiveRenderingExpected(bool) { | 
 |     // The base class does nothing with this call. | 
 | } | 
 |  | 
 | void Output::setHintSessionGpuFence(std::unique_ptr<FenceTime>&&) { | 
 |     // The base class does nothing with this call. | 
 | } | 
 |  | 
 | bool Output::isPowerHintSessionEnabled() { | 
 |     return false; | 
 | } | 
 |  | 
 | void Output::postFramebuffer() { | 
 |     ATRACE_CALL(); | 
 |     ALOGV(__FUNCTION__); | 
 |  | 
 |     if (!getState().isEnabled) { | 
 |         return; | 
 |     } | 
 |  | 
 |     auto& outputState = editState(); | 
 |     outputState.dirtyRegion.clear(); | 
 |  | 
 |     auto frame = presentAndGetFrameFences(); | 
 |  | 
 |     mRenderSurface->onPresentDisplayCompleted(); | 
 |  | 
 |     for (auto* layer : getOutputLayersOrderedByZ()) { | 
 |         // The layer buffer from the previous frame (if any) is released | 
 |         // by HWC only when the release fence from this frame (if any) is | 
 |         // signaled.  Always get the release fence from HWC first. | 
 |         sp<Fence> releaseFence = Fence::NO_FENCE; | 
 |  | 
 |         if (auto hwcLayer = layer->getHwcLayer()) { | 
 |             if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) { | 
 |                 releaseFence = f->second; | 
 |             } | 
 |         } | 
 |  | 
 |         // If the layer was client composited in the previous frame, we | 
 |         // need to merge with the previous client target acquire fence. | 
 |         // Since we do not track that, always merge with the current | 
 |         // client target acquire fence when it is available, even though | 
 |         // this is suboptimal. | 
 |         // TODO(b/121291683): Track previous frame client target acquire fence. | 
 |         if (outputState.usesClientComposition) { | 
 |             releaseFence = | 
 |                     Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence); | 
 |         } | 
 |         layer->getLayerFE().onLayerDisplayed( | 
 |                 ftl::yield<FenceResult>(std::move(releaseFence)).share()); | 
 |     } | 
 |  | 
 |     // We've got a list of layers needing fences, that are disjoint with | 
 |     // OutputLayersOrderedByZ.  The best we can do is to | 
 |     // supply them with the present fence. | 
 |     for (auto& weakLayer : mReleasedLayers) { | 
 |         if (const auto layer = weakLayer.promote()) { | 
 |             layer->onLayerDisplayed(ftl::yield<FenceResult>(frame.presentFence).share()); | 
 |         } | 
 |     } | 
 |  | 
 |     // Clear out the released layers now that we're done with them. | 
 |     mReleasedLayers.clear(); | 
 | } | 
 |  | 
 | void Output::renderCachedSets(const CompositionRefreshArgs& refreshArgs) { | 
 |     if (mPlanner) { | 
 |         mPlanner->renderCachedSets(getState(), refreshArgs.scheduledFrameTime, | 
 |                                    getState().usesDeviceComposition || getSkipColorTransform()); | 
 |     } | 
 | } | 
 |  | 
 | void Output::dirtyEntireOutput() { | 
 |     auto& outputState = editState(); | 
 |     outputState.dirtyRegion.set(outputState.displaySpace.getBoundsAsRect()); | 
 | } | 
 |  | 
 | void Output::resetCompositionStrategy() { | 
 |     // The base output implementation can only do client composition | 
 |     auto& outputState = editState(); | 
 |     outputState.usesClientComposition = true; | 
 |     outputState.usesDeviceComposition = false; | 
 |     outputState.reusedClientComposition = false; | 
 | } | 
 |  | 
 | bool Output::getSkipColorTransform() const { | 
 |     return true; | 
 | } | 
 |  | 
 | compositionengine::Output::FrameFences Output::presentAndGetFrameFences() { | 
 |     compositionengine::Output::FrameFences result; | 
 |     if (getState().usesClientComposition) { | 
 |         result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence(); | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | void Output::setPredictCompositionStrategy(bool predict) { | 
 |     if (predict) { | 
 |         mHwComposerAsyncWorker = std::make_unique<HwcAsyncWorker>(); | 
 |     } else { | 
 |         mHwComposerAsyncWorker.reset(nullptr); | 
 |     } | 
 | } | 
 |  | 
 | void Output::setTreat170mAsSrgb(bool enable) { | 
 |     editState().treat170mAsSrgb = enable; | 
 | } | 
 |  | 
 | bool Output::canPredictCompositionStrategy(const CompositionRefreshArgs& refreshArgs) { | 
 |     uint64_t lastOutputLayerHash = getState().lastOutputLayerHash; | 
 |     uint64_t outputLayerHash = getState().outputLayerHash; | 
 |     editState().lastOutputLayerHash = outputLayerHash; | 
 |  | 
 |     if (!getState().isEnabled || !mHwComposerAsyncWorker) { | 
 |         ALOGV("canPredictCompositionStrategy disabled"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (!getState().previousDeviceRequestedChanges) { | 
 |         ALOGV("canPredictCompositionStrategy previous changes not available"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (!mRenderSurface->supportsCompositionStrategyPrediction()) { | 
 |         ALOGV("canPredictCompositionStrategy surface does not support"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (refreshArgs.devOptFlashDirtyRegionsDelay) { | 
 |         ALOGV("canPredictCompositionStrategy devOptFlashDirtyRegionsDelay"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (lastOutputLayerHash != outputLayerHash) { | 
 |         ALOGV("canPredictCompositionStrategy output layers changed"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     // If no layer uses clientComposition, then don't predict composition strategy | 
 |     // because we have less work to do in parallel. | 
 |     if (!anyLayersRequireClientComposition()) { | 
 |         ALOGV("canPredictCompositionStrategy no layer uses clientComposition"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | bool Output::anyLayersRequireClientComposition() const { | 
 |     const auto layers = getOutputLayersOrderedByZ(); | 
 |     return std::any_of(layers.begin(), layers.end(), | 
 |                        [](const auto& layer) { return layer->requiresClientComposition(); }); | 
 | } | 
 |  | 
 | void Output::finishPrepareFrame() { | 
 |     const auto& state = getState(); | 
 |     if (mPlanner) { | 
 |         mPlanner->reportFinalPlan(getOutputLayersOrderedByZ()); | 
 |     } | 
 |     mRenderSurface->prepareFrame(state.usesClientComposition, state.usesDeviceComposition); | 
 | } | 
 |  | 
 | bool Output::mustRecompose() const { | 
 |     return mMustRecompose; | 
 | } | 
 |  | 
 | } // namespace impl | 
 | } // namespace android::compositionengine |