|  | /* | 
|  | * Copyright (C) 2019 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #define LOG_TAG "libtimeinstate" | 
|  |  | 
|  | #include "cputimeinstate.h" | 
|  | #include <bpf_timeinstate.h> | 
|  |  | 
|  | #include <dirent.h> | 
|  | #include <errno.h> | 
|  | #include <inttypes.h> | 
|  | #include <sys/sysinfo.h> | 
|  |  | 
|  | #include <mutex> | 
|  | #include <numeric> | 
|  | #include <optional> | 
|  | #include <set> | 
|  | #include <string> | 
|  | #include <unordered_map> | 
|  | #include <vector> | 
|  |  | 
|  | #include <android-base/file.h> | 
|  | #include <android-base/parseint.h> | 
|  | #include <android-base/stringprintf.h> | 
|  | #include <android-base/strings.h> | 
|  | #include <android-base/unique_fd.h> | 
|  | #include <bpf/BpfMap.h> | 
|  | #include <libbpf.h> | 
|  | #include <log/log.h> | 
|  |  | 
|  | using android::base::StringPrintf; | 
|  | using android::base::unique_fd; | 
|  |  | 
|  | namespace android { | 
|  | namespace bpf { | 
|  |  | 
|  | static std::mutex gInitializedMutex; | 
|  | static bool gInitialized = false; | 
|  | static std::mutex gTrackingMutex; | 
|  | static bool gTracking = false; | 
|  | static uint32_t gNPolicies = 0; | 
|  | static uint32_t gNCpus = 0; | 
|  | static std::vector<std::vector<uint32_t>> gPolicyFreqs; | 
|  | static std::vector<std::vector<uint32_t>> gPolicyCpus; | 
|  | static std::set<uint32_t> gAllFreqs; | 
|  | static unique_fd gTisMapFd; | 
|  | static unique_fd gConcurrentMapFd; | 
|  | static unique_fd gUidLastUpdateMapFd; | 
|  | static unique_fd gPidTisMapFd; | 
|  |  | 
|  | static std::optional<std::vector<uint32_t>> readNumbersFromFile(const std::string &path) { | 
|  | std::string data; | 
|  |  | 
|  | if (!android::base::ReadFileToString(path, &data)) return {}; | 
|  |  | 
|  | auto strings = android::base::Split(data, " \n"); | 
|  | std::vector<uint32_t> ret; | 
|  | for (const auto &s : strings) { | 
|  | if (s.empty()) continue; | 
|  | uint32_t n; | 
|  | if (!android::base::ParseUint(s, &n)) return {}; | 
|  | ret.emplace_back(n); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int isPolicyFile(const struct dirent *d) { | 
|  | return android::base::StartsWith(d->d_name, "policy"); | 
|  | } | 
|  |  | 
|  | static int comparePolicyFiles(const struct dirent **d1, const struct dirent **d2) { | 
|  | uint32_t policyN1, policyN2; | 
|  | if (sscanf((*d1)->d_name, "policy%" SCNu32 "", &policyN1) != 1 || | 
|  | sscanf((*d2)->d_name, "policy%" SCNu32 "", &policyN2) != 1) | 
|  | return 0; | 
|  | return policyN1 - policyN2; | 
|  | } | 
|  |  | 
|  | static bool initGlobals() { | 
|  | std::lock_guard<std::mutex> guard(gInitializedMutex); | 
|  | if (gInitialized) return true; | 
|  |  | 
|  | gNCpus = get_nprocs_conf(); | 
|  |  | 
|  | struct dirent **dirlist; | 
|  | const char basepath[] = "/sys/devices/system/cpu/cpufreq"; | 
|  | int ret = scandir(basepath, &dirlist, isPolicyFile, comparePolicyFiles); | 
|  | if (ret == -1) return false; | 
|  | gNPolicies = ret; | 
|  |  | 
|  | std::vector<std::string> policyFileNames; | 
|  | for (uint32_t i = 0; i < gNPolicies; ++i) { | 
|  | policyFileNames.emplace_back(dirlist[i]->d_name); | 
|  | free(dirlist[i]); | 
|  | } | 
|  | free(dirlist); | 
|  |  | 
|  | for (const auto &policy : policyFileNames) { | 
|  | std::vector<uint32_t> freqs; | 
|  | for (const auto &name : {"available", "boost"}) { | 
|  | std::string path = | 
|  | StringPrintf("%s/%s/scaling_%s_frequencies", basepath, policy.c_str(), name); | 
|  | auto nums = readNumbersFromFile(path); | 
|  | if (!nums) continue; | 
|  | freqs.insert(freqs.end(), nums->begin(), nums->end()); | 
|  | } | 
|  | if (freqs.empty()) return false; | 
|  | std::sort(freqs.begin(), freqs.end()); | 
|  | gPolicyFreqs.emplace_back(freqs); | 
|  |  | 
|  | for (auto freq : freqs) gAllFreqs.insert(freq); | 
|  |  | 
|  | std::string path = StringPrintf("%s/%s/%s", basepath, policy.c_str(), "related_cpus"); | 
|  | auto cpus = readNumbersFromFile(path); | 
|  | if (!cpus) return false; | 
|  | gPolicyCpus.emplace_back(*cpus); | 
|  | } | 
|  |  | 
|  | gTisMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_time_in_state_map")}; | 
|  | if (gTisMapFd < 0) return false; | 
|  |  | 
|  | gConcurrentMapFd = | 
|  | unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")}; | 
|  | if (gConcurrentMapFd < 0) return false; | 
|  |  | 
|  | gUidLastUpdateMapFd = | 
|  | unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_last_update_map")}; | 
|  | if (gUidLastUpdateMapFd < 0) return false; | 
|  |  | 
|  | gPidTisMapFd = unique_fd{mapRetrieveRO(BPF_FS_PATH "map_time_in_state_pid_time_in_state_map")}; | 
|  | if (gPidTisMapFd < 0) return false; | 
|  |  | 
|  | unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_pid_tracked_map")); | 
|  | if (trackedPidMapFd < 0) return false; | 
|  |  | 
|  | gInitialized = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool attachTracepointProgram(const std::string &eventType, const std::string &eventName) { | 
|  | std::string path = StringPrintf(BPF_FS_PATH "prog_time_in_state_tracepoint_%s_%s", | 
|  | eventType.c_str(), eventName.c_str()); | 
|  | int prog_fd = retrieveProgram(path.c_str()); | 
|  | if (prog_fd < 0) return false; | 
|  | return bpf_attach_tracepoint(prog_fd, eventType.c_str(), eventName.c_str()) >= 0; | 
|  | } | 
|  |  | 
|  | static std::optional<uint32_t> getPolicyFreqIdx(uint32_t policy) { | 
|  | auto path = StringPrintf("/sys/devices/system/cpu/cpufreq/policy%u/scaling_cur_freq", | 
|  | gPolicyCpus[policy][0]); | 
|  | auto freqVec = readNumbersFromFile(path); | 
|  | if (!freqVec.has_value() || freqVec->size() != 1) return {}; | 
|  | for (uint32_t idx = 0; idx < gPolicyFreqs[policy].size(); ++idx) { | 
|  | if ((*freqVec)[0] == gPolicyFreqs[policy][idx]) return idx + 1; | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // Start tracking and aggregating data to be reported by getUidCpuFreqTimes and getUidsCpuFreqTimes. | 
|  | // Returns true on success, false otherwise. | 
|  | // Tracking is active only once a live process has successfully called this function; if the calling | 
|  | // process dies then it must be called again to resume tracking. | 
|  | // This function should *not* be called while tracking is already active; doing so is unnecessary | 
|  | // and can lead to accounting errors. | 
|  | bool startTrackingUidTimes() { | 
|  | std::lock_guard<std::mutex> guard(gTrackingMutex); | 
|  | if (!initGlobals()) return false; | 
|  | if (gTracking) return true; | 
|  |  | 
|  | unique_fd cpuPolicyFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_cpu_policy_map")); | 
|  | if (cpuPolicyFd < 0) return false; | 
|  |  | 
|  | for (uint32_t i = 0; i < gPolicyCpus.size(); ++i) { | 
|  | for (auto &cpu : gPolicyCpus[i]) { | 
|  | if (writeToMapEntry(cpuPolicyFd, &cpu, &i, BPF_ANY)) return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | unique_fd freqToIdxFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_freq_to_idx_map")); | 
|  | if (freqToIdxFd < 0) return false; | 
|  | freq_idx_key_t key; | 
|  | for (uint32_t i = 0; i < gNPolicies; ++i) { | 
|  | key.policy = i; | 
|  | for (uint32_t j = 0; j < gPolicyFreqs[i].size(); ++j) { | 
|  | key.freq = gPolicyFreqs[i][j]; | 
|  | // Start indexes at 1 so that uninitialized state is distinguishable from lowest freq. | 
|  | // The uid_times map still uses 0-based indexes, and the sched_switch program handles | 
|  | // conversion between them, so this does not affect our map reading code. | 
|  | uint32_t idx = j + 1; | 
|  | if (writeToMapEntry(freqToIdxFd, &key, &idx, BPF_ANY)) return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | unique_fd cpuLastUpdateFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_cpu_last_update_map")); | 
|  | if (cpuLastUpdateFd < 0) return false; | 
|  | std::vector<uint64_t> zeros(get_nprocs_conf(), 0); | 
|  | uint32_t zero = 0; | 
|  | if (writeToMapEntry(cpuLastUpdateFd, &zero, zeros.data(), BPF_ANY)) return false; | 
|  |  | 
|  | unique_fd nrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_nr_active_map")); | 
|  | if (nrActiveFd < 0) return false; | 
|  | if (writeToMapEntry(nrActiveFd, &zero, &zero, BPF_ANY)) return false; | 
|  |  | 
|  | unique_fd policyNrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_policy_nr_active_map")); | 
|  | if (policyNrActiveFd < 0) return false; | 
|  | for (uint32_t i = 0; i < gNPolicies; ++i) { | 
|  | if (writeToMapEntry(policyNrActiveFd, &i, &zero, BPF_ANY)) return false; | 
|  | } | 
|  |  | 
|  | unique_fd policyFreqIdxFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_policy_freq_idx_map")); | 
|  | if (policyFreqIdxFd < 0) return false; | 
|  | for (uint32_t i = 0; i < gNPolicies; ++i) { | 
|  | auto freqIdx = getPolicyFreqIdx(i); | 
|  | if (!freqIdx.has_value()) return false; | 
|  | if (writeToMapEntry(policyFreqIdxFd, &i, &(*freqIdx), BPF_ANY)) return false; | 
|  | } | 
|  |  | 
|  | gTracking = attachTracepointProgram("sched", "sched_switch") && | 
|  | attachTracepointProgram("power", "cpu_frequency") && | 
|  | attachTracepointProgram("sched", "sched_process_free"); | 
|  | return gTracking; | 
|  | } | 
|  |  | 
|  | std::optional<std::vector<std::vector<uint32_t>>> getCpuFreqs() { | 
|  | if (!gInitialized && !initGlobals()) return {}; | 
|  | return gPolicyFreqs; | 
|  | } | 
|  |  | 
|  | // Retrieve the times in ns that uid spent running at each CPU frequency. | 
|  | // Return contains no value on error, otherwise it contains a vector of vectors using the format: | 
|  | // [[t0_0, t0_1, ...], | 
|  | //  [t1_0, t1_1, ...], ...] | 
|  | // where ti_j is the ns that uid spent running on the ith cluster at that cluster's jth lowest freq. | 
|  | std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t uid) { | 
|  | if (!gInitialized && !initGlobals()) return {}; | 
|  |  | 
|  | std::vector<std::vector<uint64_t>> out; | 
|  | uint32_t maxFreqCount = 0; | 
|  | for (const auto &freqList : gPolicyFreqs) { | 
|  | if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); | 
|  | out.emplace_back(freqList.size(), 0); | 
|  | } | 
|  |  | 
|  | std::vector<tis_val_t> vals(gNCpus); | 
|  | time_key_t key = {.uid = uid}; | 
|  | for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) { | 
|  | key.bucket = i; | 
|  | if (findMapEntry(gTisMapFd, &key, vals.data())) { | 
|  | if (errno != ENOENT || getFirstMapKey(gTisMapFd, &key)) return {}; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto offset = i * FREQS_PER_ENTRY; | 
|  | auto nextOffset = (i + 1) * FREQS_PER_ENTRY; | 
|  | for (uint32_t j = 0; j < gNPolicies; ++j) { | 
|  | if (offset >= gPolicyFreqs[j].size()) continue; | 
|  | auto begin = out[j].begin() + offset; | 
|  | auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : out[j].end(); | 
|  |  | 
|  | for (const auto &cpu : gPolicyCpus[j]) { | 
|  | std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus<uint64_t>()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return out; | 
|  | } | 
|  |  | 
|  | static std::optional<bool> uidUpdatedSince(uint32_t uid, uint64_t lastUpdate, | 
|  | uint64_t *newLastUpdate) { | 
|  | uint64_t uidLastUpdate; | 
|  | if (findMapEntry(gUidLastUpdateMapFd, &uid, &uidLastUpdate)) return {}; | 
|  | // Updates that occurred during the previous read may have been missed. To mitigate | 
|  | // this, don't ignore entries updated up to 1s before *lastUpdate | 
|  | constexpr uint64_t NSEC_PER_SEC = 1000000000; | 
|  | if (uidLastUpdate + NSEC_PER_SEC < lastUpdate) return false; | 
|  | if (uidLastUpdate > *newLastUpdate) *newLastUpdate = uidLastUpdate; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Retrieve the times in ns that each uid spent running at each CPU freq. | 
|  | // Return contains no value on error, otherwise it contains a map from uids to vectors of vectors | 
|  | // using the format: | 
|  | // { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...], | 
|  | //   uid1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... } | 
|  | // where ti_j_k is the ns uid i spent running on the jth cluster at the cluster's kth lowest freq. | 
|  | std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>> | 
|  | getUidsCpuFreqTimes() { | 
|  | return getUidsUpdatedCpuFreqTimes(nullptr); | 
|  | } | 
|  |  | 
|  | // Retrieve the times in ns that each uid spent running at each CPU freq, excluding UIDs that have | 
|  | // not run since before lastUpdate. | 
|  | // Return format is the same as getUidsCpuFreqTimes() | 
|  | std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>> | 
|  | getUidsUpdatedCpuFreqTimes(uint64_t *lastUpdate) { | 
|  | if (!gInitialized && !initGlobals()) return {}; | 
|  | time_key_t key, prevKey; | 
|  | std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>> map; | 
|  | if (getFirstMapKey(gTisMapFd, &key)) { | 
|  | if (errno == ENOENT) return map; | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::vector<std::vector<uint64_t>> mapFormat; | 
|  | for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0); | 
|  |  | 
|  | uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0; | 
|  | std::vector<tis_val_t> vals(gNCpus); | 
|  | do { | 
|  | if (lastUpdate) { | 
|  | auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate); | 
|  | if (!uidUpdated.has_value()) return {}; | 
|  | if (!*uidUpdated) continue; | 
|  | } | 
|  | if (findMapEntry(gTisMapFd, &key, vals.data())) return {}; | 
|  | if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat); | 
|  |  | 
|  | auto offset = key.bucket * FREQS_PER_ENTRY; | 
|  | auto nextOffset = (key.bucket + 1) * FREQS_PER_ENTRY; | 
|  | for (uint32_t i = 0; i < gNPolicies; ++i) { | 
|  | if (offset >= gPolicyFreqs[i].size()) continue; | 
|  | auto begin = map[key.uid][i].begin() + offset; | 
|  | auto end = nextOffset < gPolicyFreqs[i].size() ? begin + FREQS_PER_ENTRY : | 
|  | map[key.uid][i].end(); | 
|  | for (const auto &cpu : gPolicyCpus[i]) { | 
|  | std::transform(begin, end, std::begin(vals[cpu].ar), begin, std::plus<uint64_t>()); | 
|  | } | 
|  | } | 
|  | prevKey = key; | 
|  | } while (prevKey = key, !getNextMapKey(gTisMapFd, &prevKey, &key)); | 
|  | if (errno != ENOENT) return {}; | 
|  | if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate; | 
|  | return map; | 
|  | } | 
|  |  | 
|  | static bool verifyConcurrentTimes(const concurrent_time_t &ct) { | 
|  | uint64_t activeSum = std::accumulate(ct.active.begin(), ct.active.end(), (uint64_t)0); | 
|  | uint64_t policySum = 0; | 
|  | for (const auto &vec : ct.policy) { | 
|  | policySum += std::accumulate(vec.begin(), vec.end(), (uint64_t)0); | 
|  | } | 
|  | return activeSum == policySum; | 
|  | } | 
|  |  | 
|  | // Retrieve the times in ns that uid spent running concurrently with each possible number of other | 
|  | // tasks on each cluster (policy times) and overall (active times). | 
|  | // Return contains no value on error, otherwise it contains a concurrent_time_t with the format: | 
|  | // {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...]} | 
|  | // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent | 
|  | // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster | 
|  | std::optional<concurrent_time_t> getUidConcurrentTimes(uint32_t uid, bool retry) { | 
|  | if (!gInitialized && !initGlobals()) return {}; | 
|  | concurrent_time_t ret = {.active = std::vector<uint64_t>(gNCpus, 0)}; | 
|  | for (const auto &cpuList : gPolicyCpus) ret.policy.emplace_back(cpuList.size(), 0); | 
|  | std::vector<concurrent_val_t> vals(gNCpus); | 
|  | time_key_t key = {.uid = uid}; | 
|  | for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) { | 
|  | if (findMapEntry(gConcurrentMapFd, &key, vals.data())) { | 
|  | if (errno != ENOENT || getFirstMapKey(gConcurrentMapFd, &key)) return {}; | 
|  | continue; | 
|  | } | 
|  | auto offset = key.bucket * CPUS_PER_ENTRY; | 
|  | auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY; | 
|  |  | 
|  | auto activeBegin = ret.active.begin() + offset; | 
|  | auto activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret.active.end(); | 
|  |  | 
|  | for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) { | 
|  | std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin, | 
|  | std::plus<uint64_t>()); | 
|  | } | 
|  |  | 
|  | for (uint32_t policy = 0; policy < gNPolicies; ++policy) { | 
|  | if (offset >= gPolicyCpus[policy].size()) continue; | 
|  | auto policyBegin = ret.policy[policy].begin() + offset; | 
|  | auto policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY | 
|  | : ret.policy[policy].end(); | 
|  |  | 
|  | for (const auto &cpu : gPolicyCpus[policy]) { | 
|  | std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin, | 
|  | std::plus<uint64_t>()); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!verifyConcurrentTimes(ret) && retry)  return getUidConcurrentTimes(uid, false); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Retrieve the times in ns that each uid spent running concurrently with each possible number of | 
|  | // other tasks on each cluster (policy times) and overall (active times). | 
|  | // Return contains no value on error, otherwise it contains a map from uids to concurrent_time_t's | 
|  | // using the format: | 
|  | // { uid0 -> {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...] }, ...} | 
|  | // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent | 
|  | // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster. | 
|  | std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsConcurrentTimes() { | 
|  | return getUidsUpdatedConcurrentTimes(nullptr); | 
|  | } | 
|  |  | 
|  | // Retrieve the times in ns that each uid spent running concurrently with each possible number of | 
|  | // other tasks on each cluster (policy times) and overall (active times), excluding UIDs that have | 
|  | // not run since before lastUpdate. | 
|  | // Return format is the same as getUidsConcurrentTimes() | 
|  | std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsUpdatedConcurrentTimes( | 
|  | uint64_t *lastUpdate) { | 
|  | if (!gInitialized && !initGlobals()) return {}; | 
|  | time_key_t key, prevKey; | 
|  | std::unordered_map<uint32_t, concurrent_time_t> ret; | 
|  | if (getFirstMapKey(gConcurrentMapFd, &key)) { | 
|  | if (errno == ENOENT) return ret; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | concurrent_time_t retFormat = {.active = std::vector<uint64_t>(gNCpus, 0)}; | 
|  | for (const auto &cpuList : gPolicyCpus) retFormat.policy.emplace_back(cpuList.size(), 0); | 
|  |  | 
|  | std::vector<concurrent_val_t> vals(gNCpus); | 
|  | std::vector<uint64_t>::iterator activeBegin, activeEnd, policyBegin, policyEnd; | 
|  |  | 
|  | uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0; | 
|  | do { | 
|  | if (key.bucket > (gNCpus - 1) / CPUS_PER_ENTRY) return {}; | 
|  | if (lastUpdate) { | 
|  | auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate); | 
|  | if (!uidUpdated.has_value()) return {}; | 
|  | if (!*uidUpdated) continue; | 
|  | } | 
|  | if (findMapEntry(gConcurrentMapFd, &key, vals.data())) return {}; | 
|  | if (ret.find(key.uid) == ret.end()) ret.emplace(key.uid, retFormat); | 
|  |  | 
|  | auto offset = key.bucket * CPUS_PER_ENTRY; | 
|  | auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY; | 
|  |  | 
|  | activeBegin = ret[key.uid].active.begin(); | 
|  | activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret[key.uid].active.end(); | 
|  |  | 
|  | for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) { | 
|  | std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin, | 
|  | std::plus<uint64_t>()); | 
|  | } | 
|  |  | 
|  | for (uint32_t policy = 0; policy < gNPolicies; ++policy) { | 
|  | if (offset >= gPolicyCpus[policy].size()) continue; | 
|  | policyBegin = ret[key.uid].policy[policy].begin() + offset; | 
|  | policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY | 
|  | : ret[key.uid].policy[policy].end(); | 
|  |  | 
|  | for (const auto &cpu : gPolicyCpus[policy]) { | 
|  | std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin, | 
|  | std::plus<uint64_t>()); | 
|  | } | 
|  | } | 
|  | } while (prevKey = key, !getNextMapKey(gConcurrentMapFd, &prevKey, &key)); | 
|  | if (errno != ENOENT) return {}; | 
|  | for (const auto &[key, value] : ret) { | 
|  | if (!verifyConcurrentTimes(value)) { | 
|  | auto val = getUidConcurrentTimes(key, false); | 
|  | if (val.has_value()) ret[key] = val.value(); | 
|  | } | 
|  | } | 
|  | if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Clear all time in state data for a given uid. Returns false on error, true otherwise. | 
|  | // This is only suitable for clearing data when an app is uninstalled; if called on a UID with | 
|  | // running tasks it will cause time in state vs. concurrent time totals to be inconsistent for that | 
|  | // UID. | 
|  | bool clearUidTimes(uint32_t uid) { | 
|  | if (!gInitialized && !initGlobals()) return false; | 
|  |  | 
|  | time_key_t key = {.uid = uid}; | 
|  |  | 
|  | uint32_t maxFreqCount = 0; | 
|  | for (const auto &freqList : gPolicyFreqs) { | 
|  | if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); | 
|  | } | 
|  |  | 
|  | tis_val_t zeros = {0}; | 
|  | std::vector<tis_val_t> vals(gNCpus, zeros); | 
|  | for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) { | 
|  | if (writeToMapEntry(gTisMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT) | 
|  | return false; | 
|  | if (deleteMapEntry(gTisMapFd, &key) && errno != ENOENT) return false; | 
|  | } | 
|  |  | 
|  | concurrent_val_t czeros = { .active = {0}, .policy = {0}, }; | 
|  | std::vector<concurrent_val_t> cvals(gNCpus, czeros); | 
|  | for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) { | 
|  | if (writeToMapEntry(gConcurrentMapFd, &key, cvals.data(), BPF_EXIST) && errno != ENOENT) | 
|  | return false; | 
|  | if (deleteMapEntry(gConcurrentMapFd, &key) && errno != ENOENT) return false; | 
|  | } | 
|  |  | 
|  | if (deleteMapEntry(gUidLastUpdateMapFd, &uid) && errno != ENOENT) return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool startTrackingProcessCpuTimes(pid_t pid) { | 
|  | if (!gInitialized && !initGlobals()) return false; | 
|  |  | 
|  | unique_fd trackedPidHashMapFd( | 
|  | mapRetrieveWO(BPF_FS_PATH "map_time_in_state_pid_tracked_hash_map")); | 
|  | if (trackedPidHashMapFd < 0) return false; | 
|  |  | 
|  | unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_time_in_state_pid_tracked_map")); | 
|  | if (trackedPidMapFd < 0) return false; | 
|  |  | 
|  | for (uint32_t index = 0; index < MAX_TRACKED_PIDS; index++) { | 
|  | // Find first available [index, pid] entry in the pid_tracked_hash_map map | 
|  | if (writeToMapEntry(trackedPidHashMapFd, &index, &pid, BPF_NOEXIST) != 0) { | 
|  | if (errno != EEXIST) { | 
|  | return false; | 
|  | } | 
|  | continue; // This index is already taken | 
|  | } | 
|  |  | 
|  | tracked_pid_t tracked_pid = {.pid = pid, .state = TRACKED_PID_STATE_ACTIVE}; | 
|  | if (writeToMapEntry(trackedPidMapFd, &index, &tracked_pid, BPF_ANY) != 0) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Marks the specified task identified by its PID (aka TID) for CPU time-in-state tracking | 
|  | // aggregated with other tasks sharing the same TGID and aggregation key. | 
|  | bool startAggregatingTaskCpuTimes(pid_t pid, uint16_t aggregationKey) { | 
|  | if (!gInitialized && !initGlobals()) return false; | 
|  |  | 
|  | unique_fd taskAggregationMapFd( | 
|  | mapRetrieveWO(BPF_FS_PATH "map_time_in_state_pid_task_aggregation_map")); | 
|  | if (taskAggregationMapFd < 0) return false; | 
|  |  | 
|  | return writeToMapEntry(taskAggregationMapFd, &pid, &aggregationKey, BPF_ANY) == 0; | 
|  | } | 
|  |  | 
|  | // Retrieves the times in ns that each thread spent running at each CPU freq, aggregated by | 
|  | // aggregation key. | 
|  | // Return contains no value on error, otherwise it contains a map from aggregation keys | 
|  | // to vectors of vectors using the format: | 
|  | // { aggKey0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...], | 
|  | //   aggKey1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... } | 
|  | // where ti_j_k is the ns tid i spent running on the jth cluster at the cluster's kth lowest freq. | 
|  | std::optional<std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>>> | 
|  | getAggregatedTaskCpuFreqTimes(pid_t tgid, const std::vector<uint16_t> &aggregationKeys) { | 
|  | if (!gInitialized && !initGlobals()) return {}; | 
|  |  | 
|  | uint32_t maxFreqCount = 0; | 
|  | std::vector<std::vector<uint64_t>> mapFormat; | 
|  | for (const auto &freqList : gPolicyFreqs) { | 
|  | if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); | 
|  | mapFormat.emplace_back(freqList.size(), 0); | 
|  | } | 
|  |  | 
|  | bool dataCollected = false; | 
|  | std::unordered_map<uint16_t, std::vector<std::vector<uint64_t>>> map; | 
|  | std::vector<tis_val_t> vals(gNCpus); | 
|  | for (uint16_t aggregationKey : aggregationKeys) { | 
|  | map.emplace(aggregationKey, mapFormat); | 
|  |  | 
|  | aggregated_task_tis_key_t key{.tgid = tgid, .aggregation_key = aggregationKey}; | 
|  | for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) { | 
|  | if (findMapEntry(gPidTisMapFd, &key, vals.data()) != 0) { | 
|  | if (errno != ENOENT) { | 
|  | return {}; | 
|  | } | 
|  | continue; | 
|  | } else { | 
|  | dataCollected = true; | 
|  | } | 
|  |  | 
|  | // Combine data by aggregating time-in-state data grouped by CPU cluster aka policy. | 
|  | uint32_t offset = key.bucket * FREQS_PER_ENTRY; | 
|  | uint32_t nextOffset = offset + FREQS_PER_ENTRY; | 
|  | for (uint32_t j = 0; j < gNPolicies; ++j) { | 
|  | if (offset >= gPolicyFreqs[j].size()) continue; | 
|  | auto begin = map[key.aggregation_key][j].begin() + offset; | 
|  | auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY | 
|  | : map[key.aggregation_key][j].end(); | 
|  | for (const auto &cpu : gPolicyCpus[j]) { | 
|  | std::transform(begin, end, std::begin(vals[cpu].ar), begin, | 
|  | std::plus<uint64_t>()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!dataCollected) { | 
|  | // Check if eBPF is supported on this device. If it is, gTisMap should not be empty. | 
|  | time_key_t key; | 
|  | if (getFirstMapKey(gTisMapFd, &key) != 0) { | 
|  | return {}; | 
|  | } | 
|  | } | 
|  | return map; | 
|  | } | 
|  |  | 
|  | } // namespace bpf | 
|  | } // namespace android |