| /* | 
 |  * Copyright (C) 2009 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <stdio.h> | 
 | #include <stdint.h> | 
 | #include <string.h> | 
 | #include <unistd.h> | 
 | #include <signal.h> | 
 | #include <errno.h> | 
 | #include <dirent.h> | 
 | #include <fcntl.h> | 
 | #include <limits.h> | 
 | #include <sys/types.h> | 
 | #include <sys/socket.h> | 
 | #include <sys/stat.h> | 
 | #include <sys/time.h> | 
 | #include <arpa/inet.h> | 
 |  | 
 | #include <openssl/aes.h> | 
 | #include <openssl/evp.h> | 
 | #include <openssl/md5.h> | 
 |  | 
 | #define LOG_TAG "keystore" | 
 | #include <cutils/log.h> | 
 | #include <cutils/sockets.h> | 
 | #include <private/android_filesystem_config.h> | 
 |  | 
 | #include "keystore.h" | 
 |  | 
 | /* KeyStore is a secured storage for key-value pairs. In this implementation, | 
 |  * each file stores one key-value pair. Keys are encoded in file names, and | 
 |  * values are encrypted with checksums. The encryption key is protected by a | 
 |  * user-defined password. To keep things simple, buffers are always larger than | 
 |  * the maximum space we needed, so boundary checks on buffers are omitted. */ | 
 |  | 
 | #define KEY_SIZE        ((NAME_MAX - 15) / 2) | 
 | #define VALUE_SIZE      32768 | 
 | #define PASSWORD_SIZE   VALUE_SIZE | 
 |  | 
 | struct Value { | 
 |     int length; | 
 |     uint8_t value[VALUE_SIZE]; | 
 | }; | 
 |  | 
 | /* Here is the encoding of keys. This is necessary in order to allow arbitrary | 
 |  * characters in keys. Characters in [0-~] are not encoded. Others are encoded | 
 |  * into two bytes. The first byte is one of [+-.] which represents the first | 
 |  * two bits of the character. The second byte encodes the rest of the bits into | 
 |  * [0-o]. Therefore in the worst case the length of a key gets doubled. Note | 
 |  * that Base64 cannot be used here due to the need of prefix match on keys. */ | 
 |  | 
 | static int encode_key(char* out, uid_t uid, const Value* key) { | 
 |     int n = snprintf(out, NAME_MAX, "%u_", uid); | 
 |     out += n; | 
 |     const uint8_t* in = key->value; | 
 |     int length = key->length; | 
 |     for (int i = length; i > 0; --i, ++in, ++out) { | 
 |         if (*in >= '0' && *in <= '~') { | 
 |             *out = *in; | 
 |         } else { | 
 |             *out = '+' + (*in >> 6); | 
 |             *++out = '0' + (*in & 0x3F); | 
 |             ++length; | 
 |         } | 
 |     } | 
 |     *out = '\0'; | 
 |     return n + length; | 
 | } | 
 |  | 
 | static int decode_key(uint8_t* out, char* in, int length) { | 
 |     for (int i = 0; i < length; ++i, ++in, ++out) { | 
 |         if (*in >= '0' && *in <= '~') { | 
 |             *out = *in; | 
 |         } else { | 
 |             *out = (*in - '+') << 6; | 
 |             *out |= (*++in - '0') & 0x3F; | 
 |             --length; | 
 |         } | 
 |     } | 
 |     *out = '\0'; | 
 |     return length; | 
 | } | 
 |  | 
 | static size_t readFully(int fd, uint8_t* data, size_t size) { | 
 |     size_t remaining = size; | 
 |     while (remaining > 0) { | 
 |         ssize_t n = TEMP_FAILURE_RETRY(read(fd, data, size)); | 
 |         if (n == -1 || n == 0) { | 
 |             return size-remaining; | 
 |         } | 
 |         data += n; | 
 |         remaining -= n; | 
 |     } | 
 |     return size; | 
 | } | 
 |  | 
 | static size_t writeFully(int fd, uint8_t* data, size_t size) { | 
 |     size_t remaining = size; | 
 |     while (remaining > 0) { | 
 |         ssize_t n = TEMP_FAILURE_RETRY(write(fd, data, size)); | 
 |         if (n == -1 || n == 0) { | 
 |             return size-remaining; | 
 |         } | 
 |         data += n; | 
 |         remaining -= n; | 
 |     } | 
 |     return size; | 
 | } | 
 |  | 
 | class Entropy { | 
 | public: | 
 |     Entropy() : mRandom(-1) {} | 
 |     ~Entropy() { | 
 |         if (mRandom != -1) { | 
 |             close(mRandom); | 
 |         } | 
 |     } | 
 |  | 
 |     bool open() { | 
 |         const char* randomDevice = "/dev/urandom"; | 
 |         mRandom = ::open(randomDevice, O_RDONLY); | 
 |         if (mRandom == -1) { | 
 |             ALOGE("open: %s: %s", randomDevice, strerror(errno)); | 
 |             return false; | 
 |         } | 
 |         return true; | 
 |     } | 
 |  | 
 |     bool generate_random_data(uint8_t* data, size_t size) { | 
 |         return (readFully(mRandom, data, size) == size); | 
 |     } | 
 |  | 
 | private: | 
 |     int mRandom; | 
 | }; | 
 |  | 
 | /* Here is the file format. There are two parts in blob.value, the secret and | 
 |  * the description. The secret is stored in ciphertext, and its original size | 
 |  * can be found in blob.length. The description is stored after the secret in | 
 |  * plaintext, and its size is specified in blob.info. The total size of the two | 
 |  * parts must be no more than VALUE_SIZE bytes. The first three bytes of the | 
 |  * file are reserved for future use and are always set to zero. Fields other | 
 |  * than blob.info, blob.length, and blob.value are modified by encryptBlob() | 
 |  * and decryptBlob(). Thus they should not be accessed from outside. */ | 
 |  | 
 | struct __attribute__((packed)) blob { | 
 |     uint8_t reserved[3]; | 
 |     uint8_t info; | 
 |     uint8_t vector[AES_BLOCK_SIZE]; | 
 |     uint8_t encrypted[0]; | 
 |     uint8_t digest[MD5_DIGEST_LENGTH]; | 
 |     uint8_t digested[0]; | 
 |     int32_t length; // in network byte order when encrypted | 
 |     uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE]; | 
 | }; | 
 |  | 
 | class Blob { | 
 | public: | 
 |     Blob(uint8_t* value, int32_t valueLength, uint8_t* info, uint8_t infoLength) { | 
 |         mBlob.length = valueLength; | 
 |         memcpy(mBlob.value, value, valueLength); | 
 |  | 
 |         mBlob.info = infoLength; | 
 |         memcpy(mBlob.value + valueLength, info, infoLength); | 
 |     } | 
 |  | 
 |     Blob(blob b) { | 
 |         mBlob = b; | 
 |     } | 
 |  | 
 |     Blob() {} | 
 |  | 
 |     uint8_t* getValue() { | 
 |         return mBlob.value; | 
 |     } | 
 |  | 
 |     int32_t getLength() { | 
 |         return mBlob.length; | 
 |     } | 
 |  | 
 |     uint8_t getInfo() { | 
 |         return mBlob.info; | 
 |     } | 
 |  | 
 |     ResponseCode encryptBlob(const char* filename, AES_KEY *aes_key, Entropy* entropy) { | 
 |         if (!entropy->generate_random_data(mBlob.vector, AES_BLOCK_SIZE)) { | 
 |             return SYSTEM_ERROR; | 
 |         } | 
 |  | 
 |         // data includes the value and the value's length | 
 |         size_t dataLength = mBlob.length + sizeof(mBlob.length); | 
 |         // pad data to the AES_BLOCK_SIZE | 
 |         size_t digestedLength = ((dataLength + AES_BLOCK_SIZE - 1) | 
 |                                  / AES_BLOCK_SIZE * AES_BLOCK_SIZE); | 
 |         // encrypted data includes the digest value | 
 |         size_t encryptedLength = digestedLength + MD5_DIGEST_LENGTH; | 
 |         // move info after space for padding | 
 |         memmove(&mBlob.encrypted[encryptedLength], &mBlob.value[mBlob.length], mBlob.info); | 
 |         // zero padding area | 
 |         memset(mBlob.value + mBlob.length, 0, digestedLength - dataLength); | 
 |  | 
 |         mBlob.length = htonl(mBlob.length); | 
 |         MD5(mBlob.digested, digestedLength, mBlob.digest); | 
 |  | 
 |         uint8_t vector[AES_BLOCK_SIZE]; | 
 |         memcpy(vector, mBlob.vector, AES_BLOCK_SIZE); | 
 |         AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, | 
 |                         aes_key, vector, AES_ENCRYPT); | 
 |  | 
 |         memset(mBlob.reserved, 0, sizeof(mBlob.reserved)); | 
 |         size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob); | 
 |         size_t fileLength = encryptedLength + headerLength + mBlob.info; | 
 |  | 
 |         const char* tmpFileName = ".tmp"; | 
 |         int out = open(tmpFileName, O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR); | 
 |         if (out == -1) { | 
 |             return SYSTEM_ERROR; | 
 |         } | 
 |         size_t writtenBytes = writeFully(out, (uint8_t*) &mBlob, fileLength); | 
 |         if (close(out) != 0) { | 
 |             return SYSTEM_ERROR; | 
 |         } | 
 |         if (writtenBytes != fileLength) { | 
 |             unlink(tmpFileName); | 
 |             return SYSTEM_ERROR; | 
 |         } | 
 |         return (rename(tmpFileName, filename) == 0) ? NO_ERROR : SYSTEM_ERROR; | 
 |     } | 
 |  | 
 |     ResponseCode decryptBlob(const char* filename, AES_KEY *aes_key) { | 
 |         int in = open(filename, O_RDONLY); | 
 |         if (in == -1) { | 
 |             return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR; | 
 |         } | 
 |         // fileLength may be less than sizeof(mBlob) since the in | 
 |         // memory version has extra padding to tolerate rounding up to | 
 |         // the AES_BLOCK_SIZE | 
 |         size_t fileLength = readFully(in, (uint8_t*) &mBlob, sizeof(mBlob)); | 
 |         if (close(in) != 0) { | 
 |             return SYSTEM_ERROR; | 
 |         } | 
 |         size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob); | 
 |         if (fileLength < headerLength) { | 
 |             return VALUE_CORRUPTED; | 
 |         } | 
 |  | 
 |         ssize_t encryptedLength = fileLength - (headerLength + mBlob.info); | 
 |         if (encryptedLength < 0 || encryptedLength % AES_BLOCK_SIZE != 0) { | 
 |             return VALUE_CORRUPTED; | 
 |         } | 
 |         AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, aes_key, | 
 |                         mBlob.vector, AES_DECRYPT); | 
 |         size_t digestedLength = encryptedLength - MD5_DIGEST_LENGTH; | 
 |         uint8_t computedDigest[MD5_DIGEST_LENGTH]; | 
 |         MD5(mBlob.digested, digestedLength, computedDigest); | 
 |         if (memcmp(mBlob.digest, computedDigest, MD5_DIGEST_LENGTH) != 0) { | 
 |             return VALUE_CORRUPTED; | 
 |         } | 
 |  | 
 |         ssize_t maxValueLength = digestedLength - sizeof(mBlob.length); | 
 |         mBlob.length = ntohl(mBlob.length); | 
 |         if (mBlob.length < 0 || mBlob.length > maxValueLength) { | 
 |             return VALUE_CORRUPTED; | 
 |         } | 
 |         if (mBlob.info != 0) { | 
 |             // move info from after padding to after data | 
 |             memmove(&mBlob.value[mBlob.length], &mBlob.value[maxValueLength], mBlob.info); | 
 |         } | 
 |         return NO_ERROR; | 
 |     } | 
 |  | 
 | private: | 
 |     struct blob mBlob; | 
 | }; | 
 |  | 
 | class KeyStore { | 
 | public: | 
 |     KeyStore(Entropy* entropy) : mEntropy(entropy), mRetry(MAX_RETRY) { | 
 |         if (access(MASTER_KEY_FILE, R_OK) == 0) { | 
 |             setState(STATE_LOCKED); | 
 |         } else { | 
 |             setState(STATE_UNINITIALIZED); | 
 |         } | 
 |     } | 
 |  | 
 |     State getState() { | 
 |         return mState; | 
 |     } | 
 |  | 
 |     int8_t getRetry() { | 
 |         return mRetry; | 
 |     } | 
 |  | 
 |     ResponseCode initialize(Value* pw) { | 
 |         if (!generateMasterKey()) { | 
 |             return SYSTEM_ERROR; | 
 |         } | 
 |         ResponseCode response = writeMasterKey(pw); | 
 |         if (response != NO_ERROR) { | 
 |             return response; | 
 |         } | 
 |         setupMasterKeys(); | 
 |         return NO_ERROR; | 
 |     } | 
 |  | 
 |     ResponseCode writeMasterKey(Value* pw) { | 
 |         uint8_t passwordKey[MASTER_KEY_SIZE_BYTES]; | 
 |         generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, mSalt); | 
 |         AES_KEY passwordAesKey; | 
 |         AES_set_encrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey); | 
 |         Blob masterKeyBlob(mMasterKey, sizeof(mMasterKey), mSalt, sizeof(mSalt)); | 
 |         return masterKeyBlob.encryptBlob(MASTER_KEY_FILE, &passwordAesKey, mEntropy); | 
 |     } | 
 |  | 
 |     ResponseCode readMasterKey(Value* pw) { | 
 |         int in = open(MASTER_KEY_FILE, O_RDONLY); | 
 |         if (in == -1) { | 
 |             return SYSTEM_ERROR; | 
 |         } | 
 |  | 
 |         // we read the raw blob to just to get the salt to generate | 
 |         // the AES key, then we create the Blob to use with decryptBlob | 
 |         blob rawBlob; | 
 |         size_t length = readFully(in, (uint8_t*) &rawBlob, sizeof(rawBlob)); | 
 |         if (close(in) != 0) { | 
 |             return SYSTEM_ERROR; | 
 |         } | 
 |         // find salt at EOF if present, otherwise we have an old file | 
 |         uint8_t* salt; | 
 |         if (length > SALT_SIZE && rawBlob.info == SALT_SIZE) { | 
 |             salt = (uint8_t*) &rawBlob + length - SALT_SIZE; | 
 |         } else { | 
 |             salt = NULL; | 
 |         } | 
 |         uint8_t passwordKey[MASTER_KEY_SIZE_BYTES]; | 
 |         generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, salt); | 
 |         AES_KEY passwordAesKey; | 
 |         AES_set_decrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey); | 
 |         Blob masterKeyBlob(rawBlob); | 
 |         ResponseCode response = masterKeyBlob.decryptBlob(MASTER_KEY_FILE, &passwordAesKey); | 
 |         if (response == SYSTEM_ERROR) { | 
 |             return SYSTEM_ERROR; | 
 |         } | 
 |         if (response == NO_ERROR && masterKeyBlob.getLength() == MASTER_KEY_SIZE_BYTES) { | 
 |             // if salt was missing, generate one and write a new master key file with the salt. | 
 |             if (salt == NULL) { | 
 |                 if (!generateSalt()) { | 
 |                     return SYSTEM_ERROR; | 
 |                 } | 
 |                 response = writeMasterKey(pw); | 
 |             } | 
 |             if (response == NO_ERROR) { | 
 |                 memcpy(mMasterKey, masterKeyBlob.getValue(), MASTER_KEY_SIZE_BYTES); | 
 |                 setupMasterKeys(); | 
 |             } | 
 |             return response; | 
 |         } | 
 |         if (mRetry <= 0) { | 
 |             reset(); | 
 |             return UNINITIALIZED; | 
 |         } | 
 |         --mRetry; | 
 |         switch (mRetry) { | 
 |             case 0: return WRONG_PASSWORD_0; | 
 |             case 1: return WRONG_PASSWORD_1; | 
 |             case 2: return WRONG_PASSWORD_2; | 
 |             case 3: return WRONG_PASSWORD_3; | 
 |             default: return WRONG_PASSWORD_3; | 
 |         } | 
 |     } | 
 |  | 
 |     bool reset() { | 
 |         clearMasterKeys(); | 
 |         setState(STATE_UNINITIALIZED); | 
 |  | 
 |         DIR* dir = opendir("."); | 
 |         struct dirent* file; | 
 |  | 
 |         if (!dir) { | 
 |             return false; | 
 |         } | 
 |         while ((file = readdir(dir)) != NULL) { | 
 |             unlink(file->d_name); | 
 |         } | 
 |         closedir(dir); | 
 |         return true; | 
 |     } | 
 |  | 
 |     bool isEmpty() { | 
 |         DIR* dir = opendir("."); | 
 |         struct dirent* file; | 
 |         if (!dir) { | 
 |             return true; | 
 |         } | 
 |         bool result = true; | 
 |         while ((file = readdir(dir)) != NULL) { | 
 |             if (isKeyFile(file->d_name)) { | 
 |                 result = false; | 
 |                 break; | 
 |             } | 
 |         } | 
 |         closedir(dir); | 
 |         return result; | 
 |     } | 
 |  | 
 |     void lock() { | 
 |         clearMasterKeys(); | 
 |         setState(STATE_LOCKED); | 
 |     } | 
 |  | 
 |     ResponseCode get(const char* filename, Blob* keyBlob) { | 
 |         return keyBlob->decryptBlob(filename, &mMasterKeyDecryption); | 
 |     } | 
 |  | 
 |     ResponseCode put(const char* filename, Blob* keyBlob) { | 
 |         return keyBlob->encryptBlob(filename, &mMasterKeyEncryption, mEntropy); | 
 |     } | 
 |  | 
 | private: | 
 |     static const char* MASTER_KEY_FILE; | 
 |     static const int MASTER_KEY_SIZE_BYTES = 16; | 
 |     static const int MASTER_KEY_SIZE_BITS = MASTER_KEY_SIZE_BYTES * 8; | 
 |  | 
 |     static const int MAX_RETRY = 4; | 
 |     static const size_t SALT_SIZE = 16; | 
 |  | 
 |     Entropy* mEntropy; | 
 |  | 
 |     State mState; | 
 |     int8_t mRetry; | 
 |  | 
 |     uint8_t mMasterKey[MASTER_KEY_SIZE_BYTES]; | 
 |     uint8_t mSalt[SALT_SIZE]; | 
 |  | 
 |     AES_KEY mMasterKeyEncryption; | 
 |     AES_KEY mMasterKeyDecryption; | 
 |  | 
 |     void setState(State state) { | 
 |         mState = state; | 
 |         if (mState == STATE_NO_ERROR || mState == STATE_UNINITIALIZED) { | 
 |             mRetry = MAX_RETRY; | 
 |         } | 
 |     } | 
 |  | 
 |     bool generateSalt() { | 
 |         return mEntropy->generate_random_data(mSalt, sizeof(mSalt)); | 
 |     } | 
 |  | 
 |     bool generateMasterKey() { | 
 |         if (!mEntropy->generate_random_data(mMasterKey, sizeof(mMasterKey))) { | 
 |             return false; | 
 |         } | 
 |         if (!generateSalt()) { | 
 |             return false; | 
 |         } | 
 |         return true; | 
 |     } | 
 |  | 
 |     void setupMasterKeys() { | 
 |         AES_set_encrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyEncryption); | 
 |         AES_set_decrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyDecryption); | 
 |         setState(STATE_NO_ERROR); | 
 |     } | 
 |  | 
 |     void clearMasterKeys() { | 
 |         memset(mMasterKey, 0, sizeof(mMasterKey)); | 
 |         memset(mSalt, 0, sizeof(mSalt)); | 
 |         memset(&mMasterKeyEncryption, 0, sizeof(mMasterKeyEncryption)); | 
 |         memset(&mMasterKeyDecryption, 0, sizeof(mMasterKeyDecryption)); | 
 |     } | 
 |  | 
 |     static void generateKeyFromPassword(uint8_t* key, ssize_t keySize, Value* pw, uint8_t* salt) { | 
 |         size_t saltSize; | 
 |         if (salt != NULL) { | 
 |             saltSize = SALT_SIZE; | 
 |         } else { | 
 |             // pre-gingerbread used this hardwired salt, readMasterKey will rewrite these when found | 
 |             salt = (uint8_t*) "keystore"; | 
 |             // sizeof = 9, not strlen = 8 | 
 |             saltSize = sizeof("keystore"); | 
 |         } | 
 |         PKCS5_PBKDF2_HMAC_SHA1((char*) pw->value, pw->length, salt, saltSize, 8192, keySize, key); | 
 |     } | 
 |  | 
 |     static bool isKeyFile(const char* filename) { | 
 |         return ((strcmp(filename, MASTER_KEY_FILE) != 0) | 
 |                 && (strcmp(filename, ".") != 0) | 
 |                 && (strcmp(filename, "..") != 0)); | 
 |     } | 
 | }; | 
 |  | 
 | const char* KeyStore::MASTER_KEY_FILE = ".masterkey"; | 
 |  | 
 | /* Here is the protocol used in both requests and responses: | 
 |  *     code [length_1 message_1 ... length_n message_n] end-of-file | 
 |  * where code is one byte long and lengths are unsigned 16-bit integers in | 
 |  * network order. Thus the maximum length of a message is 65535 bytes. */ | 
 |  | 
 | static int recv_code(int sock, int8_t* code) { | 
 |     return recv(sock, code, 1, 0) == 1; | 
 | } | 
 |  | 
 | static int recv_message(int sock, uint8_t* message, int length) { | 
 |     uint8_t bytes[2]; | 
 |     if (recv(sock, &bytes[0], 1, 0) != 1 || | 
 |         recv(sock, &bytes[1], 1, 0) != 1) { | 
 |         return -1; | 
 |     } else { | 
 |         int offset = bytes[0] << 8 | bytes[1]; | 
 |         if (length < offset) { | 
 |             return -1; | 
 |         } | 
 |         length = offset; | 
 |         offset = 0; | 
 |         while (offset < length) { | 
 |             int n = recv(sock, &message[offset], length - offset, 0); | 
 |             if (n <= 0) { | 
 |                 return -1; | 
 |             } | 
 |             offset += n; | 
 |         } | 
 |     } | 
 |     return length; | 
 | } | 
 |  | 
 | static int recv_end_of_file(int sock) { | 
 |     uint8_t byte; | 
 |     return recv(sock, &byte, 1, 0) == 0; | 
 | } | 
 |  | 
 | static void send_code(int sock, int8_t code) { | 
 |     send(sock, &code, 1, 0); | 
 | } | 
 |  | 
 | static void send_message(int sock, uint8_t* message, int length) { | 
 |     uint16_t bytes = htons(length); | 
 |     send(sock, &bytes, 2, 0); | 
 |     send(sock, message, length, 0); | 
 | } | 
 |  | 
 | /* Here are the actions. Each of them is a function without arguments. All | 
 |  * information is defined in global variables, which are set properly before | 
 |  * performing an action. The number of parameters required by each action is | 
 |  * fixed and defined in a table. If the return value of an action is positive, | 
 |  * it will be treated as a response code and transmitted to the client. Note | 
 |  * that the lengths of parameters are checked when they are received, so | 
 |  * boundary checks on parameters are omitted. */ | 
 |  | 
 | static const ResponseCode NO_ERROR_RESPONSE_CODE_SENT = (ResponseCode) 0; | 
 |  | 
 | static ResponseCode test(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) { | 
 |     return (ResponseCode) keyStore->getState(); | 
 | } | 
 |  | 
 | static ResponseCode get(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) { | 
 |     char filename[NAME_MAX]; | 
 |     encode_key(filename, uid, keyName); | 
 |     Blob keyBlob; | 
 |     ResponseCode responseCode = keyStore->get(filename, &keyBlob); | 
 |     if (responseCode != NO_ERROR) { | 
 |         return responseCode; | 
 |     } | 
 |     send_code(sock, NO_ERROR); | 
 |     send_message(sock, keyBlob.getValue(), keyBlob.getLength()); | 
 |     return NO_ERROR_RESPONSE_CODE_SENT; | 
 | } | 
 |  | 
 | static ResponseCode insert(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value* val) { | 
 |     char filename[NAME_MAX]; | 
 |     encode_key(filename, uid, keyName); | 
 |     Blob keyBlob(val->value, val->length, 0, NULL); | 
 |     return keyStore->put(filename, &keyBlob); | 
 | } | 
 |  | 
 | static ResponseCode del(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) { | 
 |     char filename[NAME_MAX]; | 
 |     encode_key(filename, uid, keyName); | 
 |     return (unlink(filename) && errno != ENOENT) ? SYSTEM_ERROR : NO_ERROR; | 
 | } | 
 |  | 
 | static ResponseCode exist(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) { | 
 |     char filename[NAME_MAX]; | 
 |     encode_key(filename, uid, keyName); | 
 |     if (access(filename, R_OK) == -1) { | 
 |         return (errno != ENOENT) ? SYSTEM_ERROR : KEY_NOT_FOUND; | 
 |     } | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | static ResponseCode saw(KeyStore* keyStore, int sock, uid_t uid, Value* keyPrefix, Value*) { | 
 |     DIR* dir = opendir("."); | 
 |     if (!dir) { | 
 |         return SYSTEM_ERROR; | 
 |     } | 
 |     char filename[NAME_MAX]; | 
 |     int n = encode_key(filename, uid, keyPrefix); | 
 |     send_code(sock, NO_ERROR); | 
 |  | 
 |     struct dirent* file; | 
 |     while ((file = readdir(dir)) != NULL) { | 
 |         if (!strncmp(filename, file->d_name, n)) { | 
 |             char* p = &file->d_name[n]; | 
 |             keyPrefix->length = decode_key(keyPrefix->value, p, strlen(p)); | 
 |             send_message(sock, keyPrefix->value, keyPrefix->length); | 
 |         } | 
 |     } | 
 |     closedir(dir); | 
 |     return NO_ERROR_RESPONSE_CODE_SENT; | 
 | } | 
 |  | 
 | static ResponseCode reset(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) { | 
 |     return keyStore->reset() ? NO_ERROR : SYSTEM_ERROR; | 
 | } | 
 |  | 
 | /* Here is the history. To improve the security, the parameters to generate the | 
 |  * master key has been changed. To make a seamless transition, we update the | 
 |  * file using the same password when the user unlock it for the first time. If | 
 |  * any thing goes wrong during the transition, the new file will not overwrite | 
 |  * the old one. This avoids permanent damages of the existing data. */ | 
 |  | 
 | static ResponseCode password(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value*) { | 
 |     switch (keyStore->getState()) { | 
 |         case STATE_UNINITIALIZED: { | 
 |             // generate master key, encrypt with password, write to file, initialize mMasterKey*. | 
 |             return keyStore->initialize(pw); | 
 |         } | 
 |         case STATE_NO_ERROR: { | 
 |             // rewrite master key with new password. | 
 |             return keyStore->writeMasterKey(pw); | 
 |         } | 
 |         case STATE_LOCKED: { | 
 |             // read master key, decrypt with password, initialize mMasterKey*. | 
 |             return keyStore->readMasterKey(pw); | 
 |         } | 
 |     } | 
 |     return SYSTEM_ERROR; | 
 | } | 
 |  | 
 | static ResponseCode lock(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) { | 
 |     keyStore->lock(); | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | static ResponseCode unlock(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value* unused) { | 
 |     return password(keyStore, sock, uid, pw, unused); | 
 | } | 
 |  | 
 | static ResponseCode zero(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) { | 
 |     return keyStore->isEmpty() ? KEY_NOT_FOUND : NO_ERROR; | 
 | } | 
 |  | 
 | /* Here are the permissions, actions, users, and the main function. */ | 
 |  | 
 | enum perm { | 
 |     TEST     =    1, | 
 |     GET      =    2, | 
 |     INSERT   =    4, | 
 |     DELETE   =    8, | 
 |     EXIST    =   16, | 
 |     SAW      =   32, | 
 |     RESET    =   64, | 
 |     PASSWORD =  128, | 
 |     LOCK     =  256, | 
 |     UNLOCK   =  512, | 
 |     ZERO     = 1024, | 
 | }; | 
 |  | 
 | static const int MAX_PARAM = 2; | 
 |  | 
 | static const State STATE_ANY = (State) 0; | 
 |  | 
 | static struct action { | 
 |     ResponseCode (*run)(KeyStore* keyStore, int sock, uid_t uid, Value* param1, Value* param2); | 
 |     int8_t code; | 
 |     State state; | 
 |     uint32_t perm; | 
 |     int lengths[MAX_PARAM]; | 
 | } actions[] = { | 
 |     {test,     't', STATE_ANY,      TEST,     {0, 0}}, | 
 |     {get,      'g', STATE_NO_ERROR, GET,      {KEY_SIZE, 0}}, | 
 |     {insert,   'i', STATE_NO_ERROR, INSERT,   {KEY_SIZE, VALUE_SIZE}}, | 
 |     {del,      'd', STATE_ANY,      DELETE,   {KEY_SIZE, 0}}, | 
 |     {exist,    'e', STATE_ANY,      EXIST,    {KEY_SIZE, 0}}, | 
 |     {saw,      's', STATE_ANY,      SAW,      {KEY_SIZE, 0}}, | 
 |     {reset,    'r', STATE_ANY,      RESET,    {0, 0}}, | 
 |     {password, 'p', STATE_ANY,      PASSWORD, {PASSWORD_SIZE, 0}}, | 
 |     {lock,     'l', STATE_NO_ERROR, LOCK,     {0, 0}}, | 
 |     {unlock,   'u', STATE_LOCKED,   UNLOCK,   {PASSWORD_SIZE, 0}}, | 
 |     {zero,     'z', STATE_ANY,      ZERO,     {0, 0}}, | 
 |     {NULL,      0 , STATE_ANY,      0,        {0, 0}}, | 
 | }; | 
 |  | 
 | static struct user { | 
 |     uid_t uid; | 
 |     uid_t euid; | 
 |     uint32_t perms; | 
 | } users[] = { | 
 |     {AID_SYSTEM,   ~0,         ~0}, | 
 |     {AID_VPN,      AID_SYSTEM, GET}, | 
 |     {AID_WIFI,     AID_SYSTEM, GET}, | 
 |     {AID_ROOT,     AID_SYSTEM, GET}, | 
 |     {~0,           ~0,         TEST | GET | INSERT | DELETE | EXIST | SAW}, | 
 | }; | 
 |  | 
 | static ResponseCode process(KeyStore* keyStore, int sock, uid_t uid, int8_t code) { | 
 |     struct user* user = users; | 
 |     struct action* action = actions; | 
 |     int i; | 
 |  | 
 |     while (~user->uid && user->uid != uid) { | 
 |         ++user; | 
 |     } | 
 |     while (action->code && action->code != code) { | 
 |         ++action; | 
 |     } | 
 |     if (!action->code) { | 
 |         return UNDEFINED_ACTION; | 
 |     } | 
 |     if (!(action->perm & user->perms)) { | 
 |         return PERMISSION_DENIED; | 
 |     } | 
 |     if (action->state != STATE_ANY && action->state != keyStore->getState()) { | 
 |         return (ResponseCode) keyStore->getState(); | 
 |     } | 
 |     if (~user->euid) { | 
 |         uid = user->euid; | 
 |     } | 
 |     Value params[MAX_PARAM]; | 
 |     for (i = 0; i < MAX_PARAM && action->lengths[i] != 0; ++i) { | 
 |         params[i].length = recv_message(sock, params[i].value, action->lengths[i]); | 
 |         if (params[i].length < 0) { | 
 |             return PROTOCOL_ERROR; | 
 |         } | 
 |     } | 
 |     if (!recv_end_of_file(sock)) { | 
 |         return PROTOCOL_ERROR; | 
 |     } | 
 |     return action->run(keyStore, sock, uid, ¶ms[0], ¶ms[1]); | 
 | } | 
 |  | 
 | int main(int argc, char* argv[]) { | 
 |     int controlSocket = android_get_control_socket("keystore"); | 
 |     if (argc < 2) { | 
 |         ALOGE("A directory must be specified!"); | 
 |         return 1; | 
 |     } | 
 |     if (chdir(argv[1]) == -1) { | 
 |         ALOGE("chdir: %s: %s", argv[1], strerror(errno)); | 
 |         return 1; | 
 |     } | 
 |  | 
 |     Entropy entropy; | 
 |     if (!entropy.open()) { | 
 |         return 1; | 
 |     } | 
 |     if (listen(controlSocket, 3) == -1) { | 
 |         ALOGE("listen: %s", strerror(errno)); | 
 |         return 1; | 
 |     } | 
 |  | 
 |     signal(SIGPIPE, SIG_IGN); | 
 |  | 
 |     KeyStore keyStore(&entropy); | 
 |     int sock; | 
 |     while ((sock = accept(controlSocket, NULL, 0)) != -1) { | 
 |         struct timeval tv; | 
 |         tv.tv_sec = 3; | 
 |         setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)); | 
 |         setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv)); | 
 |  | 
 |         struct ucred cred; | 
 |         socklen_t size = sizeof(cred); | 
 |         int credResult = getsockopt(sock, SOL_SOCKET, SO_PEERCRED, &cred, &size); | 
 |         if (credResult != 0) { | 
 |             ALOGW("getsockopt: %s", strerror(errno)); | 
 |         } else { | 
 |             int8_t request; | 
 |             if (recv_code(sock, &request)) { | 
 |                 State old_state = keyStore.getState(); | 
 |                 ResponseCode response = process(&keyStore, sock, cred.uid, request); | 
 |                 if (response == NO_ERROR_RESPONSE_CODE_SENT) { | 
 |                     response = NO_ERROR; | 
 |                 } else { | 
 |                     send_code(sock, response); | 
 |                 } | 
 |                 ALOGI("uid: %d action: %c -> %d state: %d -> %d retry: %d", | 
 |                      cred.uid, | 
 |                      request, response, | 
 |                      old_state, keyStore.getState(), | 
 |                      keyStore.getRetry()); | 
 |             } | 
 |         } | 
 |         close(sock); | 
 |     } | 
 |     ALOGE("accept: %s", strerror(errno)); | 
 |     return 1; | 
 | } |