| /* |
| * Copyright 2022 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <cmath> |
| |
| #include <jpegrecoverymap/recoverymapmath.h> |
| |
| namespace android::recoverymap { |
| |
| static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f; |
| static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f; |
| |
| Color bt2100RgbToYuv(Color e) { |
| float yp = kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b; |
| return {{{yp, (e.b - yp) / kBt2100Cb, (e.r - yp) / kBt2100Cr }}}; |
| } |
| |
| static const float kSrgbRCr = 1.402f, kSrgbGCb = 0.34414f, kSrgbGCr = 0.71414f, kSrgbBCb = 1.772f; |
| |
| Color srgbYuvToRgb(Color e) { |
| return {{{ e.y + kSrgbRCr * e.v, e.y - kSrgbGCb * e.u - kSrgbGCr * e.v, e.y + kSrgbBCb * e.u }}}; |
| } |
| |
| float srgbInvOetf(float e) { |
| if (e <= 0.04045f) { |
| return e / 12.92f; |
| } else { |
| return pow((e + 0.055f) / 1.055f, 2.4); |
| } |
| } |
| |
| Color srgbInvOetf(Color e) { |
| return {{{ srgbInvOetf(e.r), srgbInvOetf(e.g), srgbInvOetf(e.b) }}}; |
| } |
| |
| static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073; |
| |
| float hlgInvOetf(float e) { |
| if (e <= 0.5f) { |
| return pow(e, 2.0f) / 3.0f; |
| } else { |
| return (exp((e - kHlgC) / kHlgA) + kHlgB) / 12.0f; |
| } |
| } |
| |
| static float hlgOetf(float e) { |
| if (e <= 1.0f/12.0f) { |
| return sqrt(3.0f * e); |
| } else { |
| return kHlgA * log(12.0f * e - kHlgB) + kHlgC; |
| } |
| } |
| |
| Color hlgOetf(Color e) { |
| return {{{ hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b) }}}; |
| } |
| |
| uint8_t encodeRecovery(float y_sdr, float y_hdr, float hdr_ratio) { |
| float gain = 1.0f; |
| if (y_sdr > 0.0f) { |
| gain = y_hdr / y_sdr; |
| } |
| |
| if (gain < -hdr_ratio) gain = -hdr_ratio; |
| if (gain > hdr_ratio) gain = hdr_ratio; |
| |
| return static_cast<uint8_t>(log2(gain) / log2(hdr_ratio) * 127.5f + 127.5f); |
| } |
| |
| static float applyRecovery(float e, float recovery, float hdr_ratio) { |
| return exp2(log2(e) + recovery * log2(hdr_ratio)); |
| } |
| |
| Color applyRecovery(Color e, float recovery, float hdr_ratio) { |
| return {{{ applyRecovery(e.r, recovery, hdr_ratio), |
| applyRecovery(e.g, recovery, hdr_ratio), |
| applyRecovery(e.b, recovery, hdr_ratio) }}}; |
| } |
| |
| // TODO: do we need something more clever for filtering either the map or images |
| // to generate the map? |
| |
| static float mapUintToFloat(uint8_t map_uint) { |
| return (static_cast<float>(map_uint) - 127.5f) / 127.5f; |
| } |
| |
| float sampleMap(jr_uncompressed_ptr map, size_t map_scale_factor, size_t x, size_t y) { |
| float x_map = static_cast<float>(x) / static_cast<float>(map_scale_factor); |
| float y_map = static_cast<float>(y) / static_cast<float>(map_scale_factor); |
| |
| size_t x_lower = static_cast<size_t>(floor(x_map)); |
| size_t x_upper = x_lower + 1; |
| size_t y_lower = static_cast<size_t>(floor(y_map)); |
| size_t y_upper = y_lower + 1; |
| |
| float x_influence = x_map - static_cast<float>(x_lower); |
| float y_influence = y_map - static_cast<float>(y_lower); |
| |
| float e1 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_lower * map->width]); |
| float e2 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_lower + y_upper * map->width]); |
| float e3 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_lower * map->width]); |
| float e4 = mapUintToFloat(reinterpret_cast<uint8_t*>(map->data)[x_upper + y_upper * map->width]); |
| |
| return e1 * (x_influence + y_influence) / 2.0f |
| + e2 * (x_influence + 1.0f - y_influence) / 2.0f |
| + e3 * (1.0f - x_influence + y_influence) / 2.0f |
| + e4 * (1.0f - x_influence + 1.0f - y_influence) / 2.0f; |
| } |
| |
| Color getYuv420Pixel(jr_uncompressed_ptr image, size_t x, size_t y) { |
| size_t pixel_count = image->width * image->height; |
| |
| size_t pixel_y_idx = x + y * image->width; |
| size_t pixel_uv_idx = x / 2 + (y / 2) * (image->width / 2); |
| |
| uint8_t y_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y_idx]; |
| uint8_t u_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count + pixel_uv_idx]; |
| uint8_t v_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count * 5 / 4 + pixel_uv_idx]; |
| |
| // 128 bias for UV given we are using jpeglib; see: |
| // https://github.com/kornelski/libjpeg/blob/master/structure.doc |
| return {{{ static_cast<float>(y_uint) / 255.0f, |
| (static_cast<float>(u_uint) - 128.0f) / 255.0f, |
| (static_cast<float>(v_uint) - 128.0f) / 255.0f }}}; |
| } |
| |
| typedef float (*sampleComponentFn)(jr_uncompressed_ptr, size_t, size_t); |
| |
| static float sampleComponent(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y, |
| sampleComponentFn sample_fn) { |
| float e = 0.0f; |
| for (size_t dy = 0; dy < map_scale_factor; ++dy) { |
| for (size_t dx = 0; dx < map_scale_factor; ++dx) { |
| e += sample_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy); |
| } |
| } |
| |
| return e / static_cast<float>(map_scale_factor * map_scale_factor); |
| } |
| |
| static float getYuv420Y(jr_uncompressed_ptr image, size_t x, size_t y) { |
| size_t pixel_idx = x + y * image->width; |
| uint8_t y_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_idx]; |
| return static_cast<float>(y_uint) / 255.0f; |
| } |
| |
| |
| float sampleYuv420Y(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { |
| return sampleComponent(image, map_scale_factor, x, y, getYuv420Y); |
| } |
| |
| static float getP010Y(jr_uncompressed_ptr image, size_t x, size_t y) { |
| size_t pixel_idx = x + y * image->width; |
| uint8_t y_uint = reinterpret_cast<uint16_t*>(image->data)[pixel_idx]; |
| // Expecting narrow range input |
| return (static_cast<float>(y_uint) - 64.0f) / 960.0f; |
| } |
| |
| float sampleP010Y(jr_uncompressed_ptr image, size_t map_scale_factor, size_t x, size_t y) { |
| return sampleComponent(image, map_scale_factor, x, y, getP010Y); |
| } |
| |
| } // namespace android::recoverymap |