| /* | 
 |  * Copyright (C) 2007 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #undef LOG_TAG | 
 | #define LOG_TAG "Transform" | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include <android-base/stringprintf.h> | 
 | #include <cutils/compiler.h> | 
 | #include <ui/Region.h> | 
 | #include <ui/Transform.h> | 
 | #include <utils/String8.h> | 
 |  | 
 | namespace android::ui { | 
 |  | 
 | Transform::Transform() { | 
 |     reset(); | 
 | } | 
 |  | 
 | Transform::Transform(const Transform&  other) | 
 |     : mMatrix(other.mMatrix), mType(other.mType) { | 
 | } | 
 |  | 
 | Transform::Transform(uint32_t orientation, int w, int h) { | 
 |     set(orientation, w, h); | 
 | } | 
 |  | 
 | Transform::~Transform() = default; | 
 |  | 
 | static const float EPSILON = 0.0f; | 
 |  | 
 | bool Transform::isZero(float f) { | 
 |     return fabs(f) <= EPSILON; | 
 | } | 
 |  | 
 | bool Transform::absIsOne(float f) { | 
 |     return isZero(fabs(f) - 1.0f); | 
 | } | 
 |  | 
 | bool Transform::operator==(const Transform& other) const { | 
 |     return mMatrix[0][0] == other.mMatrix[0][0] && mMatrix[0][1] == other.mMatrix[0][1] && | 
 |             mMatrix[0][2] == other.mMatrix[0][2] && mMatrix[1][0] == other.mMatrix[1][0] && | 
 |             mMatrix[1][1] == other.mMatrix[1][1] && mMatrix[1][2] == other.mMatrix[1][2] && | 
 |             mMatrix[2][0] == other.mMatrix[2][0] && mMatrix[2][1] == other.mMatrix[2][1] && | 
 |             mMatrix[2][2] == other.mMatrix[2][2]; | 
 | } | 
 |  | 
 | Transform Transform::operator*(const Transform& rhs) const { | 
 |     if (CC_LIKELY(mType == IDENTITY)) | 
 |         return rhs; | 
 |  | 
 |     Transform r(*this); | 
 |     if (rhs.mType == IDENTITY) | 
 |         return r; | 
 |  | 
 |     // TODO: we could use mType to optimize the matrix multiply | 
 |     const mat33& A(mMatrix); | 
 |     const mat33& B(rhs.mMatrix); | 
 |           mat33& D(r.mMatrix); | 
 |     for (size_t i = 0; i < 3; i++) { | 
 |         const float v0 = A[0][i]; | 
 |         const float v1 = A[1][i]; | 
 |         const float v2 = A[2][i]; | 
 |         D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2]; | 
 |         D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2]; | 
 |         D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2]; | 
 |     } | 
 |     r.mType |= rhs.mType; | 
 |  | 
 |     // TODO: we could recompute this value from r and rhs | 
 |     r.mType &= 0xFF; | 
 |     r.mType |= UNKNOWN_TYPE; | 
 |     return r; | 
 | } | 
 |  | 
 | Transform Transform::operator * (float value) const { | 
 |     Transform r(*this); | 
 |     const mat33& M(mMatrix); | 
 |     mat33& R(r.mMatrix); | 
 |     for (size_t i = 0; i < 3; i++) { | 
 |         for (size_t j = 0; j < 2; j++) { | 
 |             R[i][j] = M[i][j] * value; | 
 |         } | 
 |     } | 
 |     r.type(); | 
 |     return r; | 
 | } | 
 |  | 
 | Transform& Transform::operator=(const Transform& other) { | 
 |     mMatrix = other.mMatrix; | 
 |     mType = other.mType; | 
 |     return *this; | 
 | } | 
 |  | 
 | const vec3& Transform::operator [] (size_t i) const { | 
 |     return mMatrix[i]; | 
 | } | 
 |  | 
 | float Transform::tx() const { | 
 |     return mMatrix[2][0]; | 
 | } | 
 |  | 
 | float Transform::ty() const { | 
 |     return mMatrix[2][1]; | 
 | } | 
 |  | 
 | float Transform::dsdx() const { | 
 |     return mMatrix[0][0]; | 
 | } | 
 |  | 
 | float Transform::dtdx() const { | 
 |     return mMatrix[1][0]; | 
 | } | 
 |  | 
 | float Transform::dtdy() const { | 
 |     return mMatrix[0][1]; | 
 | } | 
 |  | 
 | float Transform::dsdy() const { | 
 |     return mMatrix[1][1]; | 
 | } | 
 |  | 
 | float Transform::getScaleX() const { | 
 |     return sqrt((dsdx() * dsdx()) + (dtdx() * dtdx())); | 
 | } | 
 |  | 
 | float Transform::getScaleY() const { | 
 |     return sqrt((dtdy() * dtdy()) + (dsdy() * dsdy())); | 
 | } | 
 |  | 
 | void Transform::reset() { | 
 |     mType = IDENTITY; | 
 |     for(size_t i = 0; i < 3; i++) { | 
 |         vec3& v(mMatrix[i]); | 
 |         for (size_t j = 0; j < 3; j++) | 
 |             v[j] = ((i == j) ? 1.0f : 0.0f); | 
 |     } | 
 | } | 
 |  | 
 | void Transform::set(float tx, float ty) { | 
 |     mMatrix[2][0] = tx; | 
 |     mMatrix[2][1] = ty; | 
 |     mMatrix[2][2] = 1.0f; | 
 |  | 
 |     if (isZero(tx) && isZero(ty)) { | 
 |         mType &= ~TRANSLATE; | 
 |     } else { | 
 |         mType |= TRANSLATE; | 
 |     } | 
 | } | 
 |  | 
 | void Transform::set(float a, float b, float c, float d) { | 
 |     mat33& M(mMatrix); | 
 |     M[0][0] = a;    M[1][0] = b; | 
 |     M[0][1] = c;    M[1][1] = d; | 
 |     M[0][2] = 0;    M[1][2] = 0; | 
 |     mType = UNKNOWN_TYPE; | 
 | } | 
 |  | 
 | status_t Transform::set(uint32_t flags, float w, float h) { | 
 |     if (flags & ROT_INVALID) { | 
 |         // that's not allowed! | 
 |         reset(); | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     Transform H, V, R; | 
 |     if (flags & ROT_90) { | 
 |         // w & h are inverted when rotating by 90 degrees | 
 |         std::swap(w, h); | 
 |     } | 
 |  | 
 |     if (flags & FLIP_H) { | 
 |         H.mType = (FLIP_H << 8) | SCALE; | 
 |         H.mType |= isZero(w) ? IDENTITY : TRANSLATE; | 
 |         mat33& M(H.mMatrix); | 
 |         M[0][0] = -1; | 
 |         M[2][0] = w; | 
 |     } | 
 |  | 
 |     if (flags & FLIP_V) { | 
 |         V.mType = (FLIP_V << 8) | SCALE; | 
 |         V.mType |= isZero(h) ? IDENTITY : TRANSLATE; | 
 |         mat33& M(V.mMatrix); | 
 |         M[1][1] = -1; | 
 |         M[2][1] = h; | 
 |     } | 
 |  | 
 |     if (flags & ROT_90) { | 
 |         const float original_w = h; | 
 |         R.mType = (ROT_90 << 8) | ROTATE; | 
 |         R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE; | 
 |         mat33& M(R.mMatrix); | 
 |         M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w; | 
 |         M[0][1] = 1;    M[1][1] = 0; | 
 |     } | 
 |  | 
 |     *this = (R*(H*V)); | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | void Transform::set(const std::array<float, 9>& matrix) { | 
 |     mat33& M(mMatrix); | 
 |     M[0][0] = matrix[0];  M[1][0] = matrix[1];  M[2][0] = matrix[2]; | 
 |     M[0][1] = matrix[3];  M[1][1] = matrix[4];  M[2][1] = matrix[5]; | 
 |     M[0][2] = matrix[6];  M[1][2] = matrix[7];  M[2][2] = matrix[8]; | 
 |     mType = UNKNOWN_TYPE; | 
 |     type(); | 
 | } | 
 |  | 
 | vec2 Transform::transform(const vec2& v) const { | 
 |     vec2 r; | 
 |     const mat33& M(mMatrix); | 
 |     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]; | 
 |     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]; | 
 |     return r; | 
 | } | 
 |  | 
 | vec3 Transform::transform(const vec3& v) const { | 
 |     vec3 r; | 
 |     const mat33& M(mMatrix); | 
 |     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2]; | 
 |     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2]; | 
 |     r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2]; | 
 |     return r; | 
 | } | 
 |  | 
 | vec2 Transform::transform(float x, float y) const { | 
 |     return transform(vec2(x, y)); | 
 | } | 
 |  | 
 | Rect Transform::makeBounds(int w, int h) const { | 
 |     return transform( Rect(w, h) ); | 
 | } | 
 |  | 
 | Rect Transform::transform(const Rect& bounds, bool roundOutwards) const { | 
 |     Rect r; | 
 |     vec2 lt( bounds.left,  bounds.top    ); | 
 |     vec2 rt( bounds.right, bounds.top    ); | 
 |     vec2 lb( bounds.left,  bounds.bottom ); | 
 |     vec2 rb( bounds.right, bounds.bottom ); | 
 |  | 
 |     lt = transform(lt); | 
 |     rt = transform(rt); | 
 |     lb = transform(lb); | 
 |     rb = transform(rb); | 
 |  | 
 |     if (roundOutwards) { | 
 |         r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}))); | 
 |         r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}))); | 
 |         r.right  = static_cast<int32_t>(ceilf(std::max({lt[0], rt[0], lb[0], rb[0]}))); | 
 |         r.bottom = static_cast<int32_t>(ceilf(std::max({lt[1], rt[1], lb[1], rb[1]}))); | 
 |     } else { | 
 |         r.left   = static_cast<int32_t>(floorf(std::min({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); | 
 |         r.top    = static_cast<int32_t>(floorf(std::min({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); | 
 |         r.right  = static_cast<int32_t>(floorf(std::max({lt[0], rt[0], lb[0], rb[0]}) + 0.5f)); | 
 |         r.bottom = static_cast<int32_t>(floorf(std::max({lt[1], rt[1], lb[1], rb[1]}) + 0.5f)); | 
 |     } | 
 |  | 
 |     return r; | 
 | } | 
 |  | 
 | FloatRect Transform::transform(const FloatRect& bounds) const { | 
 |     vec2 lt(bounds.left, bounds.top); | 
 |     vec2 rt(bounds.right, bounds.top); | 
 |     vec2 lb(bounds.left, bounds.bottom); | 
 |     vec2 rb(bounds.right, bounds.bottom); | 
 |  | 
 |     lt = transform(lt); | 
 |     rt = transform(rt); | 
 |     lb = transform(lb); | 
 |     rb = transform(rb); | 
 |  | 
 |     FloatRect r; | 
 |     r.left = std::min({lt[0], rt[0], lb[0], rb[0]}); | 
 |     r.top = std::min({lt[1], rt[1], lb[1], rb[1]}); | 
 |     r.right = std::max({lt[0], rt[0], lb[0], rb[0]}); | 
 |     r.bottom = std::max({lt[1], rt[1], lb[1], rb[1]}); | 
 |  | 
 |     return r; | 
 | } | 
 |  | 
 | Region Transform::transform(const Region& reg) const { | 
 |     Region out; | 
 |     if (CC_UNLIKELY(type() > TRANSLATE)) { | 
 |         if (CC_LIKELY(preserveRects())) { | 
 |             Region::const_iterator it = reg.begin(); | 
 |             Region::const_iterator const end = reg.end(); | 
 |             while (it != end) { | 
 |                 out.orSelf(transform(*it++)); | 
 |             } | 
 |         } else { | 
 |             out.set(transform(reg.bounds())); | 
 |         } | 
 |     } else { | 
 |         int xpos = static_cast<int>(floorf(tx() + 0.5f)); | 
 |         int ypos = static_cast<int>(floorf(ty() + 0.5f)); | 
 |         out = reg.translate(xpos, ypos); | 
 |     } | 
 |     return out; | 
 | } | 
 |  | 
 | uint32_t Transform::type() const { | 
 |     if (mType & UNKNOWN_TYPE) { | 
 |         // recompute what this transform is | 
 |  | 
 |         const mat33& M(mMatrix); | 
 |         const float a = M[0][0]; | 
 |         const float b = M[1][0]; | 
 |         const float c = M[0][1]; | 
 |         const float d = M[1][1]; | 
 |         const float x = M[2][0]; | 
 |         const float y = M[2][1]; | 
 |  | 
 |         bool scale = false; | 
 |         uint32_t flags = ROT_0; | 
 |         if (isZero(b) && isZero(c)) { | 
 |             if (a<0)    flags |= FLIP_H; | 
 |             if (d<0)    flags |= FLIP_V; | 
 |             if (!absIsOne(a) || !absIsOne(d)) { | 
 |                 scale = true; | 
 |             } | 
 |         } else if (isZero(a) && isZero(d)) { | 
 |             flags |= ROT_90; | 
 |             if (b>0)    flags |= FLIP_V; | 
 |             if (c<0)    flags |= FLIP_H; | 
 |             if (!absIsOne(b) || !absIsOne(c)) { | 
 |                 scale = true; | 
 |             } | 
 |         } else { | 
 |             // there is a skew component and/or a non 90 degrees rotation | 
 |             flags = ROT_INVALID; | 
 |         } | 
 |  | 
 |         mType = flags << 8; | 
 |         if (flags & ROT_INVALID) { | 
 |             mType |= UNKNOWN; | 
 |         } else { | 
 |             if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180)) | 
 |                 mType |= ROTATE; | 
 |             if (flags & FLIP_H) | 
 |                 mType ^= SCALE; | 
 |             if (flags & FLIP_V) | 
 |                 mType ^= SCALE; | 
 |             if (scale) | 
 |                 mType |= SCALE; | 
 |         } | 
 |  | 
 |         if (!isZero(x) || !isZero(y)) | 
 |             mType |= TRANSLATE; | 
 |     } | 
 |     return mType; | 
 | } | 
 |  | 
 | Transform Transform::inverse() const { | 
 |     // our 3x3 matrix is always of the form of a 2x2 transformation | 
 |     // followed by a translation: T*M, therefore: | 
 |     // (T*M)^-1 = M^-1 * T^-1 | 
 |     Transform result; | 
 |     if (mType <= TRANSLATE) { | 
 |         // 1 0 0 | 
 |         // 0 1 0 | 
 |         // x y 1 | 
 |         result = *this; | 
 |         result.mMatrix[2][0] = -result.mMatrix[2][0]; | 
 |         result.mMatrix[2][1] = -result.mMatrix[2][1]; | 
 |     } else { | 
 |         // a c 0 | 
 |         // b d 0 | 
 |         // x y 1 | 
 |         const mat33& M(mMatrix); | 
 |         const float a = M[0][0]; | 
 |         const float b = M[1][0]; | 
 |         const float c = M[0][1]; | 
 |         const float d = M[1][1]; | 
 |         const float x = M[2][0]; | 
 |         const float y = M[2][1]; | 
 |  | 
 |         const float idet = 1.0f / (a*d - b*c); | 
 |         result.mMatrix[0][0] =  d*idet; | 
 |         result.mMatrix[0][1] = -c*idet; | 
 |         result.mMatrix[1][0] = -b*idet; | 
 |         result.mMatrix[1][1] =  a*idet; | 
 |         result.mType = mType; | 
 |  | 
 |         vec2 T(-x, -y); | 
 |         T = result.transform(T); | 
 |         result.mMatrix[2][0] = T[0]; | 
 |         result.mMatrix[2][1] = T[1]; | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | uint32_t Transform::getType() const { | 
 |     return type() & 0xFF; | 
 | } | 
 |  | 
 | uint32_t Transform::getOrientation() const { | 
 |     return (type() >> 8) & 0xFF; | 
 | } | 
 |  | 
 | bool Transform::preserveRects() const { | 
 |     return (getOrientation() & ROT_INVALID) ? false : true; | 
 | } | 
 |  | 
 | bool Transform::needsBilinearFiltering() const { | 
 |     return (!preserveRects() || getType() >= ui::Transform::SCALE); | 
 | } | 
 |  | 
 | mat4 Transform::asMatrix4() const { | 
 |     // Internally Transform uses a 3x3 matrix since the transform is meant for | 
 |     // two-dimensional values. An equivalent 4x4 matrix means inserting an extra | 
 |     // row and column which adds as an identity transform on the third | 
 |     // dimension. | 
 |  | 
 |     mat4 m = mat4{mat4::NO_INIT}; // NO_INIT since we explicitly set every element | 
 |  | 
 |     m[0][0] = mMatrix[0][0]; | 
 |     m[0][1] = mMatrix[0][1]; | 
 |     m[0][2] = 0.f; | 
 |     m[0][3] = mMatrix[0][2]; | 
 |  | 
 |     m[1][0] = mMatrix[1][0]; | 
 |     m[1][1] = mMatrix[1][1]; | 
 |     m[1][2] = 0.f; | 
 |     m[1][3] = mMatrix[1][2]; | 
 |  | 
 |     m[2][0] = 0.f; | 
 |     m[2][1] = 0.f; | 
 |     m[2][2] = 1.f; | 
 |     m[2][3] = 0.f; | 
 |  | 
 |     m[3][0] = mMatrix[2][0]; | 
 |     m[3][1] = mMatrix[2][1]; | 
 |     m[3][2] = 0.f; | 
 |     m[3][3] = mMatrix[2][2]; | 
 |  | 
 |     return m; | 
 | } | 
 |  | 
 | static std::string rotationToString(const uint32_t rotationFlags) { | 
 |     switch (rotationFlags) { | 
 |         case Transform::ROT_0: | 
 |             return "ROT_0"; | 
 |         case Transform::FLIP_H: | 
 |             return "FLIP_H"; | 
 |         case Transform::FLIP_V: | 
 |             return "FLIP_V"; | 
 |         case Transform::ROT_90: | 
 |             return "ROT_90"; | 
 |         case Transform::ROT_180: | 
 |             return "ROT_180"; | 
 |         case Transform::ROT_270: | 
 |             return "ROT_270"; | 
 |         case Transform::ROT_INVALID: | 
 |         default: | 
 |             return "ROT_INVALID"; | 
 |     } | 
 | } | 
 |  | 
 | static std::string transformToString(const uint32_t transform) { | 
 |     if (transform == Transform::IDENTITY) { | 
 |         return "IDENTITY"; | 
 |     } | 
 |  | 
 |     if (transform == Transform::UNKNOWN) { | 
 |         return "UNKNOWN"; | 
 |     } | 
 |  | 
 |     std::string out; | 
 |     if (transform & Transform::SCALE) out.append("SCALE "); | 
 |     if (transform & Transform::ROTATE) out.append("ROTATE "); | 
 |     if (transform & Transform::TRANSLATE) out.append("TRANSLATE"); | 
 |     return out; | 
 | } | 
 |  | 
 | void Transform::dump(std::string& out, const char* name, const char* prefix) const { | 
 |     using android::base::StringAppendF; | 
 |  | 
 |     type(); // Ensure the information in mType is up to date | 
 |  | 
 |     const uint32_t type = mType; | 
 |     const uint32_t orient = type >> 8; | 
 |  | 
 |     out += prefix; | 
 |     out += name; | 
 |     out += " "; | 
 |  | 
 |     if (orient & ROT_INVALID) { | 
 |         StringAppendF(&out, "0x%08x ", orient); | 
 |     } | 
 |     out += "(" + rotationToString(orient) + ") "; | 
 |  | 
 |     if (type & UNKNOWN) { | 
 |         StringAppendF(&out, "0x%02x ", type); | 
 |     } | 
 |     out += "(" + transformToString(type) + ")\n"; | 
 |  | 
 |     if (type == IDENTITY) { | 
 |         return; | 
 |     } | 
 |  | 
 |     for (size_t i = 0; i < 3; i++) { | 
 |         StringAppendF(&out, "%s    %.4f  %.4f  %.4f\n", prefix, static_cast<double>(mMatrix[0][i]), | 
 |                       static_cast<double>(mMatrix[1][i]), static_cast<double>(mMatrix[2][i])); | 
 |     } | 
 | } | 
 |  | 
 | void Transform::dump(const char* name, const char* prefix) const { | 
 |     std::string out; | 
 |     dump(out, name, prefix); | 
 |     ALOGD("%s", out.c_str()); | 
 | } | 
 |  | 
 | } // namespace android::ui |