|  | /* | 
|  | * Copyright (C) 2007 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "Layer" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <stdint.h> | 
|  | #include <sys/types.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include <cutils/compiler.h> | 
|  | #include <cutils/native_handle.h> | 
|  | #include <cutils/properties.h> | 
|  |  | 
|  | #include <utils/Errors.h> | 
|  | #include <utils/Log.h> | 
|  | #include <utils/NativeHandle.h> | 
|  | #include <utils/StopWatch.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <ui/GraphicBuffer.h> | 
|  | #include <ui/PixelFormat.h> | 
|  |  | 
|  | #include <gui/BufferItem.h> | 
|  | #include <gui/BufferQueue.h> | 
|  | #include <gui/Surface.h> | 
|  |  | 
|  | #include "clz.h" | 
|  | #include "Colorizer.h" | 
|  | #include "DisplayDevice.h" | 
|  | #include "Layer.h" | 
|  | #include "LayerRejecter.h" | 
|  | #include "MonitoredProducer.h" | 
|  | #include "SurfaceFlinger.h" | 
|  |  | 
|  | #include "DisplayHardware/HWComposer.h" | 
|  |  | 
|  | #include "RenderEngine/RenderEngine.h" | 
|  |  | 
|  | #include <mutex> | 
|  |  | 
|  | #define DEBUG_RESIZE    0 | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | int32_t Layer::sSequence = 1; | 
|  |  | 
|  | Layer::Layer(SurfaceFlinger* flinger, const sp<Client>& client, | 
|  | const String8& name, uint32_t w, uint32_t h, uint32_t flags) | 
|  | :   contentDirty(false), | 
|  | sequence(uint32_t(android_atomic_inc(&sSequence))), | 
|  | mFlinger(flinger), | 
|  | mTextureName(-1U), | 
|  | mPremultipliedAlpha(true), | 
|  | mName("unnamed"), | 
|  | mFormat(PIXEL_FORMAT_NONE), | 
|  | mTransactionFlags(0), | 
|  | mPendingStateMutex(), | 
|  | mPendingStates(), | 
|  | mQueuedFrames(0), | 
|  | mSidebandStreamChanged(false), | 
|  | mActiveBufferSlot(BufferQueue::INVALID_BUFFER_SLOT), | 
|  | mCurrentTransform(0), | 
|  | mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE), | 
|  | mOverrideScalingMode(-1), | 
|  | mCurrentOpacity(true), | 
|  | mBufferLatched(false), | 
|  | mCurrentFrameNumber(0), | 
|  | mPreviousFrameNumber(0), | 
|  | mRefreshPending(false), | 
|  | mFrameLatencyNeeded(false), | 
|  | mFiltering(false), | 
|  | mNeedsFiltering(false), | 
|  | mMesh(Mesh::TRIANGLE_FAN, 4, 2, 2), | 
|  | #ifndef USE_HWC2 | 
|  | mIsGlesComposition(false), | 
|  | #endif | 
|  | mProtectedByApp(false), | 
|  | mHasSurface(false), | 
|  | mClientRef(client), | 
|  | mPotentialCursor(false), | 
|  | mQueueItemLock(), | 
|  | mQueueItemCondition(), | 
|  | mQueueItems(), | 
|  | mLastFrameNumberReceived(0), | 
|  | mUpdateTexImageFailed(false), | 
|  | mAutoRefresh(false), | 
|  | mFreezePositionUpdates(false) | 
|  | { | 
|  | #ifdef USE_HWC2 | 
|  | ALOGV("Creating Layer %s", name.string()); | 
|  | #endif | 
|  |  | 
|  | mCurrentCrop.makeInvalid(); | 
|  | mFlinger->getRenderEngine().genTextures(1, &mTextureName); | 
|  | mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName); | 
|  |  | 
|  | uint32_t layerFlags = 0; | 
|  | if (flags & ISurfaceComposerClient::eHidden) | 
|  | layerFlags |= layer_state_t::eLayerHidden; | 
|  | if (flags & ISurfaceComposerClient::eOpaque) | 
|  | layerFlags |= layer_state_t::eLayerOpaque; | 
|  | if (flags & ISurfaceComposerClient::eSecure) | 
|  | layerFlags |= layer_state_t::eLayerSecure; | 
|  |  | 
|  | if (flags & ISurfaceComposerClient::eNonPremultiplied) | 
|  | mPremultipliedAlpha = false; | 
|  |  | 
|  | mName = name; | 
|  |  | 
|  | mCurrentState.active.w = w; | 
|  | mCurrentState.active.h = h; | 
|  | mCurrentState.active.transform.set(0, 0); | 
|  | mCurrentState.crop.makeInvalid(); | 
|  | mCurrentState.finalCrop.makeInvalid(); | 
|  | mCurrentState.z = 0; | 
|  | #ifdef USE_HWC2 | 
|  | mCurrentState.alpha = 1.0f; | 
|  | #else | 
|  | mCurrentState.alpha = 0xFF; | 
|  | #endif | 
|  | mCurrentState.layerStack = 0; | 
|  | mCurrentState.flags = layerFlags; | 
|  | mCurrentState.sequence = 0; | 
|  | mCurrentState.requested = mCurrentState.active; | 
|  | mCurrentState.dataSpace = HAL_DATASPACE_UNKNOWN; | 
|  | mCurrentState.appId = 0; | 
|  | mCurrentState.type = 0; | 
|  |  | 
|  | // drawing state & current state are identical | 
|  | mDrawingState = mCurrentState; | 
|  |  | 
|  | #ifdef USE_HWC2 | 
|  | const auto& hwc = flinger->getHwComposer(); | 
|  | const auto& activeConfig = hwc.getActiveConfig(HWC_DISPLAY_PRIMARY); | 
|  | nsecs_t displayPeriod = activeConfig->getVsyncPeriod(); | 
|  | #else | 
|  | nsecs_t displayPeriod = | 
|  | flinger->getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY); | 
|  | #endif | 
|  | mFrameTracker.setDisplayRefreshPeriod(displayPeriod); | 
|  |  | 
|  | CompositorTiming compositorTiming; | 
|  | flinger->getCompositorTiming(&compositorTiming); | 
|  | mFrameEventHistory.initializeCompositorTiming(compositorTiming); | 
|  | } | 
|  |  | 
|  | void Layer::onFirstRef() { | 
|  | // Creates a custom BufferQueue for SurfaceFlingerConsumer to use | 
|  | sp<IGraphicBufferProducer> producer; | 
|  | sp<IGraphicBufferConsumer> consumer; | 
|  | BufferQueue::createBufferQueue(&producer, &consumer, nullptr, true); | 
|  | mProducer = new MonitoredProducer(producer, mFlinger, this); | 
|  | mSurfaceFlingerConsumer = new SurfaceFlingerConsumer(consumer, mTextureName, this); | 
|  | mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0)); | 
|  | mSurfaceFlingerConsumer->setContentsChangedListener(this); | 
|  | mSurfaceFlingerConsumer->setName(mName); | 
|  |  | 
|  | if (mFlinger->isLayerTripleBufferingDisabled()) { | 
|  | mProducer->setMaxDequeuedBufferCount(2); | 
|  | } | 
|  |  | 
|  | const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice()); | 
|  | updateTransformHint(hw); | 
|  | } | 
|  |  | 
|  | Layer::~Layer() { | 
|  | sp<Client> c(mClientRef.promote()); | 
|  | if (c != 0) { | 
|  | c->detachLayer(this); | 
|  | } | 
|  |  | 
|  | for (auto& point : mRemoteSyncPoints) { | 
|  | point->setTransactionApplied(); | 
|  | } | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | point->setFrameAvailable(); | 
|  | } | 
|  | mFlinger->deleteTextureAsync(mTextureName); | 
|  | mFrameTracker.logAndResetStats(mName); | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // callbacks | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | #ifdef USE_HWC2 | 
|  | void Layer::onLayerDisplayed(const sp<Fence>& releaseFence) { | 
|  | if (mHwcLayers.empty()) { | 
|  | return; | 
|  | } | 
|  | mSurfaceFlingerConsumer->setReleaseFence(releaseFence); | 
|  | } | 
|  | #else | 
|  | void Layer::onLayerDisplayed(const sp<const DisplayDevice>& /* hw */, | 
|  | HWComposer::HWCLayerInterface* layer) { | 
|  | if (layer) { | 
|  | layer->onDisplayed(); | 
|  | mSurfaceFlingerConsumer->setReleaseFence(layer->getAndResetReleaseFence()); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void Layer::onFrameAvailable(const BufferItem& item) { | 
|  | // Add this buffer from our internal queue tracker | 
|  | { // Autolock scope | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | mFlinger->mInterceptor.saveBufferUpdate(this, item.mGraphicBuffer->getWidth(), | 
|  | item.mGraphicBuffer->getHeight(), item.mFrameNumber); | 
|  | // Reset the frame number tracker when we receive the first buffer after | 
|  | // a frame number reset | 
|  | if (item.mFrameNumber == 1) { | 
|  | mLastFrameNumberReceived = 0; | 
|  | } | 
|  |  | 
|  | // Ensure that callbacks are handled in order | 
|  | while (item.mFrameNumber != mLastFrameNumberReceived + 1) { | 
|  | status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, | 
|  | ms2ns(500)); | 
|  | if (result != NO_ERROR) { | 
|  | ALOGE("[%s] Timed out waiting on callback", mName.string()); | 
|  | } | 
|  | } | 
|  |  | 
|  | mQueueItems.push_back(item); | 
|  | android_atomic_inc(&mQueuedFrames); | 
|  |  | 
|  | // Wake up any pending callbacks | 
|  | mLastFrameNumberReceived = item.mFrameNumber; | 
|  | mQueueItemCondition.broadcast(); | 
|  | } | 
|  |  | 
|  | mFlinger->signalLayerUpdate(); | 
|  | } | 
|  |  | 
|  | void Layer::onFrameReplaced(const BufferItem& item) { | 
|  | { // Autolock scope | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  |  | 
|  | // Ensure that callbacks are handled in order | 
|  | while (item.mFrameNumber != mLastFrameNumberReceived + 1) { | 
|  | status_t result = mQueueItemCondition.waitRelative(mQueueItemLock, | 
|  | ms2ns(500)); | 
|  | if (result != NO_ERROR) { | 
|  | ALOGE("[%s] Timed out waiting on callback", mName.string()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mQueueItems.empty()) { | 
|  | ALOGE("Can't replace a frame on an empty queue"); | 
|  | return; | 
|  | } | 
|  | mQueueItems.editItemAt(mQueueItems.size() - 1) = item; | 
|  |  | 
|  | // Wake up any pending callbacks | 
|  | mLastFrameNumberReceived = item.mFrameNumber; | 
|  | mQueueItemCondition.broadcast(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Layer::onBuffersReleased() { | 
|  | #ifdef USE_HWC2 | 
|  | Mutex::Autolock lock(mHwcBufferCacheMutex); | 
|  |  | 
|  | for (auto info : mHwcBufferCaches) { | 
|  | info.second.clear(); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void Layer::onSidebandStreamChanged() { | 
|  | if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) { | 
|  | // mSidebandStreamChanged was false | 
|  | mFlinger->signalLayerUpdate(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // called with SurfaceFlinger::mStateLock from the drawing thread after | 
|  | // the layer has been remove from the current state list (and just before | 
|  | // it's removed from the drawing state list) | 
|  | void Layer::onRemoved() { | 
|  | mSurfaceFlingerConsumer->abandon(); | 
|  | for (const auto& child : mCurrentChildren) { | 
|  | child->onRemoved(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // set-up | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | const String8& Layer::getName() const { | 
|  | return mName; | 
|  | } | 
|  |  | 
|  | status_t Layer::setBuffers( uint32_t w, uint32_t h, | 
|  | PixelFormat format, uint32_t flags) | 
|  | { | 
|  | uint32_t const maxSurfaceDims = min( | 
|  | mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims()); | 
|  |  | 
|  | // never allow a surface larger than what our underlying GL implementation | 
|  | // can handle. | 
|  | if ((uint32_t(w)>maxSurfaceDims) || (uint32_t(h)>maxSurfaceDims)) { | 
|  | ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h)); | 
|  | return BAD_VALUE; | 
|  | } | 
|  |  | 
|  | mFormat = format; | 
|  |  | 
|  | mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false; | 
|  | mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false; | 
|  | mCurrentOpacity = getOpacityForFormat(format); | 
|  |  | 
|  | mSurfaceFlingerConsumer->setDefaultBufferSize(w, h); | 
|  | mSurfaceFlingerConsumer->setDefaultBufferFormat(format); | 
|  | mSurfaceFlingerConsumer->setConsumerUsageBits(getEffectiveUsage(0)); | 
|  |  | 
|  | return NO_ERROR; | 
|  | } | 
|  |  | 
|  | sp<IBinder> Layer::getHandle() { | 
|  | Mutex::Autolock _l(mLock); | 
|  |  | 
|  | LOG_ALWAYS_FATAL_IF(mHasSurface, | 
|  | "Layer::getHandle() has already been called"); | 
|  |  | 
|  | mHasSurface = true; | 
|  |  | 
|  | return new Handle(mFlinger, this); | 
|  | } | 
|  |  | 
|  | sp<IGraphicBufferProducer> Layer::getProducer() const { | 
|  | return mProducer; | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // h/w composer set-up | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | Rect Layer::getContentCrop() const { | 
|  | // this is the crop rectangle that applies to the buffer | 
|  | // itself (as opposed to the window) | 
|  | Rect crop; | 
|  | if (!mCurrentCrop.isEmpty()) { | 
|  | // if the buffer crop is defined, we use that | 
|  | crop = mCurrentCrop; | 
|  | } else if (mActiveBuffer != NULL) { | 
|  | // otherwise we use the whole buffer | 
|  | crop = mActiveBuffer->getBounds(); | 
|  | } else { | 
|  | // if we don't have a buffer yet, we use an empty/invalid crop | 
|  | crop.makeInvalid(); | 
|  | } | 
|  | return crop; | 
|  | } | 
|  |  | 
|  | static Rect reduce(const Rect& win, const Region& exclude) { | 
|  | if (CC_LIKELY(exclude.isEmpty())) { | 
|  | return win; | 
|  | } | 
|  | if (exclude.isRect()) { | 
|  | return win.reduce(exclude.getBounds()); | 
|  | } | 
|  | return Region(win).subtract(exclude).getBounds(); | 
|  | } | 
|  |  | 
|  | Rect Layer::computeScreenBounds(bool reduceTransparentRegion) const { | 
|  | const Layer::State& s(getDrawingState()); | 
|  | Rect win(s.active.w, s.active.h); | 
|  |  | 
|  | if (!s.crop.isEmpty()) { | 
|  | win.intersect(s.crop, &win); | 
|  | } | 
|  |  | 
|  | Transform t = getTransform(); | 
|  | win = t.transform(win); | 
|  |  | 
|  | const sp<Layer>& p = getParent(); | 
|  | // Now we need to calculate the parent bounds, so we can clip ourselves to those. | 
|  | // When calculating the parent bounds for purposes of clipping, | 
|  | // we don't need to constrain the parent to its transparent region. | 
|  | // The transparent region is an optimization based on the | 
|  | // buffer contents of the layer, but does not affect the space allocated to | 
|  | // it by policy, and thus children should be allowed to extend into the | 
|  | // parent's transparent region. In fact one of the main uses, is to reduce | 
|  | // buffer allocation size in cases where a child window sits behind a main window | 
|  | // (by marking the hole in the parent window as a transparent region) | 
|  | if (p != nullptr) { | 
|  | Rect bounds = p->computeScreenBounds(false); | 
|  | bounds.intersect(win, &win); | 
|  | } | 
|  |  | 
|  | if (reduceTransparentRegion) { | 
|  | auto const screenTransparentRegion = t.transform(s.activeTransparentRegion); | 
|  | win = reduce(win, screenTransparentRegion); | 
|  | } | 
|  |  | 
|  | return win; | 
|  | } | 
|  |  | 
|  | Rect Layer::computeBounds() const { | 
|  | const Layer::State& s(getDrawingState()); | 
|  | return computeBounds(s.activeTransparentRegion); | 
|  | } | 
|  |  | 
|  | Rect Layer::computeBounds(const Region& activeTransparentRegion) const { | 
|  | const Layer::State& s(getDrawingState()); | 
|  | Rect win(s.active.w, s.active.h); | 
|  |  | 
|  | if (!s.crop.isEmpty()) { | 
|  | win.intersect(s.crop, &win); | 
|  | } | 
|  |  | 
|  | Rect bounds = win; | 
|  | const auto& p = getParent(); | 
|  | if (p != nullptr) { | 
|  | // Look in computeScreenBounds recursive call for explanation of | 
|  | // why we pass false here. | 
|  | bounds = p->computeScreenBounds(false /* reduceTransparentRegion */); | 
|  | } | 
|  |  | 
|  | Transform t = getTransform(); | 
|  | if (p != nullptr) { | 
|  | win = t.transform(win); | 
|  | win.intersect(bounds, &win); | 
|  | win = t.inverse().transform(win); | 
|  | } | 
|  |  | 
|  | // subtract the transparent region and snap to the bounds | 
|  | return reduce(win, activeTransparentRegion); | 
|  | } | 
|  |  | 
|  | Rect Layer::computeInitialCrop(const sp<const DisplayDevice>& hw) const { | 
|  | // the crop is the area of the window that gets cropped, but not | 
|  | // scaled in any ways. | 
|  | const State& s(getDrawingState()); | 
|  |  | 
|  | // apply the projection's clipping to the window crop in | 
|  | // layerstack space, and convert-back to layer space. | 
|  | // if there are no window scaling involved, this operation will map to full | 
|  | // pixels in the buffer. | 
|  | // FIXME: the 3 lines below can produce slightly incorrect clipping when we have | 
|  | // a viewport clipping and a window transform. we should use floating point to fix this. | 
|  |  | 
|  | Rect activeCrop(s.active.w, s.active.h); | 
|  | if (!s.crop.isEmpty()) { | 
|  | activeCrop = s.crop; | 
|  | } | 
|  |  | 
|  | Transform t = getTransform(); | 
|  | activeCrop = t.transform(activeCrop); | 
|  | if (!activeCrop.intersect(hw->getViewport(), &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  | if (!s.finalCrop.isEmpty()) { | 
|  | if(!activeCrop.intersect(s.finalCrop, &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  | } | 
|  | return activeCrop; | 
|  | } | 
|  |  | 
|  | FloatRect Layer::computeCrop(const sp<const DisplayDevice>& hw) const { | 
|  | // the content crop is the area of the content that gets scaled to the | 
|  | // layer's size. This is in buffer space. | 
|  | FloatRect crop = getContentCrop().toFloatRect(); | 
|  |  | 
|  | // In addition there is a WM-specified crop we pull from our drawing state. | 
|  | const State& s(getDrawingState()); | 
|  |  | 
|  | // Screen space to make reduction to parent crop clearer. | 
|  | Rect activeCrop = computeInitialCrop(hw); | 
|  | const auto& p = getParent(); | 
|  | if (p != nullptr) { | 
|  | auto parentCrop = p->computeInitialCrop(hw); | 
|  | activeCrop.intersect(parentCrop, &activeCrop); | 
|  | } | 
|  | Transform t = getTransform(); | 
|  | // Back to layer space to work with the content crop. | 
|  | activeCrop = t.inverse().transform(activeCrop); | 
|  |  | 
|  | // This needs to be here as transform.transform(Rect) computes the | 
|  | // transformed rect and then takes the bounding box of the result before | 
|  | // returning. This means | 
|  | // transform.inverse().transform(transform.transform(Rect)) != Rect | 
|  | // in which case we need to make sure the final rect is clipped to the | 
|  | // display bounds. | 
|  | if (!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  |  | 
|  | // subtract the transparent region and snap to the bounds | 
|  | activeCrop = reduce(activeCrop, s.activeTransparentRegion); | 
|  |  | 
|  | // Transform the window crop to match the buffer coordinate system, | 
|  | // which means using the inverse of the current transform set on the | 
|  | // SurfaceFlingerConsumer. | 
|  | uint32_t invTransform = mCurrentTransform; | 
|  | if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) { | 
|  | /* | 
|  | * the code below applies the primary display's inverse transform to the | 
|  | * buffer | 
|  | */ | 
|  | uint32_t invTransformOrient = | 
|  | DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
|  | // calculate the inverse transform | 
|  | if (invTransformOrient & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
|  | invTransformOrient ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | | 
|  | NATIVE_WINDOW_TRANSFORM_FLIP_H; | 
|  | } | 
|  | // and apply to the current transform | 
|  | invTransform = (Transform(invTransformOrient) * Transform(invTransform)) | 
|  | .getOrientation(); | 
|  | } | 
|  |  | 
|  | int winWidth = s.active.w; | 
|  | int winHeight = s.active.h; | 
|  | if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
|  | // If the activeCrop has been rotate the ends are rotated but not | 
|  | // the space itself so when transforming ends back we can't rely on | 
|  | // a modification of the axes of rotation. To account for this we | 
|  | // need to reorient the inverse rotation in terms of the current | 
|  | // axes of rotation. | 
|  | bool is_h_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) != 0; | 
|  | bool is_v_flipped = (invTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) != 0; | 
|  | if (is_h_flipped == is_v_flipped) { | 
|  | invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | | 
|  | NATIVE_WINDOW_TRANSFORM_FLIP_H; | 
|  | } | 
|  | winWidth = s.active.h; | 
|  | winHeight = s.active.w; | 
|  | } | 
|  | const Rect winCrop = activeCrop.transform( | 
|  | invTransform, s.active.w, s.active.h); | 
|  |  | 
|  | // below, crop is intersected with winCrop expressed in crop's coordinate space | 
|  | float xScale = crop.getWidth()  / float(winWidth); | 
|  | float yScale = crop.getHeight() / float(winHeight); | 
|  |  | 
|  | float insetL = winCrop.left                 * xScale; | 
|  | float insetT = winCrop.top                  * yScale; | 
|  | float insetR = (winWidth - winCrop.right )  * xScale; | 
|  | float insetB = (winHeight - winCrop.bottom) * yScale; | 
|  |  | 
|  | crop.left   += insetL; | 
|  | crop.top    += insetT; | 
|  | crop.right  -= insetR; | 
|  | crop.bottom -= insetB; | 
|  |  | 
|  | return crop; | 
|  | } | 
|  |  | 
|  | #ifdef USE_HWC2 | 
|  | void Layer::setGeometry(const sp<const DisplayDevice>& displayDevice, uint32_t z) | 
|  | #else | 
|  | void Layer::setGeometry( | 
|  | const sp<const DisplayDevice>& hw, | 
|  | HWComposer::HWCLayerInterface& layer) | 
|  | #endif | 
|  | { | 
|  | #ifdef USE_HWC2 | 
|  | const auto hwcId = displayDevice->getHwcDisplayId(); | 
|  | auto& hwcInfo = mHwcLayers[hwcId]; | 
|  | #else | 
|  | layer.setDefaultState(); | 
|  | #endif | 
|  |  | 
|  | // enable this layer | 
|  | #ifdef USE_HWC2 | 
|  | hwcInfo.forceClientComposition = false; | 
|  |  | 
|  | if (isSecure() && !displayDevice->isSecure()) { | 
|  | hwcInfo.forceClientComposition = true; | 
|  | } | 
|  |  | 
|  | auto& hwcLayer = hwcInfo.layer; | 
|  | #else | 
|  | layer.setSkip(false); | 
|  |  | 
|  | if (isSecure() && !hw->isSecure()) { | 
|  | layer.setSkip(true); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // this gives us only the "orientation" component of the transform | 
|  | const State& s(getDrawingState()); | 
|  | #ifdef USE_HWC2 | 
|  | auto blendMode = HWC2::BlendMode::None; | 
|  | if (!isOpaque(s) || s.alpha != 1.0f) { | 
|  | blendMode = mPremultipliedAlpha ? | 
|  | HWC2::BlendMode::Premultiplied : HWC2::BlendMode::Coverage; | 
|  | } | 
|  | auto error = hwcLayer->setBlendMode(blendMode); | 
|  | ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set blend mode %s:" | 
|  | " %s (%d)", mName.string(), to_string(blendMode).c_str(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | #else | 
|  | if (!isOpaque(s) || s.alpha != 0xFF) { | 
|  | layer.setBlending(mPremultipliedAlpha ? | 
|  | HWC_BLENDING_PREMULT : | 
|  | HWC_BLENDING_COVERAGE); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // apply the layer's transform, followed by the display's global transform | 
|  | // here we're guaranteed that the layer's transform preserves rects | 
|  | Region activeTransparentRegion(s.activeTransparentRegion); | 
|  | Transform t = getTransform(); | 
|  | if (!s.crop.isEmpty()) { | 
|  | Rect activeCrop(s.crop); | 
|  | activeCrop = t.transform(activeCrop); | 
|  | #ifdef USE_HWC2 | 
|  | if(!activeCrop.intersect(displayDevice->getViewport(), &activeCrop)) { | 
|  | #else | 
|  | if(!activeCrop.intersect(hw->getViewport(), &activeCrop)) { | 
|  | #endif | 
|  | activeCrop.clear(); | 
|  | } | 
|  | activeCrop = t.inverse().transform(activeCrop, true); | 
|  | // This needs to be here as transform.transform(Rect) computes the | 
|  | // transformed rect and then takes the bounding box of the result before | 
|  | // returning. This means | 
|  | // transform.inverse().transform(transform.transform(Rect)) != Rect | 
|  | // in which case we need to make sure the final rect is clipped to the | 
|  | // display bounds. | 
|  | if(!activeCrop.intersect(Rect(s.active.w, s.active.h), &activeCrop)) { | 
|  | activeCrop.clear(); | 
|  | } | 
|  | // mark regions outside the crop as transparent | 
|  | activeTransparentRegion.orSelf(Rect(0, 0, s.active.w, activeCrop.top)); | 
|  | activeTransparentRegion.orSelf(Rect(0, activeCrop.bottom, | 
|  | s.active.w, s.active.h)); | 
|  | activeTransparentRegion.orSelf(Rect(0, activeCrop.top, | 
|  | activeCrop.left, activeCrop.bottom)); | 
|  | activeTransparentRegion.orSelf(Rect(activeCrop.right, activeCrop.top, | 
|  | s.active.w, activeCrop.bottom)); | 
|  | } | 
|  |  | 
|  | Rect frame(t.transform(computeBounds(activeTransparentRegion))); | 
|  | if (!s.finalCrop.isEmpty()) { | 
|  | if(!frame.intersect(s.finalCrop, &frame)) { | 
|  | frame.clear(); | 
|  | } | 
|  | } | 
|  | #ifdef USE_HWC2 | 
|  | if (!frame.intersect(displayDevice->getViewport(), &frame)) { | 
|  | frame.clear(); | 
|  | } | 
|  | const Transform& tr(displayDevice->getTransform()); | 
|  | Rect transformedFrame = tr.transform(frame); | 
|  | error = hwcLayer->setDisplayFrame(transformedFrame); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", | 
|  | mName.string(), transformedFrame.left, transformedFrame.top, | 
|  | transformedFrame.right, transformedFrame.bottom, | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } else { | 
|  | hwcInfo.displayFrame = transformedFrame; | 
|  | } | 
|  |  | 
|  | FloatRect sourceCrop = computeCrop(displayDevice); | 
|  | error = hwcLayer->setSourceCrop(sourceCrop); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " | 
|  | "%s (%d)", mName.string(), sourceCrop.left, sourceCrop.top, | 
|  | sourceCrop.right, sourceCrop.bottom, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } else { | 
|  | hwcInfo.sourceCrop = sourceCrop; | 
|  | } | 
|  |  | 
|  | error = hwcLayer->setPlaneAlpha(s.alpha); | 
|  | ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set plane alpha %.3f: " | 
|  | "%s (%d)", mName.string(), s.alpha, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  |  | 
|  | error = hwcLayer->setZOrder(z); | 
|  | ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set Z %u: %s (%d)", | 
|  | mName.string(), z, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  |  | 
|  | error = hwcLayer->setInfo(s.type, s.appId); | 
|  | ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set info (%d)", | 
|  | mName.string(), static_cast<int32_t>(error)); | 
|  | #else | 
|  | if (!frame.intersect(hw->getViewport(), &frame)) { | 
|  | frame.clear(); | 
|  | } | 
|  | const Transform& tr(hw->getTransform()); | 
|  | layer.setFrame(tr.transform(frame)); | 
|  | layer.setCrop(computeCrop(hw)); | 
|  | layer.setPlaneAlpha(s.alpha); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Transformations are applied in this order: | 
|  | * 1) buffer orientation/flip/mirror | 
|  | * 2) state transformation (window manager) | 
|  | * 3) layer orientation (screen orientation) | 
|  | * (NOTE: the matrices are multiplied in reverse order) | 
|  | */ | 
|  |  | 
|  | const Transform bufferOrientation(mCurrentTransform); | 
|  | Transform transform(tr * t * bufferOrientation); | 
|  |  | 
|  | if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) { | 
|  | /* | 
|  | * the code below applies the primary display's inverse transform to the | 
|  | * buffer | 
|  | */ | 
|  | uint32_t invTransform = | 
|  | DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
|  | // calculate the inverse transform | 
|  | if (invTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { | 
|  | invTransform ^= NATIVE_WINDOW_TRANSFORM_FLIP_V | | 
|  | NATIVE_WINDOW_TRANSFORM_FLIP_H; | 
|  | } | 
|  | // and apply to the current transform | 
|  | transform = Transform(invTransform) * transform; | 
|  | } | 
|  |  | 
|  | // this gives us only the "orientation" component of the transform | 
|  | const uint32_t orientation = transform.getOrientation(); | 
|  | #ifdef USE_HWC2 | 
|  | if (orientation & Transform::ROT_INVALID) { | 
|  | // we can only handle simple transformation | 
|  | hwcInfo.forceClientComposition = true; | 
|  | } else { | 
|  | auto transform = static_cast<HWC2::Transform>(orientation); | 
|  | auto error = hwcLayer->setTransform(transform); | 
|  | ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set transform %s: " | 
|  | "%s (%d)", mName.string(), to_string(transform).c_str(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  | #else | 
|  | if (orientation & Transform::ROT_INVALID) { | 
|  | // we can only handle simple transformation | 
|  | layer.setSkip(true); | 
|  | } else { | 
|  | layer.setTransform(orientation); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef USE_HWC2 | 
|  | void Layer::forceClientComposition(int32_t hwcId) { | 
|  | if (mHwcLayers.count(hwcId) == 0) { | 
|  | ALOGE("forceClientComposition: no HWC layer found (%d)", hwcId); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mHwcLayers[hwcId].forceClientComposition = true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef USE_HWC2 | 
|  | void Layer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) { | 
|  | // Apply this display's projection's viewport to the visible region | 
|  | // before giving it to the HWC HAL. | 
|  | const Transform& tr = displayDevice->getTransform(); | 
|  | const auto& viewport = displayDevice->getViewport(); | 
|  | Region visible = tr.transform(visibleRegion.intersect(viewport)); | 
|  | auto hwcId = displayDevice->getHwcDisplayId(); | 
|  | auto& hwcLayer = mHwcLayers[hwcId].layer; | 
|  | auto error = hwcLayer->setVisibleRegion(visible); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | visible.dump(LOG_TAG); | 
|  | } | 
|  |  | 
|  | error = hwcLayer->setSurfaceDamage(surfaceDamageRegion); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | surfaceDamageRegion.dump(LOG_TAG); | 
|  | } | 
|  |  | 
|  | // Sideband layers | 
|  | if (mSidebandStream.get()) { | 
|  | setCompositionType(hwcId, HWC2::Composition::Sideband); | 
|  | ALOGV("[%s] Requesting Sideband composition", mName.string()); | 
|  | error = hwcLayer->setSidebandStream(mSidebandStream->handle()); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", | 
|  | mName.string(), mSidebandStream->handle(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Client layers | 
|  | if (mHwcLayers[hwcId].forceClientComposition || | 
|  | (mActiveBuffer != nullptr && mActiveBuffer->handle == nullptr)) { | 
|  | ALOGV("[%s] Requesting Client composition", mName.string()); | 
|  | setCompositionType(hwcId, HWC2::Composition::Client); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // SolidColor layers | 
|  | if (mActiveBuffer == nullptr) { | 
|  | setCompositionType(hwcId, HWC2::Composition::SolidColor); | 
|  |  | 
|  | // For now, we only support black for DimLayer | 
|  | error = hwcLayer->setColor({0, 0, 0, 255}); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set color: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | // Clear out the transform, because it doesn't make sense absent a | 
|  | // source buffer | 
|  | error = hwcLayer->setTransform(HWC2::Transform::None); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to clear transform: %s (%d)", mName.string(), | 
|  | to_string(error).c_str(), static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Device or Cursor layers | 
|  | if (mPotentialCursor) { | 
|  | ALOGV("[%s] Requesting Cursor composition", mName.string()); | 
|  | setCompositionType(hwcId, HWC2::Composition::Cursor); | 
|  | } else { | 
|  | ALOGV("[%s] Requesting Device composition", mName.string()); | 
|  | setCompositionType(hwcId, HWC2::Composition::Device); | 
|  | } | 
|  |  | 
|  | ALOGV("setPerFrameData: dataspace = %d", mCurrentState.dataSpace); | 
|  | error = hwcLayer->setDataspace(mCurrentState.dataSpace); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), | 
|  | mCurrentState.dataSpace, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  |  | 
|  | uint32_t hwcSlot = 0; | 
|  | buffer_handle_t hwcHandle = nullptr; | 
|  | { | 
|  | Mutex::Autolock lock(mHwcBufferCacheMutex); | 
|  |  | 
|  | auto& hwcBufferCache = mHwcBufferCaches[hwcId]; | 
|  | sp<GraphicBuffer> hwcBuffer; | 
|  | hwcBufferCache.getHwcBuffer(mActiveBufferSlot, mActiveBuffer, | 
|  | &hwcSlot, &hwcBuffer); | 
|  | if (hwcBuffer != nullptr) { | 
|  | hwcHandle = hwcBuffer->handle; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto acquireFence = mSurfaceFlingerConsumer->getCurrentFence(); | 
|  | error = hwcLayer->setBuffer(hwcSlot, hwcHandle, acquireFence); | 
|  | if (error != HWC2::Error::None) { | 
|  | ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(), | 
|  | mActiveBuffer->handle, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  | #else | 
|  | void Layer::setPerFrameData(const sp<const DisplayDevice>& hw, | 
|  | HWComposer::HWCLayerInterface& layer) { | 
|  | // we have to set the visible region on every frame because | 
|  | // we currently free it during onLayerDisplayed(), which is called | 
|  | // after HWComposer::commit() -- every frame. | 
|  | // Apply this display's projection's viewport to the visible region | 
|  | // before giving it to the HWC HAL. | 
|  | const Transform& tr = hw->getTransform(); | 
|  | Region visible = tr.transform(visibleRegion.intersect(hw->getViewport())); | 
|  | layer.setVisibleRegionScreen(visible); | 
|  | layer.setSurfaceDamage(surfaceDamageRegion); | 
|  | mIsGlesComposition = (layer.getCompositionType() == HWC_FRAMEBUFFER); | 
|  |  | 
|  | if (mSidebandStream.get()) { | 
|  | layer.setSidebandStream(mSidebandStream); | 
|  | } else { | 
|  | // NOTE: buffer can be NULL if the client never drew into this | 
|  | // layer yet, or if we ran out of memory | 
|  | layer.setBuffer(mActiveBuffer); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef USE_HWC2 | 
|  | void Layer::updateCursorPosition(const sp<const DisplayDevice>& displayDevice) { | 
|  | auto hwcId = displayDevice->getHwcDisplayId(); | 
|  | if (mHwcLayers.count(hwcId) == 0 || | 
|  | getCompositionType(hwcId) != HWC2::Composition::Cursor) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // This gives us only the "orientation" component of the transform | 
|  | const State& s(getCurrentState()); | 
|  |  | 
|  | // Apply the layer's transform, followed by the display's global transform | 
|  | // Here we're guaranteed that the layer's transform preserves rects | 
|  | Rect win(s.active.w, s.active.h); | 
|  | if (!s.crop.isEmpty()) { | 
|  | win.intersect(s.crop, &win); | 
|  | } | 
|  | // Subtract the transparent region and snap to the bounds | 
|  | Rect bounds = reduce(win, s.activeTransparentRegion); | 
|  | Rect frame(getTransform().transform(bounds)); | 
|  | frame.intersect(displayDevice->getViewport(), &frame); | 
|  | if (!s.finalCrop.isEmpty()) { | 
|  | frame.intersect(s.finalCrop, &frame); | 
|  | } | 
|  | auto& displayTransform(displayDevice->getTransform()); | 
|  | auto position = displayTransform.transform(frame); | 
|  |  | 
|  | auto error = mHwcLayers[hwcId].layer->setCursorPosition(position.left, | 
|  | position.top); | 
|  | ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set cursor position " | 
|  | "to (%d, %d): %s (%d)", mName.string(), position.left, | 
|  | position.top, to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | #else | 
|  | void Layer::setAcquireFence(const sp<const DisplayDevice>& /* hw */, | 
|  | HWComposer::HWCLayerInterface& layer) { | 
|  | int fenceFd = -1; | 
|  |  | 
|  | // TODO: there is a possible optimization here: we only need to set the | 
|  | // acquire fence the first time a new buffer is acquired on EACH display. | 
|  |  | 
|  | if (layer.getCompositionType() == HWC_OVERLAY || layer.getCompositionType() == HWC_CURSOR_OVERLAY) { | 
|  | sp<Fence> fence = mSurfaceFlingerConsumer->getCurrentFence(); | 
|  | if (fence->isValid()) { | 
|  | fenceFd = fence->dup(); | 
|  | if (fenceFd == -1) { | 
|  | ALOGW("failed to dup layer fence, skipping sync: %d", errno); | 
|  | } | 
|  | } | 
|  | } | 
|  | layer.setAcquireFenceFd(fenceFd); | 
|  | } | 
|  |  | 
|  | Rect Layer::getPosition( | 
|  | const sp<const DisplayDevice>& hw) | 
|  | { | 
|  | // this gives us only the "orientation" component of the transform | 
|  | const State& s(getCurrentState()); | 
|  |  | 
|  | // apply the layer's transform, followed by the display's global transform | 
|  | // here we're guaranteed that the layer's transform preserves rects | 
|  | Rect win(s.active.w, s.active.h); | 
|  | if (!s.crop.isEmpty()) { | 
|  | win.intersect(s.crop, &win); | 
|  | } | 
|  | // subtract the transparent region and snap to the bounds | 
|  | Rect bounds = reduce(win, s.activeTransparentRegion); | 
|  | Rect frame(getTransform().transform(bounds)); | 
|  | frame.intersect(hw->getViewport(), &frame); | 
|  | if (!s.finalCrop.isEmpty()) { | 
|  | frame.intersect(s.finalCrop, &frame); | 
|  | } | 
|  | const Transform& tr(hw->getTransform()); | 
|  | return Rect(tr.transform(frame)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | // drawing... | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | void Layer::draw(const sp<const DisplayDevice>& hw, const Region& clip) const { | 
|  | onDraw(hw, clip, false); | 
|  | } | 
|  |  | 
|  | void Layer::draw(const sp<const DisplayDevice>& hw, | 
|  | bool useIdentityTransform) const { | 
|  | onDraw(hw, Region(hw->bounds()), useIdentityTransform); | 
|  | } | 
|  |  | 
|  | void Layer::draw(const sp<const DisplayDevice>& hw) const { | 
|  | onDraw(hw, Region(hw->bounds()), false); | 
|  | } | 
|  |  | 
|  | void Layer::onDraw(const sp<const DisplayDevice>& hw, const Region& clip, | 
|  | bool useIdentityTransform) const | 
|  | { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | if (CC_UNLIKELY(mActiveBuffer == 0)) { | 
|  | // the texture has not been created yet, this Layer has | 
|  | // in fact never been drawn into. This happens frequently with | 
|  | // SurfaceView because the WindowManager can't know when the client | 
|  | // has drawn the first time. | 
|  |  | 
|  | // If there is nothing under us, we paint the screen in black, otherwise | 
|  | // we just skip this update. | 
|  |  | 
|  | // figure out if there is something below us | 
|  | Region under; | 
|  | bool finished = false; | 
|  | mFlinger->mDrawingState.layersSortedByZ.traverseInZOrder([&](Layer* layer) { | 
|  | if (finished || layer == static_cast<Layer const*>(this)) { | 
|  | finished = true; | 
|  | return; | 
|  | } | 
|  | under.orSelf( hw->getTransform().transform(layer->visibleRegion) ); | 
|  | }); | 
|  | // if not everything below us is covered, we plug the holes! | 
|  | Region holes(clip.subtract(under)); | 
|  | if (!holes.isEmpty()) { | 
|  | clearWithOpenGL(hw, 0, 0, 0, 1); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Bind the current buffer to the GL texture, and wait for it to be | 
|  | // ready for us to draw into. | 
|  | status_t err = mSurfaceFlingerConsumer->bindTextureImage(); | 
|  | if (err != NO_ERROR) { | 
|  | ALOGW("onDraw: bindTextureImage failed (err=%d)", err); | 
|  | // Go ahead and draw the buffer anyway; no matter what we do the screen | 
|  | // is probably going to have something visibly wrong. | 
|  | } | 
|  |  | 
|  | bool blackOutLayer = isProtected() || (isSecure() && !hw->isSecure()); | 
|  |  | 
|  | RenderEngine& engine(mFlinger->getRenderEngine()); | 
|  |  | 
|  | if (!blackOutLayer) { | 
|  | // TODO: we could be more subtle with isFixedSize() | 
|  | const bool useFiltering = getFiltering() || needsFiltering(hw) || isFixedSize(); | 
|  |  | 
|  | // Query the texture matrix given our current filtering mode. | 
|  | float textureMatrix[16]; | 
|  | mSurfaceFlingerConsumer->setFilteringEnabled(useFiltering); | 
|  | mSurfaceFlingerConsumer->getTransformMatrix(textureMatrix); | 
|  |  | 
|  | if (mSurfaceFlingerConsumer->getTransformToDisplayInverse()) { | 
|  |  | 
|  | /* | 
|  | * the code below applies the primary display's inverse transform to | 
|  | * the texture transform | 
|  | */ | 
|  |  | 
|  | // create a 4x4 transform matrix from the display transform flags | 
|  | const mat4 flipH(-1,0,0,0,  0,1,0,0, 0,0,1,0, 1,0,0,1); | 
|  | const mat4 flipV( 1,0,0,0, 0,-1,0,0, 0,0,1,0, 0,1,0,1); | 
|  | const mat4 rot90( 0,1,0,0, -1,0,0,0, 0,0,1,0, 1,0,0,1); | 
|  |  | 
|  | mat4 tr; | 
|  | uint32_t transform = | 
|  | DisplayDevice::getPrimaryDisplayOrientationTransform(); | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) | 
|  | tr = tr * rot90; | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) | 
|  | tr = tr * flipH; | 
|  | if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) | 
|  | tr = tr * flipV; | 
|  |  | 
|  | // calculate the inverse | 
|  | tr = inverse(tr); | 
|  |  | 
|  | // and finally apply it to the original texture matrix | 
|  | const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr); | 
|  | memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix)); | 
|  | } | 
|  |  | 
|  | // Set things up for texturing. | 
|  | mTexture.setDimensions(mActiveBuffer->getWidth(), mActiveBuffer->getHeight()); | 
|  | mTexture.setFiltering(useFiltering); | 
|  | mTexture.setMatrix(textureMatrix); | 
|  |  | 
|  | engine.setupLayerTexturing(mTexture); | 
|  | } else { | 
|  | engine.setupLayerBlackedOut(); | 
|  | } | 
|  | drawWithOpenGL(hw, useIdentityTransform); | 
|  | engine.disableTexturing(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void Layer::clearWithOpenGL(const sp<const DisplayDevice>& hw, | 
|  | float red, float green, float blue, | 
|  | float alpha) const | 
|  | { | 
|  | RenderEngine& engine(mFlinger->getRenderEngine()); | 
|  | computeGeometry(hw, mMesh, false); | 
|  | engine.setupFillWithColor(red, green, blue, alpha); | 
|  | engine.drawMesh(mMesh); | 
|  | } | 
|  |  | 
|  | void Layer::clearWithOpenGL( | 
|  | const sp<const DisplayDevice>& hw) const { | 
|  | clearWithOpenGL(hw, 0,0,0,0); | 
|  | } | 
|  |  | 
|  | void Layer::drawWithOpenGL(const sp<const DisplayDevice>& hw, | 
|  | bool useIdentityTransform) const { | 
|  | const State& s(getDrawingState()); | 
|  |  | 
|  | computeGeometry(hw, mMesh, useIdentityTransform); | 
|  |  | 
|  | /* | 
|  | * NOTE: the way we compute the texture coordinates here produces | 
|  | * different results than when we take the HWC path -- in the later case | 
|  | * the "source crop" is rounded to texel boundaries. | 
|  | * This can produce significantly different results when the texture | 
|  | * is scaled by a large amount. | 
|  | * | 
|  | * The GL code below is more logical (imho), and the difference with | 
|  | * HWC is due to a limitation of the HWC API to integers -- a question | 
|  | * is suspend is whether we should ignore this problem or revert to | 
|  | * GL composition when a buffer scaling is applied (maybe with some | 
|  | * minimal value)? Or, we could make GL behave like HWC -- but this feel | 
|  | * like more of a hack. | 
|  | */ | 
|  | Rect win(computeBounds()); | 
|  |  | 
|  | Transform t = getTransform(); | 
|  | if (!s.finalCrop.isEmpty()) { | 
|  | win = t.transform(win); | 
|  | if (!win.intersect(s.finalCrop, &win)) { | 
|  | win.clear(); | 
|  | } | 
|  | win = t.inverse().transform(win); | 
|  | if (!win.intersect(computeBounds(), &win)) { | 
|  | win.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | float left   = float(win.left)   / float(s.active.w); | 
|  | float top    = float(win.top)    / float(s.active.h); | 
|  | float right  = float(win.right)  / float(s.active.w); | 
|  | float bottom = float(win.bottom) / float(s.active.h); | 
|  |  | 
|  | // TODO: we probably want to generate the texture coords with the mesh | 
|  | // here we assume that we only have 4 vertices | 
|  | Mesh::VertexArray<vec2> texCoords(mMesh.getTexCoordArray<vec2>()); | 
|  | texCoords[0] = vec2(left, 1.0f - top); | 
|  | texCoords[1] = vec2(left, 1.0f - bottom); | 
|  | texCoords[2] = vec2(right, 1.0f - bottom); | 
|  | texCoords[3] = vec2(right, 1.0f - top); | 
|  |  | 
|  | RenderEngine& engine(mFlinger->getRenderEngine()); | 
|  | engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), s.alpha); | 
|  | engine.drawMesh(mMesh); | 
|  | engine.disableBlending(); | 
|  | } | 
|  |  | 
|  | #ifdef USE_HWC2 | 
|  | void Layer::setCompositionType(int32_t hwcId, HWC2::Composition type, | 
|  | bool callIntoHwc) { | 
|  | if (mHwcLayers.count(hwcId) == 0) { | 
|  | ALOGE("setCompositionType called without a valid HWC layer"); | 
|  | return; | 
|  | } | 
|  | auto& hwcInfo = mHwcLayers[hwcId]; | 
|  | auto& hwcLayer = hwcInfo.layer; | 
|  | ALOGV("setCompositionType(%" PRIx64 ", %s, %d)", hwcLayer->getId(), | 
|  | to_string(type).c_str(), static_cast<int>(callIntoHwc)); | 
|  | if (hwcInfo.compositionType != type) { | 
|  | ALOGV("    actually setting"); | 
|  | hwcInfo.compositionType = type; | 
|  | if (callIntoHwc) { | 
|  | auto error = hwcLayer->setCompositionType(type); | 
|  | ALOGE_IF(error != HWC2::Error::None, "[%s] Failed to set " | 
|  | "composition type %s: %s (%d)", mName.string(), | 
|  | to_string(type).c_str(), to_string(error).c_str(), | 
|  | static_cast<int32_t>(error)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | HWC2::Composition Layer::getCompositionType(int32_t hwcId) const { | 
|  | if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) { | 
|  | // If we're querying the composition type for a display that does not | 
|  | // have a HWC counterpart, then it will always be Client | 
|  | return HWC2::Composition::Client; | 
|  | } | 
|  | if (mHwcLayers.count(hwcId) == 0) { | 
|  | ALOGE("getCompositionType called with an invalid HWC layer"); | 
|  | return HWC2::Composition::Invalid; | 
|  | } | 
|  | return mHwcLayers.at(hwcId).compositionType; | 
|  | } | 
|  |  | 
|  | void Layer::setClearClientTarget(int32_t hwcId, bool clear) { | 
|  | if (mHwcLayers.count(hwcId) == 0) { | 
|  | ALOGE("setClearClientTarget called without a valid HWC layer"); | 
|  | return; | 
|  | } | 
|  | mHwcLayers[hwcId].clearClientTarget = clear; | 
|  | } | 
|  |  | 
|  | bool Layer::getClearClientTarget(int32_t hwcId) const { | 
|  | if (mHwcLayers.count(hwcId) == 0) { | 
|  | ALOGE("getClearClientTarget called without a valid HWC layer"); | 
|  | return false; | 
|  | } | 
|  | return mHwcLayers.at(hwcId).clearClientTarget; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | uint32_t Layer::getProducerStickyTransform() const { | 
|  | int producerStickyTransform = 0; | 
|  | int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform); | 
|  | if (ret != OK) { | 
|  | ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__, | 
|  | strerror(-ret), ret); | 
|  | return 0; | 
|  | } | 
|  | return static_cast<uint32_t>(producerStickyTransform); | 
|  | } | 
|  |  | 
|  | bool Layer::latchUnsignaledBuffers() { | 
|  | static bool propertyLoaded = false; | 
|  | static bool latch = false; | 
|  | static std::mutex mutex; | 
|  | std::lock_guard<std::mutex> lock(mutex); | 
|  | if (!propertyLoaded) { | 
|  | char value[PROPERTY_VALUE_MAX] = {}; | 
|  | property_get("debug.sf.latch_unsignaled", value, "0"); | 
|  | latch = atoi(value); | 
|  | propertyLoaded = true; | 
|  | } | 
|  | return latch; | 
|  | } | 
|  |  | 
|  | uint64_t Layer::getHeadFrameNumber() const { | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | if (!mQueueItems.empty()) { | 
|  | return mQueueItems[0].mFrameNumber; | 
|  | } else { | 
|  | return mCurrentFrameNumber; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Layer::headFenceHasSignaled() const { | 
|  | #ifdef USE_HWC2 | 
|  | if (latchUnsignaledBuffers()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | if (mQueueItems.empty()) { | 
|  | return true; | 
|  | } | 
|  | if (mQueueItems[0].mIsDroppable) { | 
|  | // Even though this buffer's fence may not have signaled yet, it could | 
|  | // be replaced by another buffer before it has a chance to, which means | 
|  | // that it's possible to get into a situation where a buffer is never | 
|  | // able to be latched. To avoid this, grab this buffer anyway. | 
|  | return true; | 
|  | } | 
|  | return mQueueItems[0].mFence->getSignalTime() != INT64_MAX; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool Layer::addSyncPoint(const std::shared_ptr<SyncPoint>& point) { | 
|  | if (point->getFrameNumber() <= mCurrentFrameNumber) { | 
|  | // Don't bother with a SyncPoint, since we've already latched the | 
|  | // relevant frame | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | mLocalSyncPoints.push_back(point); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Layer::setFiltering(bool filtering) { | 
|  | mFiltering = filtering; | 
|  | } | 
|  |  | 
|  | bool Layer::getFiltering() const { | 
|  | return mFiltering; | 
|  | } | 
|  |  | 
|  | // As documented in libhardware header, formats in the range | 
|  | // 0x100 - 0x1FF are specific to the HAL implementation, and | 
|  | // are known to have no alpha channel | 
|  | // TODO: move definition for device-specific range into | 
|  | // hardware.h, instead of using hard-coded values here. | 
|  | #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF) | 
|  |  | 
|  | bool Layer::getOpacityForFormat(uint32_t format) { | 
|  | if (HARDWARE_IS_DEVICE_FORMAT(format)) { | 
|  | return true; | 
|  | } | 
|  | switch (format) { | 
|  | case HAL_PIXEL_FORMAT_RGBA_8888: | 
|  | case HAL_PIXEL_FORMAT_BGRA_8888: | 
|  | case HAL_PIXEL_FORMAT_RGBA_FP16: | 
|  | case HAL_PIXEL_FORMAT_RGBA_1010102: | 
|  | return false; | 
|  | } | 
|  | // in all other case, we have no blending (also for unknown formats) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | // local state | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | static void boundPoint(vec2* point, const Rect& crop) { | 
|  | if (point->x < crop.left) { | 
|  | point->x = crop.left; | 
|  | } | 
|  | if (point->x > crop.right) { | 
|  | point->x = crop.right; | 
|  | } | 
|  | if (point->y < crop.top) { | 
|  | point->y = crop.top; | 
|  | } | 
|  | if (point->y > crop.bottom) { | 
|  | point->y = crop.bottom; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Layer::computeGeometry(const sp<const DisplayDevice>& hw, Mesh& mesh, | 
|  | bool useIdentityTransform) const | 
|  | { | 
|  | const Layer::State& s(getDrawingState()); | 
|  | const Transform hwTransform(hw->getTransform()); | 
|  | const uint32_t hw_h = hw->getHeight(); | 
|  | Rect win = computeBounds(); | 
|  |  | 
|  | vec2 lt = vec2(win.left, win.top); | 
|  | vec2 lb = vec2(win.left, win.bottom); | 
|  | vec2 rb = vec2(win.right, win.bottom); | 
|  | vec2 rt = vec2(win.right, win.top); | 
|  |  | 
|  | Transform layerTransform = getTransform(); | 
|  | if (!useIdentityTransform) { | 
|  | lt = layerTransform.transform(lt); | 
|  | lb = layerTransform.transform(lb); | 
|  | rb = layerTransform.transform(rb); | 
|  | rt = layerTransform.transform(rt); | 
|  | } | 
|  |  | 
|  | if (!s.finalCrop.isEmpty()) { | 
|  | boundPoint(<, s.finalCrop); | 
|  | boundPoint(&lb, s.finalCrop); | 
|  | boundPoint(&rb, s.finalCrop); | 
|  | boundPoint(&rt, s.finalCrop); | 
|  | } | 
|  |  | 
|  | Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); | 
|  | position[0] = hwTransform.transform(lt); | 
|  | position[1] = hwTransform.transform(lb); | 
|  | position[2] = hwTransform.transform(rb); | 
|  | position[3] = hwTransform.transform(rt); | 
|  | for (size_t i=0 ; i<4 ; i++) { | 
|  | position[i].y = hw_h - position[i].y; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Layer::isOpaque(const Layer::State& s) const | 
|  | { | 
|  | // if we don't have a buffer yet, we're translucent regardless of the | 
|  | // layer's opaque flag. | 
|  | if (mActiveBuffer == 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the layer has the opaque flag, then we're always opaque, | 
|  | // otherwise we use the current buffer's format. | 
|  | return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity; | 
|  | } | 
|  |  | 
|  | bool Layer::isSecure() const | 
|  | { | 
|  | const Layer::State& s(mDrawingState); | 
|  | return (s.flags & layer_state_t::eLayerSecure); | 
|  | } | 
|  |  | 
|  | bool Layer::isProtected() const | 
|  | { | 
|  | const sp<GraphicBuffer>& activeBuffer(mActiveBuffer); | 
|  | return (activeBuffer != 0) && | 
|  | (activeBuffer->getUsage() & GRALLOC_USAGE_PROTECTED); | 
|  | } | 
|  |  | 
|  | bool Layer::isFixedSize() const { | 
|  | return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE; | 
|  | } | 
|  |  | 
|  | bool Layer::isCropped() const { | 
|  | return !mCurrentCrop.isEmpty(); | 
|  | } | 
|  |  | 
|  | bool Layer::needsFiltering(const sp<const DisplayDevice>& hw) const { | 
|  | return mNeedsFiltering || hw->needsFiltering(); | 
|  | } | 
|  |  | 
|  | void Layer::setVisibleRegion(const Region& visibleRegion) { | 
|  | // always called from main thread | 
|  | this->visibleRegion = visibleRegion; | 
|  | } | 
|  |  | 
|  | void Layer::setCoveredRegion(const Region& coveredRegion) { | 
|  | // always called from main thread | 
|  | this->coveredRegion = coveredRegion; | 
|  | } | 
|  |  | 
|  | void Layer::setVisibleNonTransparentRegion(const Region& | 
|  | setVisibleNonTransparentRegion) { | 
|  | // always called from main thread | 
|  | this->visibleNonTransparentRegion = setVisibleNonTransparentRegion; | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | // transaction | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | void Layer::pushPendingState() { | 
|  | if (!mCurrentState.modified) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this transaction is waiting on the receipt of a frame, generate a sync | 
|  | // point and send it to the remote layer. | 
|  | if (mCurrentState.barrierLayer != nullptr) { | 
|  | sp<Layer> barrierLayer = mCurrentState.barrierLayer.promote(); | 
|  | if (barrierLayer == nullptr) { | 
|  | ALOGE("[%s] Unable to promote barrier Layer.", mName.string()); | 
|  | // If we can't promote the layer we are intended to wait on, | 
|  | // then it is expired or otherwise invalid. Allow this transaction | 
|  | // to be applied as per normal (no synchronization). | 
|  | mCurrentState.barrierLayer = nullptr; | 
|  | } else { | 
|  | auto syncPoint = std::make_shared<SyncPoint>( | 
|  | mCurrentState.frameNumber); | 
|  | if (barrierLayer->addSyncPoint(syncPoint)) { | 
|  | mRemoteSyncPoints.push_back(std::move(syncPoint)); | 
|  | } else { | 
|  | // We already missed the frame we're supposed to synchronize | 
|  | // on, so go ahead and apply the state update | 
|  | mCurrentState.barrierLayer = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wake us up to check if the frame has been received | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | mFlinger->setTransactionFlags(eTraversalNeeded); | 
|  | } | 
|  | mPendingStates.push_back(mCurrentState); | 
|  | } | 
|  |  | 
|  | void Layer::popPendingState(State* stateToCommit) { | 
|  | auto oldFlags = stateToCommit->flags; | 
|  | *stateToCommit = mPendingStates[0]; | 
|  | stateToCommit->flags = (oldFlags & ~stateToCommit->mask) | | 
|  | (stateToCommit->flags & stateToCommit->mask); | 
|  |  | 
|  | mPendingStates.removeAt(0); | 
|  | } | 
|  |  | 
|  | bool Layer::applyPendingStates(State* stateToCommit) { | 
|  | bool stateUpdateAvailable = false; | 
|  | while (!mPendingStates.empty()) { | 
|  | if (mPendingStates[0].barrierLayer != nullptr) { | 
|  | if (mRemoteSyncPoints.empty()) { | 
|  | // If we don't have a sync point for this, apply it anyway. It | 
|  | // will be visually wrong, but it should keep us from getting | 
|  | // into too much trouble. | 
|  | ALOGE("[%s] No local sync point found", mName.string()); | 
|  | popPendingState(stateToCommit); | 
|  | stateUpdateAvailable = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (mRemoteSyncPoints.front()->getFrameNumber() != | 
|  | mPendingStates[0].frameNumber) { | 
|  | ALOGE("[%s] Unexpected sync point frame number found", | 
|  | mName.string()); | 
|  |  | 
|  | // Signal our end of the sync point and then dispose of it | 
|  | mRemoteSyncPoints.front()->setTransactionApplied(); | 
|  | mRemoteSyncPoints.pop_front(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (mRemoteSyncPoints.front()->frameIsAvailable()) { | 
|  | // Apply the state update | 
|  | popPendingState(stateToCommit); | 
|  | stateUpdateAvailable = true; | 
|  |  | 
|  | // Signal our end of the sync point and then dispose of it | 
|  | mRemoteSyncPoints.front()->setTransactionApplied(); | 
|  | mRemoteSyncPoints.pop_front(); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | popPendingState(stateToCommit); | 
|  | stateUpdateAvailable = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we still have pending updates, wake SurfaceFlinger back up and point | 
|  | // it at this layer so we can process them | 
|  | if (!mPendingStates.empty()) { | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | mFlinger->setTransactionFlags(eTraversalNeeded); | 
|  | } | 
|  |  | 
|  | mCurrentState.modified = false; | 
|  | return stateUpdateAvailable; | 
|  | } | 
|  |  | 
|  | void Layer::notifyAvailableFrames() { | 
|  | auto headFrameNumber = getHeadFrameNumber(); | 
|  | bool headFenceSignaled = headFenceHasSignaled(); | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) { | 
|  | point->setFrameAvailable(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t Layer::doTransaction(uint32_t flags) { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | pushPendingState(); | 
|  | Layer::State c = getCurrentState(); | 
|  | if (!applyPendingStates(&c)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const Layer::State& s(getDrawingState()); | 
|  |  | 
|  | const bool sizeChanged = (c.requested.w != s.requested.w) || | 
|  | (c.requested.h != s.requested.h); | 
|  |  | 
|  | if (sizeChanged) { | 
|  | // the size changed, we need to ask our client to request a new buffer | 
|  | ALOGD_IF(DEBUG_RESIZE, | 
|  | "doTransaction: geometry (layer=%p '%s'), tr=%02x, scalingMode=%d\n" | 
|  | "  current={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" | 
|  | "            requested={ wh={%4u,%4u} }}\n" | 
|  | "  drawing={ active   ={ wh={%4u,%4u} crop={%4d,%4d,%4d,%4d} (%4d,%4d) }\n" | 
|  | "            requested={ wh={%4u,%4u} }}\n", | 
|  | this, getName().string(), mCurrentTransform, | 
|  | getEffectiveScalingMode(), | 
|  | c.active.w, c.active.h, | 
|  | c.crop.left, | 
|  | c.crop.top, | 
|  | c.crop.right, | 
|  | c.crop.bottom, | 
|  | c.crop.getWidth(), | 
|  | c.crop.getHeight(), | 
|  | c.requested.w, c.requested.h, | 
|  | s.active.w, s.active.h, | 
|  | s.crop.left, | 
|  | s.crop.top, | 
|  | s.crop.right, | 
|  | s.crop.bottom, | 
|  | s.crop.getWidth(), | 
|  | s.crop.getHeight(), | 
|  | s.requested.w, s.requested.h); | 
|  |  | 
|  | // record the new size, form this point on, when the client request | 
|  | // a buffer, it'll get the new size. | 
|  | mSurfaceFlingerConsumer->setDefaultBufferSize( | 
|  | c.requested.w, c.requested.h); | 
|  | } | 
|  |  | 
|  | const bool resizePending = (c.requested.w != c.active.w) || | 
|  | (c.requested.h != c.active.h); | 
|  | if (!isFixedSize()) { | 
|  | if (resizePending && mSidebandStream == NULL) { | 
|  | // don't let Layer::doTransaction update the drawing state | 
|  | // if we have a pending resize, unless we are in fixed-size mode. | 
|  | // the drawing state will be updated only once we receive a buffer | 
|  | // with the correct size. | 
|  | // | 
|  | // in particular, we want to make sure the clip (which is part | 
|  | // of the geometry state) is latched together with the size but is | 
|  | // latched immediately when no resizing is involved. | 
|  | // | 
|  | // If a sideband stream is attached, however, we want to skip this | 
|  | // optimization so that transactions aren't missed when a buffer | 
|  | // never arrives | 
|  |  | 
|  | flags |= eDontUpdateGeometryState; | 
|  | } | 
|  | } | 
|  |  | 
|  | // always set active to requested, unless we're asked not to | 
|  | // this is used by Layer, which special cases resizes. | 
|  | if (flags & eDontUpdateGeometryState)  { | 
|  | } else { | 
|  | Layer::State& editCurrentState(getCurrentState()); | 
|  | if (mFreezePositionUpdates) { | 
|  | float tx = c.active.transform.tx(); | 
|  | float ty = c.active.transform.ty(); | 
|  | c.active = c.requested; | 
|  | c.active.transform.set(tx, ty); | 
|  | editCurrentState.active = c.active; | 
|  | } else { | 
|  | editCurrentState.active = editCurrentState.requested; | 
|  | c.active = c.requested; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (s.active != c.active) { | 
|  | // invalidate and recompute the visible regions if needed | 
|  | flags |= Layer::eVisibleRegion; | 
|  | } | 
|  |  | 
|  | if (c.sequence != s.sequence) { | 
|  | // invalidate and recompute the visible regions if needed | 
|  | flags |= eVisibleRegion; | 
|  | this->contentDirty = true; | 
|  |  | 
|  | // we may use linear filtering, if the matrix scales us | 
|  | const uint8_t type = c.active.transform.getType(); | 
|  | mNeedsFiltering = (!c.active.transform.preserveRects() || | 
|  | (type >= Transform::SCALE)); | 
|  | } | 
|  |  | 
|  | // If the layer is hidden, signal and clear out all local sync points so | 
|  | // that transactions for layers depending on this layer's frames becoming | 
|  | // visible are not blocked | 
|  | if (c.flags & layer_state_t::eLayerHidden) { | 
|  | clearSyncPoints(); | 
|  | } | 
|  |  | 
|  | // Commit the transaction | 
|  | commitTransaction(c); | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | void Layer::commitTransaction(const State& stateToCommit) { | 
|  | mDrawingState = stateToCommit; | 
|  | } | 
|  |  | 
|  | uint32_t Layer::getTransactionFlags(uint32_t flags) { | 
|  | return android_atomic_and(~flags, &mTransactionFlags) & flags; | 
|  | } | 
|  |  | 
|  | uint32_t Layer::setTransactionFlags(uint32_t flags) { | 
|  | return android_atomic_or(flags, &mTransactionFlags); | 
|  | } | 
|  |  | 
|  | bool Layer::setPosition(float x, float y, bool immediate) { | 
|  | if (mCurrentState.requested.transform.tx() == x && mCurrentState.requested.transform.ty() == y) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  |  | 
|  | // We update the requested and active position simultaneously because | 
|  | // we want to apply the position portion of the transform matrix immediately, | 
|  | // but still delay scaling when resizing a SCALING_MODE_FREEZE layer. | 
|  | mCurrentState.requested.transform.set(x, y); | 
|  | if (immediate && !mFreezePositionUpdates) { | 
|  | mCurrentState.active.transform.set(x, y); | 
|  | } | 
|  | mFreezePositionUpdates = mFreezePositionUpdates || !immediate; | 
|  |  | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Layer::setChildLayer(const sp<Layer>& childLayer, int32_t z) { | 
|  | ssize_t idx = mCurrentChildren.indexOf(childLayer); | 
|  | if (idx < 0) { | 
|  | return false; | 
|  | } | 
|  | if (childLayer->setLayer(z)) { | 
|  | mCurrentChildren.removeAt(idx); | 
|  | mCurrentChildren.add(childLayer); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Layer::setLayer(int32_t z) { | 
|  | if (mCurrentState.z == z) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.z = z; | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Layer::setSize(uint32_t w, uint32_t h) { | 
|  | if (mCurrentState.requested.w == w && mCurrentState.requested.h == h) | 
|  | return false; | 
|  | mCurrentState.requested.w = w; | 
|  | mCurrentState.requested.h = h; | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | #ifdef USE_HWC2 | 
|  | bool Layer::setAlpha(float alpha) { | 
|  | #else | 
|  | bool Layer::setAlpha(uint8_t alpha) { | 
|  | #endif | 
|  | if (mCurrentState.alpha == alpha) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.alpha = alpha; | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setMatrix(const layer_state_t::matrix22_t& matrix) { | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.requested.transform.set( | 
|  | matrix.dsdx, matrix.dtdy, matrix.dtdx, matrix.dsdy); | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setTransparentRegionHint(const Region& transparent) { | 
|  | mCurrentState.requestedTransparentRegion = transparent; | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setFlags(uint8_t flags, uint8_t mask) { | 
|  | const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask); | 
|  | if (mCurrentState.flags == newFlags) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.flags = newFlags; | 
|  | mCurrentState.mask = mask; | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Layer::setCrop(const Rect& crop, bool immediate) { | 
|  | if (mCurrentState.crop == crop) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.requestedCrop = crop; | 
|  | if (immediate) { | 
|  | mCurrentState.crop = crop; | 
|  | } | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  | bool Layer::setFinalCrop(const Rect& crop) { | 
|  | if (mCurrentState.finalCrop == crop) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.finalCrop = crop; | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Layer::setOverrideScalingMode(int32_t scalingMode) { | 
|  | if (scalingMode == mOverrideScalingMode) | 
|  | return false; | 
|  | mOverrideScalingMode = scalingMode; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Layer::setInfo(uint32_t type, uint32_t appId) { | 
|  | mCurrentState.appId = appId; | 
|  | mCurrentState.type = type; | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | } | 
|  |  | 
|  | uint32_t Layer::getEffectiveScalingMode() const { | 
|  | if (mOverrideScalingMode >= 0) { | 
|  | return mOverrideScalingMode; | 
|  | } | 
|  | return mCurrentScalingMode; | 
|  | } | 
|  |  | 
|  | bool Layer::setLayerStack(uint32_t layerStack) { | 
|  | if (mCurrentState.layerStack == layerStack) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.layerStack = layerStack; | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Layer::setDataSpace(android_dataspace dataSpace) { | 
|  | if (mCurrentState.dataSpace == dataSpace) | 
|  | return false; | 
|  | mCurrentState.sequence++; | 
|  | mCurrentState.dataSpace = dataSpace; | 
|  | mCurrentState.modified = true; | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint32_t Layer::getLayerStack() const { | 
|  | auto p = getParent(); | 
|  | if (p == nullptr) { | 
|  | return getDrawingState().layerStack; | 
|  | } | 
|  | return p->getLayerStack(); | 
|  | } | 
|  |  | 
|  | void Layer::deferTransactionUntil(const sp<Layer>& barrierLayer, | 
|  | uint64_t frameNumber) { | 
|  | mCurrentState.barrierLayer = barrierLayer; | 
|  | mCurrentState.frameNumber = frameNumber; | 
|  | // We don't set eTransactionNeeded, because just receiving a deferral | 
|  | // request without any other state updates shouldn't actually induce a delay | 
|  | mCurrentState.modified = true; | 
|  | pushPendingState(); | 
|  | mCurrentState.barrierLayer = nullptr; | 
|  | mCurrentState.frameNumber = 0; | 
|  | mCurrentState.modified = false; | 
|  | ALOGE("Deferred transaction"); | 
|  | } | 
|  |  | 
|  | void Layer::deferTransactionUntil(const sp<IBinder>& barrierHandle, | 
|  | uint64_t frameNumber) { | 
|  | sp<Handle> handle = static_cast<Handle*>(barrierHandle.get()); | 
|  | deferTransactionUntil(handle->owner.promote(), frameNumber); | 
|  | } | 
|  |  | 
|  | void Layer::useSurfaceDamage() { | 
|  | if (mFlinger->mForceFullDamage) { | 
|  | surfaceDamageRegion = Region::INVALID_REGION; | 
|  | } else { | 
|  | surfaceDamageRegion = mSurfaceFlingerConsumer->getSurfaceDamage(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Layer::useEmptyDamage() { | 
|  | surfaceDamageRegion.clear(); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | // pageflip handling... | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | bool Layer::shouldPresentNow(const DispSync& dispSync) const { | 
|  | if (mSidebandStreamChanged || mAutoRefresh) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | if (mQueueItems.empty()) { | 
|  | return false; | 
|  | } | 
|  | auto timestamp = mQueueItems[0].mTimestamp; | 
|  | nsecs_t expectedPresent = | 
|  | mSurfaceFlingerConsumer->computeExpectedPresent(dispSync); | 
|  |  | 
|  | // Ignore timestamps more than a second in the future | 
|  | bool isPlausible = timestamp < (expectedPresent + s2ns(1)); | 
|  | ALOGW_IF(!isPlausible, "[%s] Timestamp %" PRId64 " seems implausible " | 
|  | "relative to expectedPresent %" PRId64, mName.string(), timestamp, | 
|  | expectedPresent); | 
|  |  | 
|  | bool isDue = timestamp < expectedPresent; | 
|  | return isDue || !isPlausible; | 
|  | } | 
|  |  | 
|  | bool Layer::onPreComposition(nsecs_t refreshStartTime) { | 
|  | if (mBufferLatched) { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime); | 
|  | } | 
|  | mRefreshPending = false; | 
|  | return mQueuedFrames > 0 || mSidebandStreamChanged || mAutoRefresh; | 
|  | } | 
|  |  | 
|  | bool Layer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence, | 
|  | const std::shared_ptr<FenceTime>& presentFence, | 
|  | const std::shared_ptr<FenceTime>& retireFence, | 
|  | const CompositorTiming& compositorTiming) { | 
|  | mAcquireTimeline.updateSignalTimes(); | 
|  | mReleaseTimeline.updateSignalTimes(); | 
|  |  | 
|  | // mFrameLatencyNeeded is true when a new frame was latched for the | 
|  | // composition. | 
|  | if (!mFrameLatencyNeeded) | 
|  | return false; | 
|  |  | 
|  | // Update mFrameEventHistory. | 
|  | { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addPostComposition(mCurrentFrameNumber, | 
|  | glDoneFence, presentFence, compositorTiming); | 
|  | if (mPreviousFrameNumber != 0) { | 
|  | mFrameEventHistory.addRetire(mPreviousFrameNumber, | 
|  | retireFence); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update mFrameTracker. | 
|  | nsecs_t desiredPresentTime = mSurfaceFlingerConsumer->getTimestamp(); | 
|  | mFrameTracker.setDesiredPresentTime(desiredPresentTime); | 
|  |  | 
|  | std::shared_ptr<FenceTime> frameReadyFence = | 
|  | mSurfaceFlingerConsumer->getCurrentFenceTime(); | 
|  | if (frameReadyFence->isValid()) { | 
|  | mFrameTracker.setFrameReadyFence(std::move(frameReadyFence)); | 
|  | } else { | 
|  | // There was no fence for this frame, so assume that it was ready | 
|  | // to be presented at the desired present time. | 
|  | mFrameTracker.setFrameReadyTime(desiredPresentTime); | 
|  | } | 
|  |  | 
|  | if (presentFence->isValid()) { | 
|  | mFrameTracker.setActualPresentFence( | 
|  | std::shared_ptr<FenceTime>(presentFence)); | 
|  | } else if (retireFence->isValid()) { | 
|  | mFrameTracker.setActualPresentFence( | 
|  | std::shared_ptr<FenceTime>(retireFence)); | 
|  | } else { | 
|  | // The HWC doesn't support present fences, so use the refresh | 
|  | // timestamp instead. | 
|  | mFrameTracker.setActualPresentTime( | 
|  | mFlinger->getHwComposer().getRefreshTimestamp( | 
|  | HWC_DISPLAY_PRIMARY)); | 
|  | } | 
|  |  | 
|  | mFrameTracker.advanceFrame(); | 
|  | mFrameLatencyNeeded = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #ifdef USE_HWC2 | 
|  | void Layer::releasePendingBuffer(nsecs_t dequeueReadyTime) { | 
|  | if (!mSurfaceFlingerConsumer->releasePendingBuffer()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto releaseFenceTime = std::make_shared<FenceTime>( | 
|  | mSurfaceFlingerConsumer->getPrevFinalReleaseFence()); | 
|  | mReleaseTimeline.push(releaseFenceTime); | 
|  |  | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | if (mPreviousFrameNumber != 0) { | 
|  | mFrameEventHistory.addRelease(mPreviousFrameNumber, | 
|  | dequeueReadyTime, std::move(releaseFenceTime)); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bool Layer::isHiddenByPolicy() const { | 
|  | const Layer::State& s(mDrawingState); | 
|  | const auto& parent = getParent(); | 
|  | if (parent != nullptr && parent->isHiddenByPolicy()) { | 
|  | return true; | 
|  | } | 
|  | return s.flags & layer_state_t::eLayerHidden; | 
|  | } | 
|  |  | 
|  | bool Layer::isVisible() const { | 
|  | const Layer::State& s(mDrawingState); | 
|  | #ifdef USE_HWC2 | 
|  | return !(isHiddenByPolicy()) && s.alpha > 0.0f | 
|  | && (mActiveBuffer != NULL || mSidebandStream != NULL); | 
|  | #else | 
|  | return !(isHiddenByPolicy()) && s.alpha | 
|  | && (mActiveBuffer != NULL || mSidebandStream != NULL); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool Layer::allTransactionsSignaled() { | 
|  | auto headFrameNumber = getHeadFrameNumber(); | 
|  | bool matchingFramesFound = false; | 
|  | bool allTransactionsApplied = true; | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  |  | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | if (point->getFrameNumber() > headFrameNumber) { | 
|  | break; | 
|  | } | 
|  | matchingFramesFound = true; | 
|  |  | 
|  | if (!point->frameIsAvailable()) { | 
|  | // We haven't notified the remote layer that the frame for | 
|  | // this point is available yet. Notify it now, and then | 
|  | // abort this attempt to latch. | 
|  | point->setFrameAvailable(); | 
|  | allTransactionsApplied = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied(); | 
|  | } | 
|  | return !matchingFramesFound || allTransactionsApplied; | 
|  | } | 
|  |  | 
|  | Region Layer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) | 
|  | { | 
|  | ATRACE_CALL(); | 
|  |  | 
|  | if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) { | 
|  | // mSidebandStreamChanged was true | 
|  | mSidebandStream = mSurfaceFlingerConsumer->getSidebandStream(); | 
|  | if (mSidebandStream != NULL) { | 
|  | setTransactionFlags(eTransactionNeeded); | 
|  | mFlinger->setTransactionFlags(eTraversalNeeded); | 
|  | } | 
|  | recomputeVisibleRegions = true; | 
|  |  | 
|  | const State& s(getDrawingState()); | 
|  | return getTransform().transform(Region(Rect(s.active.w, s.active.h))); | 
|  | } | 
|  |  | 
|  | Region outDirtyRegion; | 
|  | if (mQueuedFrames <= 0 && !mAutoRefresh) { | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // if we've already called updateTexImage() without going through | 
|  | // a composition step, we have to skip this layer at this point | 
|  | // because we cannot call updateTeximage() without a corresponding | 
|  | // compositionComplete() call. | 
|  | // we'll trigger an update in onPreComposition(). | 
|  | if (mRefreshPending) { | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // If the head buffer's acquire fence hasn't signaled yet, return and | 
|  | // try again later | 
|  | if (!headFenceHasSignaled()) { | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // Capture the old state of the layer for comparisons later | 
|  | const State& s(getDrawingState()); | 
|  | const bool oldOpacity = isOpaque(s); | 
|  | sp<GraphicBuffer> oldActiveBuffer = mActiveBuffer; | 
|  |  | 
|  | if (!allTransactionsSignaled()) { | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | // This boolean is used to make sure that SurfaceFlinger's shadow copy | 
|  | // of the buffer queue isn't modified when the buffer queue is returning | 
|  | // BufferItem's that weren't actually queued. This can happen in shared | 
|  | // buffer mode. | 
|  | bool queuedBuffer = false; | 
|  | LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions, | 
|  | getProducerStickyTransform() != 0, mName.string(), | 
|  | mOverrideScalingMode, mFreezePositionUpdates); | 
|  | status_t updateResult = mSurfaceFlingerConsumer->updateTexImage(&r, | 
|  | mFlinger->mPrimaryDispSync, &mAutoRefresh, &queuedBuffer, | 
|  | mLastFrameNumberReceived); | 
|  | if (updateResult == BufferQueue::PRESENT_LATER) { | 
|  | // Producer doesn't want buffer to be displayed yet.  Signal a | 
|  | // layer update so we check again at the next opportunity. | 
|  | mFlinger->signalLayerUpdate(); | 
|  | return outDirtyRegion; | 
|  | } else if (updateResult == SurfaceFlingerConsumer::BUFFER_REJECTED) { | 
|  | // If the buffer has been rejected, remove it from the shadow queue | 
|  | // and return early | 
|  | if (queuedBuffer) { | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | mQueueItems.removeAt(0); | 
|  | android_atomic_dec(&mQueuedFrames); | 
|  | } | 
|  | return outDirtyRegion; | 
|  | } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) { | 
|  | // This can occur if something goes wrong when trying to create the | 
|  | // EGLImage for this buffer. If this happens, the buffer has already | 
|  | // been released, so we need to clean up the queue and bug out | 
|  | // early. | 
|  | if (queuedBuffer) { | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  | mQueueItems.clear(); | 
|  | android_atomic_and(0, &mQueuedFrames); | 
|  | } | 
|  |  | 
|  | // Once we have hit this state, the shadow queue may no longer | 
|  | // correctly reflect the incoming BufferQueue's contents, so even if | 
|  | // updateTexImage starts working, the only safe course of action is | 
|  | // to continue to ignore updates. | 
|  | mUpdateTexImageFailed = true; | 
|  |  | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | if (queuedBuffer) { | 
|  | // Autolock scope | 
|  | auto currentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber(); | 
|  |  | 
|  | Mutex::Autolock lock(mQueueItemLock); | 
|  |  | 
|  | // Remove any stale buffers that have been dropped during | 
|  | // updateTexImage | 
|  | while (mQueueItems[0].mFrameNumber != currentFrameNumber) { | 
|  | mQueueItems.removeAt(0); | 
|  | android_atomic_dec(&mQueuedFrames); | 
|  | } | 
|  |  | 
|  | mQueueItems.removeAt(0); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Decrement the queued-frames count.  Signal another event if we | 
|  | // have more frames pending. | 
|  | if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) | 
|  | || mAutoRefresh) { | 
|  | mFlinger->signalLayerUpdate(); | 
|  | } | 
|  |  | 
|  | // update the active buffer | 
|  | mActiveBuffer = mSurfaceFlingerConsumer->getCurrentBuffer( | 
|  | &mActiveBufferSlot); | 
|  | if (mActiveBuffer == NULL) { | 
|  | // this can only happen if the very first buffer was rejected. | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | mBufferLatched = true; | 
|  | mPreviousFrameNumber = mCurrentFrameNumber; | 
|  | mCurrentFrameNumber = mSurfaceFlingerConsumer->getFrameNumber(); | 
|  |  | 
|  | { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime); | 
|  | #ifndef USE_HWC2 | 
|  | auto releaseFenceTime = std::make_shared<FenceTime>( | 
|  | mSurfaceFlingerConsumer->getPrevFinalReleaseFence()); | 
|  | mReleaseTimeline.push(releaseFenceTime); | 
|  | if (mPreviousFrameNumber != 0) { | 
|  | mFrameEventHistory.addRelease(mPreviousFrameNumber, | 
|  | latchTime, std::move(releaseFenceTime)); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | mRefreshPending = true; | 
|  | mFrameLatencyNeeded = true; | 
|  | if (oldActiveBuffer == NULL) { | 
|  | // the first time we receive a buffer, we need to trigger a | 
|  | // geometry invalidation. | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | setDataSpace(mSurfaceFlingerConsumer->getCurrentDataSpace()); | 
|  |  | 
|  | Rect crop(mSurfaceFlingerConsumer->getCurrentCrop()); | 
|  | const uint32_t transform(mSurfaceFlingerConsumer->getCurrentTransform()); | 
|  | const uint32_t scalingMode(mSurfaceFlingerConsumer->getCurrentScalingMode()); | 
|  | if ((crop != mCurrentCrop) || | 
|  | (transform != mCurrentTransform) || | 
|  | (scalingMode != mCurrentScalingMode)) | 
|  | { | 
|  | mCurrentCrop = crop; | 
|  | mCurrentTransform = transform; | 
|  | mCurrentScalingMode = scalingMode; | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | if (oldActiveBuffer != NULL) { | 
|  | uint32_t bufWidth  = mActiveBuffer->getWidth(); | 
|  | uint32_t bufHeight = mActiveBuffer->getHeight(); | 
|  | if (bufWidth != uint32_t(oldActiveBuffer->width) || | 
|  | bufHeight != uint32_t(oldActiveBuffer->height)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | mCurrentOpacity = getOpacityForFormat(mActiveBuffer->format); | 
|  | if (oldOpacity != isOpaque(s)) { | 
|  | recomputeVisibleRegions = true; | 
|  | } | 
|  |  | 
|  | // Remove any sync points corresponding to the buffer which was just | 
|  | // latched | 
|  | { | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | auto point = mLocalSyncPoints.begin(); | 
|  | while (point != mLocalSyncPoints.end()) { | 
|  | if (!(*point)->frameIsAvailable() || | 
|  | !(*point)->transactionIsApplied()) { | 
|  | // This sync point must have been added since we started | 
|  | // latching. Don't drop it yet. | 
|  | ++point; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if ((*point)->getFrameNumber() <= mCurrentFrameNumber) { | 
|  | point = mLocalSyncPoints.erase(point); | 
|  | } else { | 
|  | ++point; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: postedRegion should be dirty & bounds | 
|  | Region dirtyRegion(Rect(s.active.w, s.active.h)); | 
|  |  | 
|  | // transform the dirty region to window-manager space | 
|  | outDirtyRegion = (getTransform().transform(dirtyRegion)); | 
|  |  | 
|  | return outDirtyRegion; | 
|  | } | 
|  |  | 
|  | uint32_t Layer::getEffectiveUsage(uint32_t usage) const | 
|  | { | 
|  | // TODO: should we do something special if mSecure is set? | 
|  | if (mProtectedByApp) { | 
|  | // need a hardware-protected path to external video sink | 
|  | usage |= GraphicBuffer::USAGE_PROTECTED; | 
|  | } | 
|  | if (mPotentialCursor) { | 
|  | usage |= GraphicBuffer::USAGE_CURSOR; | 
|  | } | 
|  | usage |= GraphicBuffer::USAGE_HW_COMPOSER; | 
|  | return usage; | 
|  | } | 
|  |  | 
|  | void Layer::updateTransformHint(const sp<const DisplayDevice>& hw) const { | 
|  | uint32_t orientation = 0; | 
|  | if (!mFlinger->mDebugDisableTransformHint) { | 
|  | // The transform hint is used to improve performance, but we can | 
|  | // only have a single transform hint, it cannot | 
|  | // apply to all displays. | 
|  | const Transform& planeTransform(hw->getTransform()); | 
|  | orientation = planeTransform.getOrientation(); | 
|  | if (orientation & Transform::ROT_INVALID) { | 
|  | orientation = 0; | 
|  | } | 
|  | } | 
|  | mSurfaceFlingerConsumer->setTransformHint(orientation); | 
|  | } | 
|  |  | 
|  | // ---------------------------------------------------------------------------- | 
|  | // debugging | 
|  | // ---------------------------------------------------------------------------- | 
|  |  | 
|  | void Layer::dump(String8& result, Colorizer& colorizer) const | 
|  | { | 
|  | const Layer::State& s(getDrawingState()); | 
|  |  | 
|  | colorizer.colorize(result, Colorizer::GREEN); | 
|  | result.appendFormat( | 
|  | "+ %s %p (%s)\n", | 
|  | getTypeId(), this, getName().string()); | 
|  | colorizer.reset(result); | 
|  |  | 
|  | s.activeTransparentRegion.dump(result, "transparentRegion"); | 
|  | visibleRegion.dump(result, "visibleRegion"); | 
|  | surfaceDamageRegion.dump(result, "surfaceDamageRegion"); | 
|  | sp<Client> client(mClientRef.promote()); | 
|  |  | 
|  | result.appendFormat(            "      " | 
|  | "layerStack=%4d, z=%9d, pos=(%g,%g), size=(%4d,%4d), " | 
|  | "crop=(%4d,%4d,%4d,%4d), finalCrop=(%4d,%4d,%4d,%4d), " | 
|  | "isOpaque=%1d, invalidate=%1d, " | 
|  | #ifdef USE_HWC2 | 
|  | "alpha=%.3f, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n" | 
|  | #else | 
|  | "alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n" | 
|  | #endif | 
|  | "      client=%p\n", | 
|  | getLayerStack(), s.z, | 
|  | s.active.transform.tx(), s.active.transform.ty(), | 
|  | s.active.w, s.active.h, | 
|  | s.crop.left, s.crop.top, | 
|  | s.crop.right, s.crop.bottom, | 
|  | s.finalCrop.left, s.finalCrop.top, | 
|  | s.finalCrop.right, s.finalCrop.bottom, | 
|  | isOpaque(s), contentDirty, | 
|  | s.alpha, s.flags, | 
|  | s.active.transform[0][0], s.active.transform[0][1], | 
|  | s.active.transform[1][0], s.active.transform[1][1], | 
|  | client.get()); | 
|  |  | 
|  | sp<const GraphicBuffer> buf0(mActiveBuffer); | 
|  | uint32_t w0=0, h0=0, s0=0, f0=0; | 
|  | if (buf0 != 0) { | 
|  | w0 = buf0->getWidth(); | 
|  | h0 = buf0->getHeight(); | 
|  | s0 = buf0->getStride(); | 
|  | f0 = buf0->format; | 
|  | } | 
|  | result.appendFormat( | 
|  | "      " | 
|  | "format=%2d, activeBuffer=[%4ux%4u:%4u,%3X]," | 
|  | " queued-frames=%d, mRefreshPending=%d\n", | 
|  | mFormat, w0, h0, s0,f0, | 
|  | mQueuedFrames, mRefreshPending); | 
|  |  | 
|  | if (mSurfaceFlingerConsumer != 0) { | 
|  | mSurfaceFlingerConsumer->dumpState(result, "            "); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef USE_HWC2 | 
|  | void Layer::miniDumpHeader(String8& result) { | 
|  | result.append("----------------------------------------"); | 
|  | result.append("---------------------------------------\n"); | 
|  | result.append(" Layer name\n"); | 
|  | result.append("           Z | "); | 
|  | result.append(" Comp Type | "); | 
|  | result.append("  Disp Frame (LTRB) | "); | 
|  | result.append("         Source Crop (LTRB)\n"); | 
|  | result.append("----------------------------------------"); | 
|  | result.append("---------------------------------------\n"); | 
|  | } | 
|  |  | 
|  | void Layer::miniDump(String8& result, int32_t hwcId) const { | 
|  | if (mHwcLayers.count(hwcId) == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | String8 name; | 
|  | if (mName.length() > 77) { | 
|  | std::string shortened; | 
|  | shortened.append(mName.string(), 36); | 
|  | shortened.append("[...]"); | 
|  | shortened.append(mName.string() + (mName.length() - 36), 36); | 
|  | name = shortened.c_str(); | 
|  | } else { | 
|  | name = mName; | 
|  | } | 
|  |  | 
|  | result.appendFormat(" %s\n", name.string()); | 
|  |  | 
|  | const Layer::State& layerState(getDrawingState()); | 
|  | const HWCInfo& hwcInfo = mHwcLayers.at(hwcId); | 
|  | result.appendFormat("  %10u | ", layerState.z); | 
|  | result.appendFormat("%10s | ", | 
|  | to_string(getCompositionType(hwcId)).c_str()); | 
|  | const Rect& frame = hwcInfo.displayFrame; | 
|  | result.appendFormat("%4d %4d %4d %4d | ", frame.left, frame.top, | 
|  | frame.right, frame.bottom); | 
|  | const FloatRect& crop = hwcInfo.sourceCrop; | 
|  | result.appendFormat("%6.1f %6.1f %6.1f %6.1f\n", crop.left, crop.top, | 
|  | crop.right, crop.bottom); | 
|  |  | 
|  | result.append("- - - - - - - - - - - - - - - - - - - - "); | 
|  | result.append("- - - - - - - - - - - - - - - - - - - -\n"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void Layer::dumpFrameStats(String8& result) const { | 
|  | mFrameTracker.dumpStats(result); | 
|  | } | 
|  |  | 
|  | void Layer::clearFrameStats() { | 
|  | mFrameTracker.clearStats(); | 
|  | } | 
|  |  | 
|  | void Layer::logFrameStats() { | 
|  | mFrameTracker.logAndResetStats(mName); | 
|  | } | 
|  |  | 
|  | void Layer::getFrameStats(FrameStats* outStats) const { | 
|  | mFrameTracker.getStats(outStats); | 
|  | } | 
|  |  | 
|  | void Layer::dumpFrameEvents(String8& result) { | 
|  | result.appendFormat("- Layer %s (%s, %p)\n", | 
|  | getName().string(), getTypeId(), this); | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.checkFencesForCompletion(); | 
|  | mFrameEventHistory.dump(result); | 
|  | } | 
|  |  | 
|  | void Layer::onDisconnect() { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | mFrameEventHistory.onDisconnect(); | 
|  | } | 
|  |  | 
|  | void Layer::addAndGetFrameTimestamps(const NewFrameEventsEntry* newTimestamps, | 
|  | FrameEventHistoryDelta *outDelta) { | 
|  | Mutex::Autolock lock(mFrameEventHistoryMutex); | 
|  | if (newTimestamps) { | 
|  | mAcquireTimeline.push(newTimestamps->acquireFence); | 
|  | mFrameEventHistory.addQueue(*newTimestamps); | 
|  | } | 
|  |  | 
|  | if (outDelta) { | 
|  | mFrameEventHistory.getAndResetDelta(outDelta); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<OccupancyTracker::Segment> Layer::getOccupancyHistory( | 
|  | bool forceFlush) { | 
|  | std::vector<OccupancyTracker::Segment> history; | 
|  | status_t result = mSurfaceFlingerConsumer->getOccupancyHistory(forceFlush, | 
|  | &history); | 
|  | if (result != NO_ERROR) { | 
|  | ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), | 
|  | result); | 
|  | return {}; | 
|  | } | 
|  | return history; | 
|  | } | 
|  |  | 
|  | bool Layer::getTransformToDisplayInverse() const { | 
|  | return mSurfaceFlingerConsumer->getTransformToDisplayInverse(); | 
|  | } | 
|  |  | 
|  | void Layer::addChild(const sp<Layer>& layer) { | 
|  | mCurrentChildren.add(layer); | 
|  | layer->setParent(this); | 
|  | } | 
|  |  | 
|  | ssize_t Layer::removeChild(const sp<Layer>& layer) { | 
|  | layer->setParent(nullptr); | 
|  | return mCurrentChildren.remove(layer); | 
|  | } | 
|  |  | 
|  | bool Layer::reparentChildren(const sp<IBinder>& newParentHandle) { | 
|  | sp<Handle> handle = nullptr; | 
|  | sp<Layer> newParent = nullptr; | 
|  | if (newParentHandle == nullptr) { | 
|  | return false; | 
|  | } | 
|  | handle = static_cast<Handle*>(newParentHandle.get()); | 
|  | newParent = handle->owner.promote(); | 
|  | if (newParent == nullptr) { | 
|  | ALOGE("Unable to promote Layer handle"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (const sp<Layer>& child : mCurrentChildren) { | 
|  | newParent->addChild(child); | 
|  |  | 
|  | sp<Client> client(child->mClientRef.promote()); | 
|  | if (client != nullptr) { | 
|  | client->setParentLayer(newParent); | 
|  | } | 
|  | } | 
|  | mCurrentChildren.clear(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Layer::detachChildren() { | 
|  | traverseInZOrder([this](Layer* child) { | 
|  | if (child == this) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | sp<Client> client(child->mClientRef.promote()); | 
|  | if (client != nullptr) { | 
|  | client->detachLayer(child); | 
|  | } | 
|  | }); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void Layer::setParent(const sp<Layer>& layer) { | 
|  | mParent = layer; | 
|  | } | 
|  |  | 
|  | void Layer::clearSyncPoints() { | 
|  | for (const auto& child : mCurrentChildren) { | 
|  | child->clearSyncPoints(); | 
|  | } | 
|  |  | 
|  | Mutex::Autolock lock(mLocalSyncPointMutex); | 
|  | for (auto& point : mLocalSyncPoints) { | 
|  | point->setFrameAvailable(); | 
|  | } | 
|  | mLocalSyncPoints.clear(); | 
|  | } | 
|  |  | 
|  | int32_t Layer::getZ() const { | 
|  | return mDrawingState.z; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Negatively signed children are before 'this' in Z-order. | 
|  | */ | 
|  | void Layer::traverseInZOrder(const std::function<void(Layer*)>& exec) { | 
|  | size_t i = 0; | 
|  | for (; i < mDrawingChildren.size(); i++) { | 
|  | const auto& child = mDrawingChildren[i]; | 
|  | if (child->getZ() >= 0) | 
|  | break; | 
|  | child->traverseInZOrder(exec); | 
|  | } | 
|  | exec(this); | 
|  | for (; i < mDrawingChildren.size(); i++) { | 
|  | const auto& child = mDrawingChildren[i]; | 
|  | child->traverseInZOrder(exec); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Positively signed children are before 'this' in reverse Z-order. | 
|  | */ | 
|  | void Layer::traverseInReverseZOrder(const std::function<void(Layer*)>& exec) { | 
|  | int32_t i = 0; | 
|  | for (i = mDrawingChildren.size()-1; i>=0; i--) { | 
|  | const auto& child = mDrawingChildren[i]; | 
|  | if (child->getZ() < 0) { | 
|  | break; | 
|  | } | 
|  | child->traverseInReverseZOrder(exec); | 
|  | } | 
|  | exec(this); | 
|  | for (; i>=0; i--) { | 
|  | const auto& child = mDrawingChildren[i]; | 
|  | child->traverseInReverseZOrder(exec); | 
|  | } | 
|  | } | 
|  |  | 
|  | Transform Layer::getTransform() const { | 
|  | Transform t; | 
|  | const auto& p = getParent(); | 
|  | if (p != nullptr) { | 
|  | t = p->getTransform(); | 
|  | } | 
|  | return t * getDrawingState().active.transform; | 
|  | } | 
|  |  | 
|  | void Layer::commitChildList() { | 
|  | for (size_t i = 0; i < mCurrentChildren.size(); i++) { | 
|  | const auto& child = mCurrentChildren[i]; | 
|  | child->commitChildList(); | 
|  | } | 
|  | mDrawingChildren = mCurrentChildren; | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | }; // namespace android | 
|  |  | 
|  | #if defined(__gl_h_) | 
|  | #error "don't include gl/gl.h in this file" | 
|  | #endif | 
|  |  | 
|  | #if defined(__gl2_h_) | 
|  | #error "don't include gl2/gl2.h in this file" | 
|  | #endif |