| /* | 
 |  * Copyright (C) 2013 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
 |  | 
 | // This is needed for stdint.h to define INT64_MAX in C++ | 
 | #define __STDC_LIMIT_MACROS | 
 |  | 
 | #include <math.h> | 
 |  | 
 | #include <cutils/log.h> | 
 |  | 
 | #include <ui/Fence.h> | 
 |  | 
 | #include <utils/String8.h> | 
 | #include <utils/Thread.h> | 
 | #include <utils/Trace.h> | 
 | #include <utils/Vector.h> | 
 |  | 
 | #include "DispSync.h" | 
 | #include "EventLog/EventLog.h" | 
 |  | 
 | namespace android { | 
 |  | 
 | // Setting this to true enables verbose tracing that can be used to debug | 
 | // vsync event model or phase issues. | 
 | static const bool traceDetailedInfo = false; | 
 |  | 
 | // This is the threshold used to determine when hardware vsync events are | 
 | // needed to re-synchronize the software vsync model with the hardware.  The | 
 | // error metric used is the mean of the squared difference between each | 
 | // present time and the nearest software-predicted vsync. | 
 | static const nsecs_t errorThreshold = 160000000000; | 
 |  | 
 | // This works around the lack of support for the sync framework on some | 
 | // devices. | 
 | #ifdef RUNNING_WITHOUT_SYNC_FRAMEWORK | 
 | static const bool runningWithoutSyncFramework = true; | 
 | #else | 
 | static const bool runningWithoutSyncFramework = false; | 
 | #endif | 
 |  | 
 | // This is the offset from the present fence timestamps to the corresponding | 
 | // vsync event. | 
 | static const int64_t presentTimeOffset = PRESENT_TIME_OFFSET_FROM_VSYNC_NS; | 
 |  | 
 | class DispSyncThread: public Thread { | 
 | public: | 
 |  | 
 |     DispSyncThread(): | 
 |             mStop(false), | 
 |             mPeriod(0), | 
 |             mPhase(0), | 
 |             mWakeupLatency(0) { | 
 |     } | 
 |  | 
 |     virtual ~DispSyncThread() {} | 
 |  | 
 |     void updateModel(nsecs_t period, nsecs_t phase) { | 
 |         Mutex::Autolock lock(mMutex); | 
 |         mPeriod = period; | 
 |         mPhase = phase; | 
 |         mCond.signal(); | 
 |     } | 
 |  | 
 |     void stop() { | 
 |         Mutex::Autolock lock(mMutex); | 
 |         mStop = true; | 
 |         mCond.signal(); | 
 |     } | 
 |  | 
 |     virtual bool threadLoop() { | 
 |         status_t err; | 
 |         nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); | 
 |         nsecs_t nextEventTime = 0; | 
 |  | 
 |         while (true) { | 
 |             Vector<CallbackInvocation> callbackInvocations; | 
 |  | 
 |             nsecs_t targetTime = 0; | 
 |  | 
 |             { // Scope for lock | 
 |                 Mutex::Autolock lock(mMutex); | 
 |  | 
 |                 if (mStop) { | 
 |                     return false; | 
 |                 } | 
 |  | 
 |                 if (mPeriod == 0) { | 
 |                     err = mCond.wait(mMutex); | 
 |                     if (err != NO_ERROR) { | 
 |                         ALOGE("error waiting for new events: %s (%d)", | 
 |                                 strerror(-err), err); | 
 |                         return false; | 
 |                     } | 
 |                     continue; | 
 |                 } | 
 |  | 
 |                 nextEventTime = computeNextEventTimeLocked(now); | 
 |                 targetTime = nextEventTime; | 
 |  | 
 |                 bool isWakeup = false; | 
 |  | 
 |                 if (now < targetTime) { | 
 |                     err = mCond.waitRelative(mMutex, targetTime - now); | 
 |  | 
 |                     if (err == TIMED_OUT) { | 
 |                         isWakeup = true; | 
 |                     } else if (err != NO_ERROR) { | 
 |                         ALOGE("error waiting for next event: %s (%d)", | 
 |                                 strerror(-err), err); | 
 |                         return false; | 
 |                     } | 
 |                 } | 
 |  | 
 |                 now = systemTime(SYSTEM_TIME_MONOTONIC); | 
 |  | 
 |                 if (isWakeup) { | 
 |                     mWakeupLatency = ((mWakeupLatency * 63) + | 
 |                             (now - targetTime)) / 64; | 
 |                     if (mWakeupLatency > 500000) { | 
 |                         // Don't correct by more than 500 us | 
 |                         mWakeupLatency = 500000; | 
 |                     } | 
 |                     if (traceDetailedInfo) { | 
 |                         ATRACE_INT64("DispSync:WakeupLat", now - nextEventTime); | 
 |                         ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency); | 
 |                     } | 
 |                 } | 
 |  | 
 |                 callbackInvocations = gatherCallbackInvocationsLocked(now); | 
 |             } | 
 |  | 
 |             if (callbackInvocations.size() > 0) { | 
 |                 fireCallbackInvocations(callbackInvocations); | 
 |             } | 
 |         } | 
 |  | 
 |         return false; | 
 |     } | 
 |  | 
 |     status_t addEventListener(nsecs_t phase, const sp<DispSync::Callback>& callback) { | 
 |         Mutex::Autolock lock(mMutex); | 
 |  | 
 |         for (size_t i = 0; i < mEventListeners.size(); i++) { | 
 |             if (mEventListeners[i].mCallback == callback) { | 
 |                 return BAD_VALUE; | 
 |             } | 
 |         } | 
 |  | 
 |         EventListener listener; | 
 |         listener.mPhase = phase; | 
 |         listener.mCallback = callback; | 
 |  | 
 |         // We want to allow the firstmost future event to fire without | 
 |         // allowing any past events to fire.  Because | 
 |         // computeListenerNextEventTimeLocked filters out events within a half | 
 |         // a period of the last event time, we need to initialize the last | 
 |         // event time to a half a period in the past. | 
 |         listener.mLastEventTime = systemTime(SYSTEM_TIME_MONOTONIC) - mPeriod / 2; | 
 |  | 
 |         mEventListeners.push(listener); | 
 |  | 
 |         mCond.signal(); | 
 |  | 
 |         return NO_ERROR; | 
 |     } | 
 |  | 
 |     status_t removeEventListener(const sp<DispSync::Callback>& callback) { | 
 |         Mutex::Autolock lock(mMutex); | 
 |  | 
 |         for (size_t i = 0; i < mEventListeners.size(); i++) { | 
 |             if (mEventListeners[i].mCallback == callback) { | 
 |                 mEventListeners.removeAt(i); | 
 |                 mCond.signal(); | 
 |                 return NO_ERROR; | 
 |             } | 
 |         } | 
 |  | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     // This method is only here to handle the runningWithoutSyncFramework | 
 |     // case. | 
 |     bool hasAnyEventListeners() { | 
 |         Mutex::Autolock lock(mMutex); | 
 |         return !mEventListeners.empty(); | 
 |     } | 
 |  | 
 | private: | 
 |  | 
 |     struct EventListener { | 
 |         nsecs_t mPhase; | 
 |         nsecs_t mLastEventTime; | 
 |         sp<DispSync::Callback> mCallback; | 
 |     }; | 
 |  | 
 |     struct CallbackInvocation { | 
 |         sp<DispSync::Callback> mCallback; | 
 |         nsecs_t mEventTime; | 
 |     }; | 
 |  | 
 |     nsecs_t computeNextEventTimeLocked(nsecs_t now) { | 
 |         nsecs_t nextEventTime = INT64_MAX; | 
 |         for (size_t i = 0; i < mEventListeners.size(); i++) { | 
 |             nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], | 
 |                     now); | 
 |  | 
 |             if (t < nextEventTime) { | 
 |                 nextEventTime = t; | 
 |             } | 
 |         } | 
 |  | 
 |         return nextEventTime; | 
 |     } | 
 |  | 
 |     Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) { | 
 |         Vector<CallbackInvocation> callbackInvocations; | 
 |         nsecs_t ref = now - mPeriod; | 
 |  | 
 |         for (size_t i = 0; i < mEventListeners.size(); i++) { | 
 |             nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], | 
 |                     ref); | 
 |  | 
 |             if (t < now) { | 
 |                 CallbackInvocation ci; | 
 |                 ci.mCallback = mEventListeners[i].mCallback; | 
 |                 ci.mEventTime = t; | 
 |                 callbackInvocations.push(ci); | 
 |                 mEventListeners.editItemAt(i).mLastEventTime = t; | 
 |             } | 
 |         } | 
 |  | 
 |         return callbackInvocations; | 
 |     } | 
 |  | 
 |     nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener, | 
 |             nsecs_t ref) { | 
 |  | 
 |         nsecs_t lastEventTime = listener.mLastEventTime; | 
 |         if (ref < lastEventTime) { | 
 |             ref = lastEventTime; | 
 |         } | 
 |  | 
 |         nsecs_t phase = mPhase + listener.mPhase; | 
 |         nsecs_t t = (((ref - phase) / mPeriod) + 1) * mPeriod + phase; | 
 |  | 
 |         if (t - listener.mLastEventTime < mPeriod / 2) { | 
 |             t += mPeriod; | 
 |         } | 
 |  | 
 |         return t; | 
 |     } | 
 |  | 
 |     void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) { | 
 |         for (size_t i = 0; i < callbacks.size(); i++) { | 
 |             callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime); | 
 |         } | 
 |     } | 
 |  | 
 |     bool mStop; | 
 |  | 
 |     nsecs_t mPeriod; | 
 |     nsecs_t mPhase; | 
 |     nsecs_t mWakeupLatency; | 
 |  | 
 |     Vector<EventListener> mEventListeners; | 
 |  | 
 |     Mutex mMutex; | 
 |     Condition mCond; | 
 | }; | 
 |  | 
 | class ZeroPhaseTracer : public DispSync::Callback { | 
 | public: | 
 |     ZeroPhaseTracer() : mParity(false) {} | 
 |  | 
 |     virtual void onDispSyncEvent(nsecs_t when) { | 
 |         mParity = !mParity; | 
 |         ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0); | 
 |     } | 
 |  | 
 | private: | 
 |     bool mParity; | 
 | }; | 
 |  | 
 | DispSync::DispSync() { | 
 |     mThread = new DispSyncThread(); | 
 |     mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE); | 
 |  | 
 |     reset(); | 
 |     beginResync(); | 
 |  | 
 |     if (traceDetailedInfo) { | 
 |         // If runningWithoutSyncFramework is true then the ZeroPhaseTracer | 
 |         // would prevent HW vsync event from ever being turned off. | 
 |         // Furthermore the zero-phase tracing is not needed because any time | 
 |         // there is an event registered we will turn on the HW vsync events. | 
 |         if (!runningWithoutSyncFramework) { | 
 |             addEventListener(0, new ZeroPhaseTracer()); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | DispSync::~DispSync() {} | 
 |  | 
 | void DispSync::reset() { | 
 |     Mutex::Autolock lock(mMutex); | 
 |  | 
 |     mNumResyncSamples = 0; | 
 |     mFirstResyncSample = 0; | 
 |     mNumResyncSamplesSincePresent = 0; | 
 |     resetErrorLocked(); | 
 | } | 
 |  | 
 | bool DispSync::addPresentFence(const sp<Fence>& fence) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |  | 
 |     mPresentFences[mPresentSampleOffset] = fence; | 
 |     mPresentTimes[mPresentSampleOffset] = 0; | 
 |     mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES; | 
 |     mNumResyncSamplesSincePresent = 0; | 
 |  | 
 |     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { | 
 |         const sp<Fence>& f(mPresentFences[i]); | 
 |         if (f != NULL) { | 
 |             nsecs_t t = f->getSignalTime(); | 
 |             if (t < INT64_MAX) { | 
 |                 mPresentFences[i].clear(); | 
 |                 mPresentTimes[i] = t + presentTimeOffset; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     updateErrorLocked(); | 
 |  | 
 |     return mPeriod == 0 || mError > errorThreshold; | 
 | } | 
 |  | 
 | void DispSync::beginResync() { | 
 |     Mutex::Autolock lock(mMutex); | 
 |  | 
 |     mNumResyncSamples = 0; | 
 | } | 
 |  | 
 | bool DispSync::addResyncSample(nsecs_t timestamp) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |  | 
 |     size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES; | 
 |     mResyncSamples[idx] = timestamp; | 
 |  | 
 |     if (mNumResyncSamples < MAX_RESYNC_SAMPLES) { | 
 |         mNumResyncSamples++; | 
 |     } else { | 
 |         mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES; | 
 |     } | 
 |  | 
 |     updateModelLocked(); | 
 |  | 
 |     if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) { | 
 |         resetErrorLocked(); | 
 |     } | 
 |  | 
 |     if (runningWithoutSyncFramework) { | 
 |         // If we don't have the sync framework we will never have | 
 |         // addPresentFence called.  This means we have no way to know whether | 
 |         // or not we're synchronized with the HW vsyncs, so we just request | 
 |         // that the HW vsync events be turned on whenever we need to generate | 
 |         // SW vsync events. | 
 |         return mThread->hasAnyEventListeners(); | 
 |     } | 
 |  | 
 |     return mPeriod == 0 || mError > errorThreshold; | 
 | } | 
 |  | 
 | void DispSync::endResync() { | 
 | } | 
 |  | 
 | status_t DispSync::addEventListener(nsecs_t phase, | 
 |         const sp<Callback>& callback) { | 
 |  | 
 |     Mutex::Autolock lock(mMutex); | 
 |     return mThread->addEventListener(phase, callback); | 
 | } | 
 |  | 
 | status_t DispSync::removeEventListener(const sp<Callback>& callback) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     return mThread->removeEventListener(callback); | 
 | } | 
 |  | 
 | void DispSync::setPeriod(nsecs_t period) { | 
 |     Mutex::Autolock lock(mMutex); | 
 |     mPeriod = period; | 
 |     mPhase = 0; | 
 |     mThread->updateModel(mPeriod, mPhase); | 
 | } | 
 |  | 
 | void DispSync::updateModelLocked() { | 
 |     if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) { | 
 |         nsecs_t durationSum = 0; | 
 |         for (size_t i = 1; i < mNumResyncSamples; i++) { | 
 |             size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES; | 
 |             size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES; | 
 |             durationSum += mResyncSamples[idx] - mResyncSamples[prev]; | 
 |         } | 
 |  | 
 |         mPeriod = durationSum / (mNumResyncSamples - 1); | 
 |  | 
 |         double sampleAvgX = 0; | 
 |         double sampleAvgY = 0; | 
 |         double scale = 2.0 * M_PI / double(mPeriod); | 
 |         for (size_t i = 0; i < mNumResyncSamples; i++) { | 
 |             size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES; | 
 |             nsecs_t sample = mResyncSamples[idx]; | 
 |             double samplePhase = double(sample % mPeriod) * scale; | 
 |             sampleAvgX += cos(samplePhase); | 
 |             sampleAvgY += sin(samplePhase); | 
 |         } | 
 |  | 
 |         sampleAvgX /= double(mNumResyncSamples); | 
 |         sampleAvgY /= double(mNumResyncSamples); | 
 |  | 
 |         mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale); | 
 |  | 
 |         if (mPhase < 0) { | 
 |             mPhase += mPeriod; | 
 |         } | 
 |  | 
 |         if (traceDetailedInfo) { | 
 |             ATRACE_INT64("DispSync:Period", mPeriod); | 
 |             ATRACE_INT64("DispSync:Phase", mPhase); | 
 |         } | 
 |  | 
 |         mThread->updateModel(mPeriod, mPhase); | 
 |     } | 
 | } | 
 |  | 
 | void DispSync::updateErrorLocked() { | 
 |     if (mPeriod == 0) { | 
 |         return; | 
 |     } | 
 |  | 
 |     int numErrSamples = 0; | 
 |     nsecs_t sqErrSum = 0; | 
 |  | 
 |     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { | 
 |         nsecs_t sample = mPresentTimes[i]; | 
 |         if (sample > mPhase) { | 
 |             nsecs_t sampleErr = (sample - mPhase) % mPeriod; | 
 |             if (sampleErr > mPeriod / 2) { | 
 |                 sampleErr -= mPeriod; | 
 |             } | 
 |             sqErrSum += sampleErr * sampleErr; | 
 |             numErrSamples++; | 
 |         } | 
 |     } | 
 |  | 
 |     if (numErrSamples > 0) { | 
 |         mError = sqErrSum / numErrSamples; | 
 |     } else { | 
 |         mError = 0; | 
 |     } | 
 |  | 
 |     if (traceDetailedInfo) { | 
 |         ATRACE_INT64("DispSync:Error", mError); | 
 |     } | 
 | } | 
 |  | 
 | void DispSync::resetErrorLocked() { | 
 |     mPresentSampleOffset = 0; | 
 |     mError = 0; | 
 |     for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) { | 
 |         mPresentFences[i].clear(); | 
 |         mPresentTimes[i] = 0; | 
 |     } | 
 | } | 
 |  | 
 | } // namespace android |