|  | /* | 
|  | * Copyright 2013 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | //#define LOG_NDEBUG 0 | 
|  | #undef LOG_TAG | 
|  | #define LOG_TAG "RenderEngine" | 
|  | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
|  |  | 
|  | #include <GLES2/gl2.h> | 
|  | #include <GLES2/gl2ext.h> | 
|  |  | 
|  | #include <ui/ColorSpace.h> | 
|  | #include <ui/DebugUtils.h> | 
|  | #include <ui/Rect.h> | 
|  |  | 
|  | #include <utils/String8.h> | 
|  | #include <utils/Trace.h> | 
|  |  | 
|  | #include <cutils/compiler.h> | 
|  | #include <gui/ISurfaceComposer.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "Description.h" | 
|  | #include "GLES20RenderEngine.h" | 
|  | #include "Mesh.h" | 
|  | #include "Program.h" | 
|  | #include "ProgramCache.h" | 
|  | #include "Texture.h" | 
|  |  | 
|  | #include <fstream> | 
|  | #include <sstream> | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | bool checkGlError(const char* op, int lineNumber) { | 
|  | bool errorFound = false; | 
|  | GLint error = glGetError(); | 
|  | while (error != GL_NO_ERROR) { | 
|  | errorFound = true; | 
|  | error = glGetError(); | 
|  | ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error); | 
|  | } | 
|  | return errorFound; | 
|  | } | 
|  |  | 
|  | static constexpr bool outputDebugPPMs = false; | 
|  |  | 
|  | void writePPM(const char* basename, GLuint width, GLuint height) { | 
|  | ALOGV("writePPM #%s: %d x %d", basename, width, height); | 
|  |  | 
|  | std::vector<GLubyte> pixels(width * height * 4); | 
|  | std::vector<GLubyte> outBuffer(width * height * 3); | 
|  |  | 
|  | // TODO(courtneygo): We can now have float formats, need | 
|  | // to remove this code or update to support. | 
|  | // Make returned pixels fit in uint32_t, one byte per component | 
|  | glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data()); | 
|  | if (checkGlError(__FUNCTION__, __LINE__)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | std::string filename(basename); | 
|  | filename.append(".ppm"); | 
|  | std::ofstream file(filename.c_str(), std::ios::binary); | 
|  | if (!file.is_open()) { | 
|  | ALOGE("Unable to open file: %s", filename.c_str()); | 
|  | ALOGE("You may need to do: \"adb shell setenforce 0\" to enable " | 
|  | "surfaceflinger to write debug images"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | file << "P6\n"; | 
|  | file << width << "\n"; | 
|  | file << height << "\n"; | 
|  | file << 255 << "\n"; | 
|  |  | 
|  | auto ptr = reinterpret_cast<char*>(pixels.data()); | 
|  | auto outPtr = reinterpret_cast<char*>(outBuffer.data()); | 
|  | for (int y = height - 1; y >= 0; y--) { | 
|  | char* data = ptr + y * width * sizeof(uint32_t); | 
|  |  | 
|  | for (GLuint x = 0; x < width; x++) { | 
|  | // Only copy R, G and B components | 
|  | outPtr[0] = data[0]; | 
|  | outPtr[1] = data[1]; | 
|  | outPtr[2] = data[2]; | 
|  | data += sizeof(uint32_t); | 
|  | outPtr += 3; | 
|  | } | 
|  | } | 
|  | file.write(reinterpret_cast<char*>(outBuffer.data()), outBuffer.size()); | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | namespace android { | 
|  | namespace RE { | 
|  | namespace impl { | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | using ui::Dataspace; | 
|  |  | 
|  | GLES20RenderEngine::GLES20RenderEngine(uint32_t featureFlags) | 
|  | : RenderEngine(featureFlags), | 
|  | mVpWidth(0), | 
|  | mVpHeight(0), | 
|  | mPlatformHasWideColor((featureFlags & WIDE_COLOR_SUPPORT) != 0) { | 
|  | glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize); | 
|  | glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims); | 
|  |  | 
|  | glPixelStorei(GL_UNPACK_ALIGNMENT, 4); | 
|  | glPixelStorei(GL_PACK_ALIGNMENT, 4); | 
|  |  | 
|  | const uint16_t protTexData[] = {0}; | 
|  | glGenTextures(1, &mProtectedTexName); | 
|  | glBindTexture(GL_TEXTURE_2D, mProtectedTexName); | 
|  | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); | 
|  | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); | 
|  | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); | 
|  | glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); | 
|  | glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData); | 
|  |  | 
|  | // mColorBlindnessCorrection = M; | 
|  |  | 
|  | if (mPlatformHasWideColor) { | 
|  | ColorSpace srgb(ColorSpace::sRGB()); | 
|  | ColorSpace displayP3(ColorSpace::DisplayP3()); | 
|  | ColorSpace bt2020(ColorSpace::BT2020()); | 
|  |  | 
|  | // Compute sRGB to Display P3 transform matrix. | 
|  | // NOTE: For now, we are limiting output wide color space support to | 
|  | // Display-P3 only. | 
|  | mSrgbToDisplayP3 = mat4(ColorSpaceConnector(srgb, displayP3).getTransform()); | 
|  |  | 
|  | // Compute Display P3 to sRGB transform matrix. | 
|  | mDisplayP3ToSrgb = mat4(ColorSpaceConnector(displayP3, srgb).getTransform()); | 
|  |  | 
|  | // no chromatic adaptation needed since all color spaces use D65 for their white points. | 
|  | mSrgbToXyz = srgb.getRGBtoXYZ(); | 
|  | mDisplayP3ToXyz = displayP3.getRGBtoXYZ(); | 
|  | mBt2020ToXyz = bt2020.getRGBtoXYZ(); | 
|  | mXyzToSrgb = mat4(srgb.getXYZtoRGB()); | 
|  | mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB()); | 
|  | mXyzToBt2020 = mat4(bt2020.getXYZtoRGB()); | 
|  | } | 
|  | } | 
|  |  | 
|  | GLES20RenderEngine::~GLES20RenderEngine() {} | 
|  |  | 
|  | size_t GLES20RenderEngine::getMaxTextureSize() const { | 
|  | return mMaxTextureSize; | 
|  | } | 
|  |  | 
|  | size_t GLES20RenderEngine::getMaxViewportDims() const { | 
|  | return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1]; | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setViewportAndProjection(size_t vpw, size_t vph, Rect sourceCrop, | 
|  | size_t hwh, bool yswap, | 
|  | Transform::orientation_flags rotation) { | 
|  | int32_t l = sourceCrop.left; | 
|  | int32_t r = sourceCrop.right; | 
|  |  | 
|  | // In GL, (0, 0) is the bottom-left corner, so flip y coordinates | 
|  | int32_t t = hwh - sourceCrop.top; | 
|  | int32_t b = hwh - sourceCrop.bottom; | 
|  |  | 
|  | mat4 m; | 
|  | if (yswap) { | 
|  | m = mat4::ortho(l, r, t, b, 0, 1); | 
|  | } else { | 
|  | m = mat4::ortho(l, r, b, t, 0, 1); | 
|  | } | 
|  |  | 
|  | // Apply custom rotation to the projection. | 
|  | float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f; | 
|  | switch (rotation) { | 
|  | case Transform::ROT_0: | 
|  | break; | 
|  | case Transform::ROT_90: | 
|  | m = mat4::rotate(rot90InRadians, vec3(0, 0, 1)) * m; | 
|  | break; | 
|  | case Transform::ROT_180: | 
|  | m = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1)) * m; | 
|  | break; | 
|  | case Transform::ROT_270: | 
|  | m = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1)) * m; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | glViewport(0, 0, vpw, vph); | 
|  | mState.setProjectionMatrix(m); | 
|  | mVpWidth = vpw; | 
|  | mVpHeight = vph; | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque, | 
|  | bool disableTexture, const half4& color) { | 
|  | mState.setPremultipliedAlpha(premultipliedAlpha); | 
|  | mState.setOpaque(opaque); | 
|  | mState.setColor(color); | 
|  |  | 
|  | if (disableTexture) { | 
|  | mState.disableTexture(); | 
|  | } | 
|  |  | 
|  | if (color.a < 1.0f || !opaque) { | 
|  | glEnable(GL_BLEND); | 
|  | glBlendFunc(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); | 
|  | } else { | 
|  | glDisable(GL_BLEND); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setSourceY410BT2020(bool enable) { | 
|  | mState.setY410BT2020(enable); | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setSourceDataSpace(Dataspace source) { | 
|  | mDataSpace = source; | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setOutputDataSpace(Dataspace dataspace) { | 
|  | mOutputDataSpace = dataspace; | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setDisplayMaxLuminance(const float maxLuminance) { | 
|  | mState.setDisplayMaxLuminance(maxLuminance); | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setupLayerTexturing(const Texture& texture) { | 
|  | GLuint target = texture.getTextureTarget(); | 
|  | glBindTexture(target, texture.getTextureName()); | 
|  | GLenum filter = GL_NEAREST; | 
|  | if (texture.getFiltering()) { | 
|  | filter = GL_LINEAR; | 
|  | } | 
|  | glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); | 
|  | glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); | 
|  | glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter); | 
|  | glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter); | 
|  |  | 
|  | mState.setTexture(texture); | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setupLayerBlackedOut() { | 
|  | glBindTexture(GL_TEXTURE_2D, mProtectedTexName); | 
|  | Texture texture(Texture::TEXTURE_2D, mProtectedTexName); | 
|  | texture.setDimensions(1, 1); // FIXME: we should get that from somewhere | 
|  | mState.setTexture(texture); | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setupColorTransform(const mat4& colorTransform) { | 
|  | mState.setColorMatrix(colorTransform); | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::disableTexturing() { | 
|  | mState.disableTexture(); | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::disableBlending() { | 
|  | glDisable(GL_BLEND); | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::bindImageAsFramebuffer(EGLImageKHR image, uint32_t* texName, | 
|  | uint32_t* fbName, uint32_t* status) { | 
|  | GLuint tname, name; | 
|  | // turn our EGLImage into a texture | 
|  | glGenTextures(1, &tname); | 
|  | glBindTexture(GL_TEXTURE_2D, tname); | 
|  | glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)image); | 
|  |  | 
|  | // create a Framebuffer Object to render into | 
|  | glGenFramebuffers(1, &name); | 
|  | glBindFramebuffer(GL_FRAMEBUFFER, name); | 
|  | glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tname, 0); | 
|  |  | 
|  | *status = glCheckFramebufferStatus(GL_FRAMEBUFFER); | 
|  | *texName = tname; | 
|  | *fbName = name; | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::unbindFramebuffer(uint32_t texName, uint32_t fbName) { | 
|  | glBindFramebuffer(GL_FRAMEBUFFER, 0); | 
|  | glDeleteFramebuffers(1, &fbName); | 
|  | glDeleteTextures(1, &texName); | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::setupFillWithColor(float r, float g, float b, float a) { | 
|  | mState.setPremultipliedAlpha(true); | 
|  | mState.setOpaque(false); | 
|  | mState.setColor(half4(r, g, b, a)); | 
|  | mState.disableTexture(); | 
|  | glDisable(GL_BLEND); | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::drawMesh(const Mesh& mesh) { | 
|  | ATRACE_CALL(); | 
|  | if (mesh.getTexCoordsSize()) { | 
|  | glEnableVertexAttribArray(Program::texCoords); | 
|  | glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE, | 
|  | mesh.getByteStride(), mesh.getTexCoords()); | 
|  | } | 
|  |  | 
|  | glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE, | 
|  | mesh.getByteStride(), mesh.getPositions()); | 
|  |  | 
|  | // By default, DISPLAY_P3 is the only supported wide color output. However, | 
|  | // when HDR content is present, hardware composer may be able to handle | 
|  | // BT2020 data space, in that case, the output data space is set to be | 
|  | // BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need | 
|  | // to respect this and convert non-HDR content to HDR format. | 
|  | if (mPlatformHasWideColor) { | 
|  | Description wideColorState = mState; | 
|  | Dataspace inputStandard = static_cast<Dataspace>(mDataSpace & Dataspace::STANDARD_MASK); | 
|  | Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK); | 
|  | Dataspace outputStandard = static_cast<Dataspace>(mOutputDataSpace & | 
|  | Dataspace::STANDARD_MASK); | 
|  | Dataspace outputTransfer = static_cast<Dataspace>(mOutputDataSpace & | 
|  | Dataspace::TRANSFER_MASK); | 
|  | bool needsXYZConversion = needsXYZTransformMatrix(); | 
|  |  | 
|  | if (needsXYZConversion) { | 
|  | // The supported input color spaces are standard RGB, Display P3 and BT2020. | 
|  | switch (inputStandard) { | 
|  | case Dataspace::STANDARD_DCI_P3: | 
|  | wideColorState.setInputTransformMatrix(mDisplayP3ToXyz); | 
|  | break; | 
|  | case Dataspace::STANDARD_BT2020: | 
|  | wideColorState.setInputTransformMatrix(mBt2020ToXyz); | 
|  | break; | 
|  | default: | 
|  | wideColorState.setInputTransformMatrix(mSrgbToXyz); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // The supported output color spaces are BT2020, Display P3 and standard RGB. | 
|  | switch (outputStandard) { | 
|  | case Dataspace::STANDARD_BT2020: | 
|  | wideColorState.setOutputTransformMatrix(mXyzToBt2020); | 
|  | break; | 
|  | case Dataspace::STANDARD_DCI_P3: | 
|  | wideColorState.setOutputTransformMatrix(mXyzToDisplayP3); | 
|  | break; | 
|  | default: | 
|  | wideColorState.setOutputTransformMatrix(mXyzToSrgb); | 
|  | break; | 
|  | } | 
|  | } else if (inputStandard != outputStandard) { | 
|  | // At this point, the input data space and output data space could be both | 
|  | // HDR data spaces, but they match each other, we do nothing in this case. | 
|  | // In addition to the case above, the input data space could be | 
|  | // - scRGB linear | 
|  | // - scRGB non-linear | 
|  | // - sRGB | 
|  | // - Display P3 | 
|  | // The output data spaces could be | 
|  | // - sRGB | 
|  | // - Display P3 | 
|  | if (outputStandard == Dataspace::STANDARD_BT709) { | 
|  | wideColorState.setOutputTransformMatrix(mDisplayP3ToSrgb); | 
|  | } else if (outputStandard == Dataspace::STANDARD_DCI_P3) { | 
|  | wideColorState.setOutputTransformMatrix(mSrgbToDisplayP3); | 
|  | } | 
|  | } | 
|  |  | 
|  | // we need to convert the RGB value to linear space and convert it back when: | 
|  | // - there is a color matrix that is not an identity matrix, or | 
|  | // - there is an output transform matrix that is not an identity matrix, or | 
|  | // - the input transfer function doesn't match the output transfer function. | 
|  | if (wideColorState.hasColorMatrix() || wideColorState.hasOutputTransformMatrix() || | 
|  | inputTransfer != outputTransfer) { | 
|  | switch (inputTransfer) { | 
|  | case Dataspace::TRANSFER_ST2084: | 
|  | wideColorState.setInputTransferFunction(Description::TransferFunction::ST2084); | 
|  | break; | 
|  | case Dataspace::TRANSFER_HLG: | 
|  | wideColorState.setInputTransferFunction(Description::TransferFunction::HLG); | 
|  | break; | 
|  | case Dataspace::TRANSFER_LINEAR: | 
|  | wideColorState.setInputTransferFunction(Description::TransferFunction::LINEAR); | 
|  | break; | 
|  | default: | 
|  | wideColorState.setInputTransferFunction(Description::TransferFunction::SRGB); | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (outputTransfer) { | 
|  | case Dataspace::TRANSFER_ST2084: | 
|  | wideColorState.setOutputTransferFunction(Description::TransferFunction::ST2084); | 
|  | break; | 
|  | case Dataspace::TRANSFER_HLG: | 
|  | wideColorState.setOutputTransferFunction(Description::TransferFunction::HLG); | 
|  | break; | 
|  | default: | 
|  | wideColorState.setOutputTransferFunction(Description::TransferFunction::SRGB); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ProgramCache::getInstance().useProgram(wideColorState); | 
|  |  | 
|  | glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); | 
|  |  | 
|  | if (outputDebugPPMs) { | 
|  | static uint64_t wideColorFrameCount = 0; | 
|  | std::ostringstream out; | 
|  | out << "/data/texture_out" << wideColorFrameCount++; | 
|  | writePPM(out.str().c_str(), mVpWidth, mVpHeight); | 
|  | } | 
|  | } else { | 
|  | ProgramCache::getInstance().useProgram(mState); | 
|  |  | 
|  | glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); | 
|  | } | 
|  |  | 
|  | if (mesh.getTexCoordsSize()) { | 
|  | glDisableVertexAttribArray(Program::texCoords); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GLES20RenderEngine::dump(String8& result) { | 
|  | RenderEngine::dump(result); | 
|  | result.appendFormat("RenderEngine last dataspace conversion: (%s) to (%s)\n", | 
|  | dataspaceDetails(static_cast<android_dataspace>(mDataSpace)).c_str(), | 
|  | dataspaceDetails(static_cast<android_dataspace>(mOutputDataSpace)).c_str()); | 
|  | } | 
|  |  | 
|  | bool GLES20RenderEngine::isHdrDataSpace(const Dataspace dataSpace) const { | 
|  | const Dataspace standard = static_cast<Dataspace>(dataSpace & Dataspace::STANDARD_MASK); | 
|  | const Dataspace transfer = static_cast<Dataspace>(dataSpace & Dataspace::TRANSFER_MASK); | 
|  | return standard == Dataspace::STANDARD_BT2020 && | 
|  | (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG); | 
|  | } | 
|  |  | 
|  | // For convenience, we want to convert the input color space to XYZ color space first, | 
|  | // and then convert from XYZ color space to output color space when | 
|  | // - SDR and HDR contents are mixed, either SDR content will be converted to HDR or | 
|  | //   HDR content will be tone-mapped to SDR; Or, | 
|  | // - there are HDR PQ and HLG contents presented at the same time, where we want to convert | 
|  | //   HLG content to PQ content. | 
|  | // In either case above, we need to operate the Y value in XYZ color space. Thus, when either | 
|  | // input data space or output data space is HDR data space, and the input transfer function | 
|  | // doesn't match the output transfer function, we would enable an intermediate transfrom to | 
|  | // XYZ color space. | 
|  | bool GLES20RenderEngine::needsXYZTransformMatrix() const { | 
|  | const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace); | 
|  | const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace); | 
|  | const Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK); | 
|  | const Dataspace outputTransfer = static_cast<Dataspace>(mOutputDataSpace & | 
|  | Dataspace::TRANSFER_MASK); | 
|  |  | 
|  | return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer; | 
|  | } | 
|  |  | 
|  | // --------------------------------------------------------------------------- | 
|  | } // namespace impl | 
|  | } // namespace RE | 
|  | } // namespace android | 
|  | // --------------------------------------------------------------------------- | 
|  |  | 
|  | #if defined(__gl_h_) | 
|  | #error "don't include gl/gl.h in this file" | 
|  | #endif |