| /* | 
 |  * Copyright 2013 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | //#define LOG_NDEBUG 0 | 
 | #include "EGL/egl.h" | 
 | #undef LOG_TAG | 
 | #define LOG_TAG "RenderEngine" | 
 | #define ATRACE_TAG ATRACE_TAG_GRAPHICS | 
 |  | 
 | #include <sched.h> | 
 | #include <cmath> | 
 | #include <fstream> | 
 | #include <sstream> | 
 | #include <unordered_set> | 
 |  | 
 | #include <GLES2/gl2.h> | 
 | #include <GLES2/gl2ext.h> | 
 | #include <android-base/stringprintf.h> | 
 | #include <cutils/compiler.h> | 
 | #include <cutils/properties.h> | 
 | #include <gui/DebugEGLImageTracker.h> | 
 | #include <renderengine/Mesh.h> | 
 | #include <renderengine/Texture.h> | 
 | #include <renderengine/private/Description.h> | 
 | #include <sync/sync.h> | 
 | #include <ui/ColorSpace.h> | 
 | #include <ui/DebugUtils.h> | 
 | #include <ui/GraphicBuffer.h> | 
 | #include <ui/Rect.h> | 
 | #include <ui/Region.h> | 
 | #include <utils/KeyedVector.h> | 
 | #include <utils/Trace.h> | 
 | #include "GLESRenderEngine.h" | 
 | #include "GLExtensions.h" | 
 | #include "GLFramebuffer.h" | 
 | #include "GLImage.h" | 
 | #include "GLShadowVertexGenerator.h" | 
 | #include "Program.h" | 
 | #include "ProgramCache.h" | 
 | #include "filters/BlurFilter.h" | 
 |  | 
 | bool checkGlError(const char* op, int lineNumber) { | 
 |     bool errorFound = false; | 
 |     GLint error = glGetError(); | 
 |     while (error != GL_NO_ERROR) { | 
 |         errorFound = true; | 
 |         error = glGetError(); | 
 |         ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error); | 
 |     } | 
 |     return errorFound; | 
 | } | 
 |  | 
 | static constexpr bool outputDebugPPMs = false; | 
 |  | 
 | void writePPM(const char* basename, GLuint width, GLuint height) { | 
 |     ALOGV("writePPM #%s: %d x %d", basename, width, height); | 
 |  | 
 |     std::vector<GLubyte> pixels(width * height * 4); | 
 |     std::vector<GLubyte> outBuffer(width * height * 3); | 
 |  | 
 |     // TODO(courtneygo): We can now have float formats, need | 
 |     // to remove this code or update to support. | 
 |     // Make returned pixels fit in uint32_t, one byte per component | 
 |     glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data()); | 
 |     if (checkGlError(__FUNCTION__, __LINE__)) { | 
 |         return; | 
 |     } | 
 |  | 
 |     std::string filename(basename); | 
 |     filename.append(".ppm"); | 
 |     std::ofstream file(filename.c_str(), std::ios::binary); | 
 |     if (!file.is_open()) { | 
 |         ALOGE("Unable to open file: %s", filename.c_str()); | 
 |         ALOGE("You may need to do: \"adb shell setenforce 0\" to enable " | 
 |               "surfaceflinger to write debug images"); | 
 |         return; | 
 |     } | 
 |  | 
 |     file << "P6\n"; | 
 |     file << width << "\n"; | 
 |     file << height << "\n"; | 
 |     file << 255 << "\n"; | 
 |  | 
 |     auto ptr = reinterpret_cast<char*>(pixels.data()); | 
 |     auto outPtr = reinterpret_cast<char*>(outBuffer.data()); | 
 |     for (int y = height - 1; y >= 0; y--) { | 
 |         char* data = ptr + y * width * sizeof(uint32_t); | 
 |  | 
 |         for (GLuint x = 0; x < width; x++) { | 
 |             // Only copy R, G and B components | 
 |             outPtr[0] = data[0]; | 
 |             outPtr[1] = data[1]; | 
 |             outPtr[2] = data[2]; | 
 |             data += sizeof(uint32_t); | 
 |             outPtr += 3; | 
 |         } | 
 |     } | 
 |     file.write(reinterpret_cast<char*>(outBuffer.data()), outBuffer.size()); | 
 | } | 
 |  | 
 | namespace android { | 
 | namespace renderengine { | 
 | namespace gl { | 
 |  | 
 | class BindNativeBufferAsFramebuffer { | 
 | public: | 
 |     BindNativeBufferAsFramebuffer(GLESRenderEngine& engine, ANativeWindowBuffer* buffer, | 
 |                                   const bool useFramebufferCache) | 
 |           : mEngine(engine), mFramebuffer(mEngine.getFramebufferForDrawing()), mStatus(NO_ERROR) { | 
 |         mStatus = mFramebuffer->setNativeWindowBuffer(buffer, mEngine.isProtected(), | 
 |                                                       useFramebufferCache) | 
 |                 ? mEngine.bindFrameBuffer(mFramebuffer) | 
 |                 : NO_MEMORY; | 
 |     } | 
 |     ~BindNativeBufferAsFramebuffer() { | 
 |         mFramebuffer->setNativeWindowBuffer(nullptr, false, /*arbitrary*/ true); | 
 |         mEngine.unbindFrameBuffer(mFramebuffer); | 
 |     } | 
 |     status_t getStatus() const { return mStatus; } | 
 |  | 
 | private: | 
 |     GLESRenderEngine& mEngine; | 
 |     Framebuffer* mFramebuffer; | 
 |     status_t mStatus; | 
 | }; | 
 |  | 
 | using base::StringAppendF; | 
 | using ui::Dataspace; | 
 |  | 
 | static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute, | 
 |                                          EGLint wanted, EGLConfig* outConfig) { | 
 |     EGLint numConfigs = -1, n = 0; | 
 |     eglGetConfigs(dpy, nullptr, 0, &numConfigs); | 
 |     std::vector<EGLConfig> configs(numConfigs, EGL_NO_CONFIG_KHR); | 
 |     eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n); | 
 |     configs.resize(n); | 
 |  | 
 |     if (!configs.empty()) { | 
 |         if (attribute != EGL_NONE) { | 
 |             for (EGLConfig config : configs) { | 
 |                 EGLint value = 0; | 
 |                 eglGetConfigAttrib(dpy, config, attribute, &value); | 
 |                 if (wanted == value) { | 
 |                     *outConfig = config; | 
 |                     return NO_ERROR; | 
 |                 } | 
 |             } | 
 |         } else { | 
 |             // just pick the first one | 
 |             *outConfig = configs[0]; | 
 |             return NO_ERROR; | 
 |         } | 
 |     } | 
 |  | 
 |     return NAME_NOT_FOUND; | 
 | } | 
 |  | 
 | static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType, | 
 |                                 EGLConfig* config) { | 
 |     // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if | 
 |     // it is to be used with WIFI displays | 
 |     status_t err; | 
 |     EGLint wantedAttribute; | 
 |     EGLint wantedAttributeValue; | 
 |  | 
 |     std::vector<EGLint> attribs; | 
 |     if (renderableType) { | 
 |         const ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(format); | 
 |         const bool is1010102 = pixelFormat == ui::PixelFormat::RGBA_1010102; | 
 |  | 
 |         // Default to 8 bits per channel. | 
 |         const EGLint tmpAttribs[] = { | 
 |                 EGL_RENDERABLE_TYPE, | 
 |                 renderableType, | 
 |                 EGL_RECORDABLE_ANDROID, | 
 |                 EGL_TRUE, | 
 |                 EGL_SURFACE_TYPE, | 
 |                 EGL_WINDOW_BIT | EGL_PBUFFER_BIT, | 
 |                 EGL_FRAMEBUFFER_TARGET_ANDROID, | 
 |                 EGL_TRUE, | 
 |                 EGL_RED_SIZE, | 
 |                 is1010102 ? 10 : 8, | 
 |                 EGL_GREEN_SIZE, | 
 |                 is1010102 ? 10 : 8, | 
 |                 EGL_BLUE_SIZE, | 
 |                 is1010102 ? 10 : 8, | 
 |                 EGL_ALPHA_SIZE, | 
 |                 is1010102 ? 2 : 8, | 
 |                 EGL_NONE, | 
 |         }; | 
 |         std::copy(tmpAttribs, tmpAttribs + (sizeof(tmpAttribs) / sizeof(EGLint)), | 
 |                   std::back_inserter(attribs)); | 
 |         wantedAttribute = EGL_NONE; | 
 |         wantedAttributeValue = EGL_NONE; | 
 |     } else { | 
 |         // if no renderable type specified, fallback to a simplified query | 
 |         wantedAttribute = EGL_NATIVE_VISUAL_ID; | 
 |         wantedAttributeValue = format; | 
 |     } | 
 |  | 
 |     err = selectConfigForAttribute(display, attribs.data(), wantedAttribute, wantedAttributeValue, | 
 |                                    config); | 
 |     if (err == NO_ERROR) { | 
 |         EGLint caveat; | 
 |         if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat)) | 
 |             ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!"); | 
 |     } | 
 |  | 
 |     return err; | 
 | } | 
 |  | 
 | std::optional<RenderEngine::ContextPriority> GLESRenderEngine::createContextPriority( | 
 |         const RenderEngineCreationArgs& args) { | 
 |     if (!GLExtensions::getInstance().hasContextPriority()) { | 
 |         return std::nullopt; | 
 |     } | 
 |  | 
 |     switch (args.contextPriority) { | 
 |         case RenderEngine::ContextPriority::REALTIME: | 
 |             if (gl::GLExtensions::getInstance().hasRealtimePriority()) { | 
 |                 return RenderEngine::ContextPriority::REALTIME; | 
 |             } else { | 
 |                 ALOGI("Realtime priority unsupported, degrading gracefully to high priority"); | 
 |                 return RenderEngine::ContextPriority::HIGH; | 
 |             } | 
 |         case RenderEngine::ContextPriority::HIGH: | 
 |         case RenderEngine::ContextPriority::MEDIUM: | 
 |         case RenderEngine::ContextPriority::LOW: | 
 |             return args.contextPriority; | 
 |         default: | 
 |             return std::nullopt; | 
 |     } | 
 | } | 
 |  | 
 | std::unique_ptr<GLESRenderEngine> GLESRenderEngine::create(const RenderEngineCreationArgs& args) { | 
 |     // initialize EGL for the default display | 
 |     EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY); | 
 |     if (!eglInitialize(display, nullptr, nullptr)) { | 
 |         LOG_ALWAYS_FATAL("failed to initialize EGL. EGL error=0x%x", eglGetError()); | 
 |     } | 
 |  | 
 |     const auto eglVersion = eglQueryString(display, EGL_VERSION); | 
 |     if (!eglVersion) { | 
 |         checkGlError(__FUNCTION__, __LINE__); | 
 |         LOG_ALWAYS_FATAL("eglQueryString(EGL_VERSION) failed"); | 
 |     } | 
 |  | 
 |     // Use the Android impl to grab EGL_NV_context_priority_realtime | 
 |     const auto eglExtensions = eglQueryString(display, EGL_EXTENSIONS); | 
 |     if (!eglExtensions) { | 
 |         checkGlError(__FUNCTION__, __LINE__); | 
 |         LOG_ALWAYS_FATAL("eglQueryString(EGL_EXTENSIONS) failed"); | 
 |     } | 
 |  | 
 |     GLExtensions& extensions = GLExtensions::getInstance(); | 
 |     extensions.initWithEGLStrings(eglVersion, eglExtensions); | 
 |  | 
 |     // The code assumes that ES2 or later is available if this extension is | 
 |     // supported. | 
 |     EGLConfig config = EGL_NO_CONFIG; | 
 |     if (!extensions.hasNoConfigContext()) { | 
 |         config = chooseEglConfig(display, args.pixelFormat, /*logConfig*/ true); | 
 |     } | 
 |  | 
 |     const std::optional<RenderEngine::ContextPriority> priority = createContextPriority(args); | 
 |     EGLContext protectedContext = EGL_NO_CONTEXT; | 
 |     if (args.enableProtectedContext && extensions.hasProtectedContent()) { | 
 |         protectedContext = | 
 |                 createEglContext(display, config, nullptr, priority, Protection::PROTECTED); | 
 |         ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context"); | 
 |     } | 
 |  | 
 |     EGLContext ctxt = | 
 |             createEglContext(display, config, protectedContext, priority, Protection::UNPROTECTED); | 
 |  | 
 |     // if can't create a GL context, we can only abort. | 
 |     LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed"); | 
 |  | 
 |     EGLSurface stub = EGL_NO_SURFACE; | 
 |     if (!extensions.hasSurfacelessContext()) { | 
 |         stub = createStubEglPbufferSurface(display, config, args.pixelFormat, | 
 |                                            Protection::UNPROTECTED); | 
 |         LOG_ALWAYS_FATAL_IF(stub == EGL_NO_SURFACE, "can't create stub pbuffer"); | 
 |     } | 
 |     EGLBoolean success = eglMakeCurrent(display, stub, stub, ctxt); | 
 |     LOG_ALWAYS_FATAL_IF(!success, "can't make stub pbuffer current"); | 
 |     extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER), | 
 |                                  glGetString(GL_VERSION), glGetString(GL_EXTENSIONS)); | 
 |  | 
 |     EGLSurface protectedStub = EGL_NO_SURFACE; | 
 |     if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) { | 
 |         protectedStub = createStubEglPbufferSurface(display, config, args.pixelFormat, | 
 |                                                     Protection::PROTECTED); | 
 |         ALOGE_IF(protectedStub == EGL_NO_SURFACE, "can't create protected stub pbuffer"); | 
 |     } | 
 |  | 
 |     // now figure out what version of GL did we actually get | 
 |     GlesVersion version = parseGlesVersion(extensions.getVersion()); | 
 |  | 
 |     LOG_ALWAYS_FATAL_IF(args.supportsBackgroundBlur && version < GLES_VERSION_3_0, | 
 |         "Blurs require OpenGL ES 3.0. Please unset ro.surface_flinger.supports_background_blur"); | 
 |  | 
 |     // initialize the renderer while GL is current | 
 |     std::unique_ptr<GLESRenderEngine> engine; | 
 |     switch (version) { | 
 |         case GLES_VERSION_1_0: | 
 |         case GLES_VERSION_1_1: | 
 |             LOG_ALWAYS_FATAL("SurfaceFlinger requires OpenGL ES 2.0 minimum to run."); | 
 |             break; | 
 |         case GLES_VERSION_2_0: | 
 |         case GLES_VERSION_3_0: | 
 |             engine = std::make_unique<GLESRenderEngine>(args, display, config, ctxt, stub, | 
 |                                                         protectedContext, protectedStub); | 
 |             break; | 
 |     } | 
 |  | 
 |     ALOGI("OpenGL ES informations:"); | 
 |     ALOGI("vendor    : %s", extensions.getVendor()); | 
 |     ALOGI("renderer  : %s", extensions.getRenderer()); | 
 |     ALOGI("version   : %s", extensions.getVersion()); | 
 |     ALOGI("extensions: %s", extensions.getExtensions()); | 
 |     ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize()); | 
 |     ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims()); | 
 |     return engine; | 
 | } | 
 |  | 
 | EGLConfig GLESRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) { | 
 |     status_t err; | 
 |     EGLConfig config; | 
 |  | 
 |     // First try to get an ES3 config | 
 |     err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config); | 
 |     if (err != NO_ERROR) { | 
 |         // If ES3 fails, try to get an ES2 config | 
 |         err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config); | 
 |         if (err != NO_ERROR) { | 
 |             // If ES2 still doesn't work, probably because we're on the emulator. | 
 |             // try a simplified query | 
 |             ALOGW("no suitable EGLConfig found, trying a simpler query"); | 
 |             err = selectEGLConfig(display, format, 0, &config); | 
 |             if (err != NO_ERROR) { | 
 |                 // this EGL is too lame for android | 
 |                 LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up"); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     if (logConfig) { | 
 |         // print some debugging info | 
 |         EGLint r, g, b, a; | 
 |         eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r); | 
 |         eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g); | 
 |         eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b); | 
 |         eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a); | 
 |         ALOGI("EGL information:"); | 
 |         ALOGI("vendor    : %s", eglQueryString(display, EGL_VENDOR)); | 
 |         ALOGI("version   : %s", eglQueryString(display, EGL_VERSION)); | 
 |         ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS)); | 
 |         ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported"); | 
 |         ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config); | 
 |     } | 
 |  | 
 |     return config; | 
 | } | 
 |  | 
 | GLESRenderEngine::GLESRenderEngine(const RenderEngineCreationArgs& args, EGLDisplay display, | 
 |                                    EGLConfig config, EGLContext ctxt, EGLSurface stub, | 
 |                                    EGLContext protectedContext, EGLSurface protectedStub) | 
 |       : RenderEngine(args.renderEngineType), | 
 |         mEGLDisplay(display), | 
 |         mEGLConfig(config), | 
 |         mEGLContext(ctxt), | 
 |         mStubSurface(stub), | 
 |         mProtectedEGLContext(protectedContext), | 
 |         mProtectedStubSurface(protectedStub), | 
 |         mVpWidth(0), | 
 |         mVpHeight(0), | 
 |         mFramebufferImageCacheSize(args.imageCacheSize), | 
 |         mUseColorManagement(args.useColorManagement), | 
 |         mPrecacheToneMapperShaderOnly(args.precacheToneMapperShaderOnly) { | 
 |     glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize); | 
 |     glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims); | 
 |  | 
 |     glPixelStorei(GL_UNPACK_ALIGNMENT, 4); | 
 |     glPixelStorei(GL_PACK_ALIGNMENT, 4); | 
 |  | 
 |     // Initialize protected EGL Context. | 
 |     if (mProtectedEGLContext != EGL_NO_CONTEXT) { | 
 |         EGLBoolean success = eglMakeCurrent(display, mProtectedStubSurface, mProtectedStubSurface, | 
 |                                             mProtectedEGLContext); | 
 |         ALOGE_IF(!success, "can't make protected context current"); | 
 |         glPixelStorei(GL_UNPACK_ALIGNMENT, 4); | 
 |         glPixelStorei(GL_PACK_ALIGNMENT, 4); | 
 |         success = eglMakeCurrent(display, mStubSurface, mStubSurface, mEGLContext); | 
 |         LOG_ALWAYS_FATAL_IF(!success, "can't make default context current"); | 
 |     } | 
 |  | 
 |     // mColorBlindnessCorrection = M; | 
 |  | 
 |     if (mUseColorManagement) { | 
 |         const ColorSpace srgb(ColorSpace::sRGB()); | 
 |         const ColorSpace displayP3(ColorSpace::DisplayP3()); | 
 |         const ColorSpace bt2020(ColorSpace::BT2020()); | 
 |  | 
 |         // no chromatic adaptation needed since all color spaces use D65 for their white points. | 
 |         mSrgbToXyz = mat4(srgb.getRGBtoXYZ()); | 
 |         mDisplayP3ToXyz = mat4(displayP3.getRGBtoXYZ()); | 
 |         mBt2020ToXyz = mat4(bt2020.getRGBtoXYZ()); | 
 |         mXyzToSrgb = mat4(srgb.getXYZtoRGB()); | 
 |         mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB()); | 
 |         mXyzToBt2020 = mat4(bt2020.getXYZtoRGB()); | 
 |  | 
 |         // Compute sRGB to Display P3 and BT2020 transform matrix. | 
 |         // NOTE: For now, we are limiting output wide color space support to | 
 |         // Display-P3 and BT2020 only. | 
 |         mSrgbToDisplayP3 = mXyzToDisplayP3 * mSrgbToXyz; | 
 |         mSrgbToBt2020 = mXyzToBt2020 * mSrgbToXyz; | 
 |  | 
 |         // Compute Display P3 to sRGB and BT2020 transform matrix. | 
 |         mDisplayP3ToSrgb = mXyzToSrgb * mDisplayP3ToXyz; | 
 |         mDisplayP3ToBt2020 = mXyzToBt2020 * mDisplayP3ToXyz; | 
 |  | 
 |         // Compute BT2020 to sRGB and Display P3 transform matrix | 
 |         mBt2020ToSrgb = mXyzToSrgb * mBt2020ToXyz; | 
 |         mBt2020ToDisplayP3 = mXyzToDisplayP3 * mBt2020ToXyz; | 
 |     } | 
 |  | 
 |     char value[PROPERTY_VALUE_MAX]; | 
 |     property_get("debug.egl.traceGpuCompletion", value, "0"); | 
 |     if (atoi(value)) { | 
 |         mTraceGpuCompletion = true; | 
 |         mFlushTracer = std::make_unique<FlushTracer>(this); | 
 |     } | 
 |  | 
 |     if (args.supportsBackgroundBlur) { | 
 |         mBlurFilter = new BlurFilter(*this); | 
 |         checkErrors("BlurFilter creation"); | 
 |     } | 
 |  | 
 |     mImageManager = std::make_unique<ImageManager>(this); | 
 |     mImageManager->initThread(); | 
 |     mDrawingBuffer = createFramebuffer(); | 
 |     sp<GraphicBuffer> buf = | 
 |             new GraphicBuffer(1, 1, PIXEL_FORMAT_RGBA_8888, 1, | 
 |                               GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE, "placeholder"); | 
 |  | 
 |     const status_t err = buf->initCheck(); | 
 |     if (err != OK) { | 
 |         ALOGE("Error allocating placeholder buffer: %d", err); | 
 |         return; | 
 |     } | 
 |     mPlaceholderBuffer = buf.get(); | 
 |     EGLint attributes[] = { | 
 |             EGL_NONE, | 
 |     }; | 
 |     mPlaceholderImage = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, | 
 |                                           mPlaceholderBuffer, attributes); | 
 |     ALOGE_IF(mPlaceholderImage == EGL_NO_IMAGE_KHR, "Failed to create placeholder image: %#x", | 
 |              eglGetError()); | 
 |  | 
 |     mShadowTexture = std::make_unique<GLShadowTexture>(); | 
 | } | 
 |  | 
 | GLESRenderEngine::~GLESRenderEngine() { | 
 |     // Destroy the image manager first. | 
 |     mImageManager = nullptr; | 
 |     mShadowTexture = nullptr; | 
 |     cleanFramebufferCache(); | 
 |     ProgramCache::getInstance().purgeCaches(); | 
 |     std::lock_guard<std::mutex> lock(mRenderingMutex); | 
 |     glDisableVertexAttribArray(Program::position); | 
 |     unbindFrameBuffer(mDrawingBuffer.get()); | 
 |     mDrawingBuffer = nullptr; | 
 |     eglDestroyImageKHR(mEGLDisplay, mPlaceholderImage); | 
 |     mImageCache.clear(); | 
 |     if (mStubSurface != EGL_NO_SURFACE) { | 
 |         eglDestroySurface(mEGLDisplay, mStubSurface); | 
 |     } | 
 |     if (mProtectedStubSurface != EGL_NO_SURFACE) { | 
 |         eglDestroySurface(mEGLDisplay, mProtectedStubSurface); | 
 |     } | 
 |     if (mEGLContext != EGL_NO_CONTEXT) { | 
 |         eglDestroyContext(mEGLDisplay, mEGLContext); | 
 |     } | 
 |     if (mProtectedEGLContext != EGL_NO_CONTEXT) { | 
 |         eglDestroyContext(mEGLDisplay, mProtectedEGLContext); | 
 |     } | 
 |     eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); | 
 |     eglTerminate(mEGLDisplay); | 
 |     eglReleaseThread(); | 
 | } | 
 |  | 
 | std::unique_ptr<Framebuffer> GLESRenderEngine::createFramebuffer() { | 
 |     return std::make_unique<GLFramebuffer>(*this); | 
 | } | 
 |  | 
 | std::unique_ptr<Image> GLESRenderEngine::createImage() { | 
 |     return std::make_unique<GLImage>(*this); | 
 | } | 
 |  | 
 | Framebuffer* GLESRenderEngine::getFramebufferForDrawing() { | 
 |     return mDrawingBuffer.get(); | 
 | } | 
 |  | 
 | std::future<void> GLESRenderEngine::primeCache() { | 
 |     ProgramCache::getInstance().primeCache(mInProtectedContext ? mProtectedEGLContext : mEGLContext, | 
 |                                            mUseColorManagement, mPrecacheToneMapperShaderOnly); | 
 |     return {}; | 
 | } | 
 |  | 
 | base::unique_fd GLESRenderEngine::flush() { | 
 |     ATRACE_CALL(); | 
 |     if (!GLExtensions::getInstance().hasNativeFenceSync()) { | 
 |         return base::unique_fd(); | 
 |     } | 
 |  | 
 |     EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr); | 
 |     if (sync == EGL_NO_SYNC_KHR) { | 
 |         ALOGW("failed to create EGL native fence sync: %#x", eglGetError()); | 
 |         return base::unique_fd(); | 
 |     } | 
 |  | 
 |     // native fence fd will not be populated until flush() is done. | 
 |     glFlush(); | 
 |  | 
 |     // get the fence fd | 
 |     base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync)); | 
 |     eglDestroySyncKHR(mEGLDisplay, sync); | 
 |     if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) { | 
 |         ALOGW("failed to dup EGL native fence sync: %#x", eglGetError()); | 
 |     } | 
 |  | 
 |     // Only trace if we have a valid fence, as current usage falls back to | 
 |     // calling finish() if the fence fd is invalid. | 
 |     if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer) && fenceFd.get() >= 0) { | 
 |         mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr)); | 
 |     } | 
 |  | 
 |     return fenceFd; | 
 | } | 
 |  | 
 | bool GLESRenderEngine::finish() { | 
 |     ATRACE_CALL(); | 
 |     if (!GLExtensions::getInstance().hasFenceSync()) { | 
 |         ALOGW("no synchronization support"); | 
 |         return false; | 
 |     } | 
 |  | 
 |     EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr); | 
 |     if (sync == EGL_NO_SYNC_KHR) { | 
 |         ALOGW("failed to create EGL fence sync: %#x", eglGetError()); | 
 |         return false; | 
 |     } | 
 |  | 
 |     if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer)) { | 
 |         mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr)); | 
 |     } | 
 |  | 
 |     return waitSync(sync, EGL_SYNC_FLUSH_COMMANDS_BIT_KHR); | 
 | } | 
 |  | 
 | bool GLESRenderEngine::waitSync(EGLSyncKHR sync, EGLint flags) { | 
 |     EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync, flags, 2000000000 /*2 sec*/); | 
 |     EGLint error = eglGetError(); | 
 |     eglDestroySyncKHR(mEGLDisplay, sync); | 
 |     if (result != EGL_CONDITION_SATISFIED_KHR) { | 
 |         if (result == EGL_TIMEOUT_EXPIRED_KHR) { | 
 |             ALOGW("fence wait timed out"); | 
 |         } else { | 
 |             ALOGW("error waiting on EGL fence: %#x", error); | 
 |         } | 
 |         return false; | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | bool GLESRenderEngine::waitFence(base::unique_fd fenceFd) { | 
 |     if (!GLExtensions::getInstance().hasNativeFenceSync() || | 
 |         !GLExtensions::getInstance().hasWaitSync()) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // release the fd and transfer the ownership to EGLSync | 
 |     EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd.release(), EGL_NONE}; | 
 |     EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs); | 
 |     if (sync == EGL_NO_SYNC_KHR) { | 
 |         ALOGE("failed to create EGL native fence sync: %#x", eglGetError()); | 
 |         return false; | 
 |     } | 
 |  | 
 |     // XXX: The spec draft is inconsistent as to whether this should return an | 
 |     // EGLint or void.  Ignore the return value for now, as it's not strictly | 
 |     // needed. | 
 |     eglWaitSyncKHR(mEGLDisplay, sync, 0); | 
 |     EGLint error = eglGetError(); | 
 |     eglDestroySyncKHR(mEGLDisplay, sync); | 
 |     if (error != EGL_SUCCESS) { | 
 |         ALOGE("failed to wait for EGL native fence sync: %#x", error); | 
 |         return false; | 
 |     } | 
 |  | 
 |     return true; | 
 | } | 
 |  | 
 | void GLESRenderEngine::clearWithColor(float red, float green, float blue, float alpha) { | 
 |     ATRACE_CALL(); | 
 |     glDisable(GL_BLEND); | 
 |     glClearColor(red, green, blue, alpha); | 
 |     glClear(GL_COLOR_BUFFER_BIT); | 
 | } | 
 |  | 
 | void GLESRenderEngine::fillRegionWithColor(const Region& region, float red, float green, float blue, | 
 |                                            float alpha) { | 
 |     size_t c; | 
 |     Rect const* r = region.getArray(&c); | 
 |     Mesh mesh = Mesh::Builder() | 
 |                         .setPrimitive(Mesh::TRIANGLES) | 
 |                         .setVertices(c * 6 /* count */, 2 /* size */) | 
 |                         .build(); | 
 |     Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); | 
 |     for (size_t i = 0; i < c; i++, r++) { | 
 |         position[i * 6 + 0].x = r->left; | 
 |         position[i * 6 + 0].y = r->top; | 
 |         position[i * 6 + 1].x = r->left; | 
 |         position[i * 6 + 1].y = r->bottom; | 
 |         position[i * 6 + 2].x = r->right; | 
 |         position[i * 6 + 2].y = r->bottom; | 
 |         position[i * 6 + 3].x = r->left; | 
 |         position[i * 6 + 3].y = r->top; | 
 |         position[i * 6 + 4].x = r->right; | 
 |         position[i * 6 + 4].y = r->bottom; | 
 |         position[i * 6 + 5].x = r->right; | 
 |         position[i * 6 + 5].y = r->top; | 
 |     } | 
 |     setupFillWithColor(red, green, blue, alpha); | 
 |     drawMesh(mesh); | 
 | } | 
 |  | 
 | void GLESRenderEngine::setScissor(const Rect& region) { | 
 |     glScissor(region.left, region.top, region.getWidth(), region.getHeight()); | 
 |     glEnable(GL_SCISSOR_TEST); | 
 | } | 
 |  | 
 | void GLESRenderEngine::disableScissor() { | 
 |     glDisable(GL_SCISSOR_TEST); | 
 | } | 
 |  | 
 | void GLESRenderEngine::genTextures(size_t count, uint32_t* names) { | 
 |     glGenTextures(count, names); | 
 | } | 
 |  | 
 | void GLESRenderEngine::deleteTextures(size_t count, uint32_t const* names) { | 
 |     for (int i = 0; i < count; ++i) { | 
 |         mTextureView.erase(names[i]); | 
 |     } | 
 |     glDeleteTextures(count, names); | 
 | } | 
 |  | 
 | void GLESRenderEngine::bindExternalTextureImage(uint32_t texName, const Image& image) { | 
 |     ATRACE_CALL(); | 
 |     const GLImage& glImage = static_cast<const GLImage&>(image); | 
 |     const GLenum target = GL_TEXTURE_EXTERNAL_OES; | 
 |  | 
 |     glBindTexture(target, texName); | 
 |     if (glImage.getEGLImage() != EGL_NO_IMAGE_KHR) { | 
 |         glEGLImageTargetTexture2DOES(target, static_cast<GLeglImageOES>(glImage.getEGLImage())); | 
 |     } | 
 | } | 
 |  | 
 | void GLESRenderEngine::bindExternalTextureBuffer(uint32_t texName, const sp<GraphicBuffer>& buffer, | 
 |                                                  const sp<Fence>& bufferFence) { | 
 |     ATRACE_CALL(); | 
 |  | 
 |     bool found = false; | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mRenderingMutex); | 
 |         auto cachedImage = mImageCache.find(buffer->getId()); | 
 |         found = (cachedImage != mImageCache.end()); | 
 |     } | 
 |  | 
 |     // If we couldn't find the image in the cache at this time, then either | 
 |     // SurfaceFlinger messed up registering the buffer ahead of time or we got | 
 |     // backed up creating other EGLImages. | 
 |     if (!found) { | 
 |         status_t cacheResult = mImageManager->cache(buffer); | 
 |         if (cacheResult != NO_ERROR) { | 
 |             ALOGE("Error with caching buffer: %d", cacheResult); | 
 |             return; | 
 |         } | 
 |     } | 
 |  | 
 |     // Whether or not we needed to cache, re-check mImageCache to make sure that | 
 |     // there's an EGLImage. The current threading model guarantees that we don't | 
 |     // destroy a cached image until it's really not needed anymore (i.e. this | 
 |     // function should not be called), so the only possibility is that something | 
 |     // terrible went wrong and we should just bind something and move on. | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mRenderingMutex); | 
 |         auto cachedImage = mImageCache.find(buffer->getId()); | 
 |  | 
 |         if (cachedImage == mImageCache.end()) { | 
 |             // We failed creating the image if we got here, so bail out. | 
 |             ALOGE("Failed to create an EGLImage when rendering"); | 
 |             bindExternalTextureImage(texName, *createImage()); | 
 |             return; | 
 |         } | 
 |  | 
 |         bindExternalTextureImage(texName, *cachedImage->second); | 
 |         mTextureView.insert_or_assign(texName, buffer->getId()); | 
 |     } | 
 |  | 
 |     // Wait for the new buffer to be ready. | 
 |     if (bufferFence != nullptr && bufferFence->isValid()) { | 
 |         if (GLExtensions::getInstance().hasWaitSync()) { | 
 |             base::unique_fd fenceFd(bufferFence->dup()); | 
 |             if (fenceFd == -1) { | 
 |                 ALOGE("error dup'ing fence fd: %d", errno); | 
 |                 return; | 
 |             } | 
 |             if (!waitFence(std::move(fenceFd))) { | 
 |                 ALOGE("failed to wait on fence fd"); | 
 |                 return; | 
 |             } | 
 |         } else { | 
 |             status_t err = bufferFence->waitForever("RenderEngine::bindExternalTextureBuffer"); | 
 |             if (err != NO_ERROR) { | 
 |                 ALOGE("error waiting for fence: %d", err); | 
 |                 return; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     return; | 
 | } | 
 |  | 
 | void GLESRenderEngine::mapExternalTextureBuffer(const sp<GraphicBuffer>& buffer, | 
 |                                                 bool /*isRenderable*/) { | 
 |     ATRACE_CALL(); | 
 |     mImageManager->cacheAsync(buffer, nullptr); | 
 | } | 
 |  | 
 | std::shared_ptr<ImageManager::Barrier> GLESRenderEngine::cacheExternalTextureBufferForTesting( | 
 |         const sp<GraphicBuffer>& buffer) { | 
 |     auto barrier = std::make_shared<ImageManager::Barrier>(); | 
 |     mImageManager->cacheAsync(buffer, barrier); | 
 |     return barrier; | 
 | } | 
 |  | 
 | status_t GLESRenderEngine::cacheExternalTextureBufferInternal(const sp<GraphicBuffer>& buffer) { | 
 |     if (buffer == nullptr) { | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mRenderingMutex); | 
 |         if (mImageCache.count(buffer->getId()) > 0) { | 
 |             // If there's already an image then fail fast here. | 
 |             return NO_ERROR; | 
 |         } | 
 |     } | 
 |     ATRACE_CALL(); | 
 |  | 
 |     // Create the image without holding a lock so that we don't block anything. | 
 |     std::unique_ptr<Image> newImage = createImage(); | 
 |  | 
 |     bool created = newImage->setNativeWindowBuffer(buffer->getNativeBuffer(), | 
 |                                                    buffer->getUsage() & GRALLOC_USAGE_PROTECTED); | 
 |     if (!created) { | 
 |         ALOGE("Failed to create image. id=%" PRIx64 " size=%ux%u st=%u usage=%#" PRIx64 " fmt=%d", | 
 |               buffer->getId(), buffer->getWidth(), buffer->getHeight(), buffer->getStride(), | 
 |               buffer->getUsage(), buffer->getPixelFormat()); | 
 |         return NO_INIT; | 
 |     } | 
 |  | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mRenderingMutex); | 
 |         if (mImageCache.count(buffer->getId()) > 0) { | 
 |             // In theory it's possible for another thread to recache the image, | 
 |             // so bail out if another thread won. | 
 |             return NO_ERROR; | 
 |         } | 
 |         mImageCache.insert(std::make_pair(buffer->getId(), std::move(newImage))); | 
 |     } | 
 |  | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | void GLESRenderEngine::unmapExternalTextureBuffer(const sp<GraphicBuffer>& buffer) { | 
 |     mImageManager->releaseAsync(buffer->getId(), nullptr); | 
 | } | 
 |  | 
 | std::shared_ptr<ImageManager::Barrier> GLESRenderEngine::unbindExternalTextureBufferForTesting( | 
 |         uint64_t bufferId) { | 
 |     auto barrier = std::make_shared<ImageManager::Barrier>(); | 
 |     mImageManager->releaseAsync(bufferId, barrier); | 
 |     return barrier; | 
 | } | 
 |  | 
 | void GLESRenderEngine::unbindExternalTextureBufferInternal(uint64_t bufferId) { | 
 |     std::unique_ptr<Image> image; | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mRenderingMutex); | 
 |         const auto& cachedImage = mImageCache.find(bufferId); | 
 |  | 
 |         if (cachedImage != mImageCache.end()) { | 
 |             ALOGV("Destroying image for buffer: %" PRIu64, bufferId); | 
 |             // Move the buffer out of cache first, so that we can destroy | 
 |             // without holding the cache's lock. | 
 |             image = std::move(cachedImage->second); | 
 |             mImageCache.erase(bufferId); | 
 |             return; | 
 |         } | 
 |     } | 
 |     ALOGV("Failed to find image for buffer: %" PRIu64, bufferId); | 
 | } | 
 |  | 
 | int GLESRenderEngine::getContextPriority() { | 
 |     int value; | 
 |     eglQueryContext(mEGLDisplay, mEGLContext, EGL_CONTEXT_PRIORITY_LEVEL_IMG, &value); | 
 |     return value; | 
 | } | 
 |  | 
 | FloatRect GLESRenderEngine::setupLayerCropping(const LayerSettings& layer, Mesh& mesh) { | 
 |     // Translate win by the rounded corners rect coordinates, to have all values in | 
 |     // layer coordinate space. | 
 |     FloatRect cropWin = layer.geometry.boundaries; | 
 |     const FloatRect& roundedCornersCrop = layer.geometry.roundedCornersCrop; | 
 |     cropWin.left -= roundedCornersCrop.left; | 
 |     cropWin.right -= roundedCornersCrop.left; | 
 |     cropWin.top -= roundedCornersCrop.top; | 
 |     cropWin.bottom -= roundedCornersCrop.top; | 
 |     Mesh::VertexArray<vec2> cropCoords(mesh.getCropCoordArray<vec2>()); | 
 |     cropCoords[0] = vec2(cropWin.left, cropWin.top); | 
 |     cropCoords[1] = vec2(cropWin.left, cropWin.top + cropWin.getHeight()); | 
 |     cropCoords[2] = vec2(cropWin.right, cropWin.top + cropWin.getHeight()); | 
 |     cropCoords[3] = vec2(cropWin.right, cropWin.top); | 
 |  | 
 |     setupCornerRadiusCropSize(roundedCornersCrop.getWidth(), roundedCornersCrop.getHeight()); | 
 |     return cropWin; | 
 | } | 
 |  | 
 | void GLESRenderEngine::handleRoundedCorners(const DisplaySettings& display, | 
 |                                             const LayerSettings& layer, const Mesh& mesh) { | 
 |     // We separate the layer into 3 parts essentially, such that we only turn on blending for the | 
 |     // top rectangle and the bottom rectangle, and turn off blending for the middle rectangle. | 
 |     FloatRect bounds = layer.geometry.roundedCornersCrop; | 
 |  | 
 |     // Explicitly compute the transform from the clip rectangle to the physical | 
 |     // display. Normally, this is done in glViewport but we explicitly compute | 
 |     // it here so that we can get the scissor bounds correct. | 
 |     const Rect& source = display.clip; | 
 |     const Rect& destination = display.physicalDisplay; | 
 |     // Here we compute the following transform: | 
 |     // 1. Translate the top left corner of the source clip to (0, 0) | 
 |     // 2. Rotate the clip rectangle about the origin in accordance with the | 
 |     // orientation flag | 
 |     // 3. Translate the top left corner back to the origin. | 
 |     // 4. Scale the clip rectangle to the destination rectangle dimensions | 
 |     // 5. Translate the top left corner to the destination rectangle's top left | 
 |     // corner. | 
 |     const mat4 translateSource = mat4::translate(vec4(-source.left, -source.top, 0, 1)); | 
 |     mat4 rotation; | 
 |     int displacementX = 0; | 
 |     int displacementY = 0; | 
 |     float destinationWidth = static_cast<float>(destination.getWidth()); | 
 |     float destinationHeight = static_cast<float>(destination.getHeight()); | 
 |     float sourceWidth = static_cast<float>(source.getWidth()); | 
 |     float sourceHeight = static_cast<float>(source.getHeight()); | 
 |     const float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f; | 
 |     switch (display.orientation) { | 
 |         case ui::Transform::ROT_90: | 
 |             rotation = mat4::rotate(rot90InRadians, vec3(0, 0, 1)); | 
 |             displacementX = source.getHeight(); | 
 |             std::swap(sourceHeight, sourceWidth); | 
 |             break; | 
 |         case ui::Transform::ROT_180: | 
 |             rotation = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1)); | 
 |             displacementY = source.getHeight(); | 
 |             displacementX = source.getWidth(); | 
 |             break; | 
 |         case ui::Transform::ROT_270: | 
 |             rotation = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1)); | 
 |             displacementY = source.getWidth(); | 
 |             std::swap(sourceHeight, sourceWidth); | 
 |             break; | 
 |         default: | 
 |             break; | 
 |     } | 
 |  | 
 |     const mat4 intermediateTranslation = mat4::translate(vec4(displacementX, displacementY, 0, 1)); | 
 |     const mat4 scale = mat4::scale( | 
 |             vec4(destinationWidth / sourceWidth, destinationHeight / sourceHeight, 1, 1)); | 
 |     const mat4 translateDestination = | 
 |             mat4::translate(vec4(destination.left, destination.top, 0, 1)); | 
 |     const mat4 globalTransform = | 
 |             translateDestination * scale * intermediateTranslation * rotation * translateSource; | 
 |  | 
 |     const mat4 transformMatrix = globalTransform * layer.geometry.positionTransform; | 
 |     const vec4 leftTopCoordinate(bounds.left, bounds.top, 1.0, 1.0); | 
 |     const vec4 rightBottomCoordinate(bounds.right, bounds.bottom, 1.0, 1.0); | 
 |     const vec4 leftTopCoordinateInBuffer = transformMatrix * leftTopCoordinate; | 
 |     const vec4 rightBottomCoordinateInBuffer = transformMatrix * rightBottomCoordinate; | 
 |     bounds = FloatRect(std::min(leftTopCoordinateInBuffer[0], rightBottomCoordinateInBuffer[0]), | 
 |                        std::min(leftTopCoordinateInBuffer[1], rightBottomCoordinateInBuffer[1]), | 
 |                        std::max(leftTopCoordinateInBuffer[0], rightBottomCoordinateInBuffer[0]), | 
 |                        std::max(leftTopCoordinateInBuffer[1], rightBottomCoordinateInBuffer[1])); | 
 |  | 
 |     // Finally, we cut the layer into 3 parts, with top and bottom parts having rounded corners | 
 |     // and the middle part without rounded corners. | 
 |     const int32_t radius = ceil(layer.geometry.roundedCornersRadius); | 
 |     const Rect topRect(bounds.left, bounds.top, bounds.right, bounds.top + radius); | 
 |     setScissor(topRect); | 
 |     drawMesh(mesh); | 
 |     const Rect bottomRect(bounds.left, bounds.bottom - radius, bounds.right, bounds.bottom); | 
 |     setScissor(bottomRect); | 
 |     drawMesh(mesh); | 
 |  | 
 |     // The middle part of the layer can turn off blending. | 
 |     if (topRect.bottom < bottomRect.top) { | 
 |         const Rect middleRect(bounds.left, bounds.top + radius, bounds.right, | 
 |                               bounds.bottom - radius); | 
 |         setScissor(middleRect); | 
 |         mState.cornerRadius = 0.0; | 
 |         disableBlending(); | 
 |         drawMesh(mesh); | 
 |     } | 
 |     disableScissor(); | 
 | } | 
 |  | 
 | status_t GLESRenderEngine::bindFrameBuffer(Framebuffer* framebuffer) { | 
 |     ATRACE_CALL(); | 
 |     GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(framebuffer); | 
 |     EGLImageKHR eglImage = glFramebuffer->getEGLImage(); | 
 |     uint32_t textureName = glFramebuffer->getTextureName(); | 
 |     uint32_t framebufferName = glFramebuffer->getFramebufferName(); | 
 |  | 
 |     // Bind the texture and turn our EGLImage into a texture | 
 |     glBindTexture(GL_TEXTURE_2D, textureName); | 
 |     glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)eglImage); | 
 |  | 
 |     // Bind the Framebuffer to render into | 
 |     glBindFramebuffer(GL_FRAMEBUFFER, framebufferName); | 
 |     glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureName, 0); | 
 |  | 
 |     uint32_t glStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER); | 
 |     ALOGE_IF(glStatus != GL_FRAMEBUFFER_COMPLETE_OES, "glCheckFramebufferStatusOES error %d", | 
 |              glStatus); | 
 |  | 
 |     return glStatus == GL_FRAMEBUFFER_COMPLETE_OES ? NO_ERROR : BAD_VALUE; | 
 | } | 
 |  | 
 | void GLESRenderEngine::unbindFrameBuffer(Framebuffer* /*framebuffer*/) { | 
 |     ATRACE_CALL(); | 
 |  | 
 |     // back to main framebuffer | 
 |     glBindFramebuffer(GL_FRAMEBUFFER, 0); | 
 | } | 
 |  | 
 | bool GLESRenderEngine::canSkipPostRenderCleanup() const { | 
 |     return mPriorResourcesCleaned || | 
 |             (mLastDrawFence != nullptr && mLastDrawFence->getStatus() != Fence::Status::Signaled); | 
 | } | 
 |  | 
 | void GLESRenderEngine::cleanupPostRender() { | 
 |     ATRACE_CALL(); | 
 |  | 
 |     if (canSkipPostRenderCleanup()) { | 
 |         // If we don't have a prior frame needing cleanup, then don't do anything. | 
 |         return; | 
 |     } | 
 |  | 
 |     // Bind the texture to placeholder so that backing image data can be freed. | 
 |     GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(getFramebufferForDrawing()); | 
 |     glFramebuffer->allocateBuffers(1, 1, mPlaceholderDrawBuffer); | 
 |  | 
 |     // Release the cached fence here, so that we don't churn reallocations when | 
 |     // we could no-op repeated calls of this method instead. | 
 |     mLastDrawFence = nullptr; | 
 |     mPriorResourcesCleaned = true; | 
 | } | 
 |  | 
 | void GLESRenderEngine::cleanFramebufferCache() { | 
 |     std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
 |     // Bind the texture to placeholder so that backing image data can be freed. | 
 |     GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(getFramebufferForDrawing()); | 
 |     glFramebuffer->allocateBuffers(1, 1, mPlaceholderDrawBuffer); | 
 |  | 
 |     while (!mFramebufferImageCache.empty()) { | 
 |         EGLImageKHR expired = mFramebufferImageCache.front().second; | 
 |         mFramebufferImageCache.pop_front(); | 
 |         eglDestroyImageKHR(mEGLDisplay, expired); | 
 |         DEBUG_EGL_IMAGE_TRACKER_DESTROY(); | 
 |     } | 
 | } | 
 |  | 
 | void GLESRenderEngine::checkErrors() const { | 
 |     checkErrors(nullptr); | 
 | } | 
 |  | 
 | void GLESRenderEngine::checkErrors(const char* tag) const { | 
 |     do { | 
 |         // there could be more than one error flag | 
 |         GLenum error = glGetError(); | 
 |         if (error == GL_NO_ERROR) break; | 
 |         if (tag == nullptr) { | 
 |             ALOGE("GL error 0x%04x", int(error)); | 
 |         } else { | 
 |             ALOGE("GL error: %s -> 0x%04x", tag, int(error)); | 
 |         } | 
 |     } while (true); | 
 | } | 
 |  | 
 | bool GLESRenderEngine::supportsProtectedContent() const { | 
 |     return mProtectedEGLContext != EGL_NO_CONTEXT; | 
 | } | 
 |  | 
 | void GLESRenderEngine::useProtectedContext(bool useProtectedContext) { | 
 |     if (useProtectedContext == mInProtectedContext || | 
 |         (useProtectedContext && !supportsProtectedContent())) { | 
 |         return; | 
 |     } | 
 |  | 
 |     const EGLSurface surface = useProtectedContext ? mProtectedStubSurface : mStubSurface; | 
 |     const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext; | 
 |     if (eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE) { | 
 |         mInProtectedContext = useProtectedContext; | 
 |     } | 
 | } | 
 | EGLImageKHR GLESRenderEngine::createFramebufferImageIfNeeded(ANativeWindowBuffer* nativeBuffer, | 
 |                                                              bool isProtected, | 
 |                                                              bool useFramebufferCache) { | 
 |     sp<GraphicBuffer> graphicBuffer = GraphicBuffer::from(nativeBuffer); | 
 |     if (useFramebufferCache) { | 
 |         std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
 |         for (const auto& image : mFramebufferImageCache) { | 
 |             if (image.first == graphicBuffer->getId()) { | 
 |                 return image.second; | 
 |             } | 
 |         } | 
 |     } | 
 |     EGLint attributes[] = { | 
 |             isProtected ? EGL_PROTECTED_CONTENT_EXT : EGL_NONE, | 
 |             isProtected ? EGL_TRUE : EGL_NONE, | 
 |             EGL_NONE, | 
 |     }; | 
 |     EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, | 
 |                                           nativeBuffer, attributes); | 
 |     if (useFramebufferCache) { | 
 |         if (image != EGL_NO_IMAGE_KHR) { | 
 |             std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
 |             if (mFramebufferImageCache.size() >= mFramebufferImageCacheSize) { | 
 |                 EGLImageKHR expired = mFramebufferImageCache.front().second; | 
 |                 mFramebufferImageCache.pop_front(); | 
 |                 eglDestroyImageKHR(mEGLDisplay, expired); | 
 |                 DEBUG_EGL_IMAGE_TRACKER_DESTROY(); | 
 |             } | 
 |             mFramebufferImageCache.push_back({graphicBuffer->getId(), image}); | 
 |         } | 
 |     } | 
 |  | 
 |     if (image != EGL_NO_IMAGE_KHR) { | 
 |         DEBUG_EGL_IMAGE_TRACKER_CREATE(); | 
 |     } | 
 |     return image; | 
 | } | 
 |  | 
 | status_t GLESRenderEngine::drawLayers(const DisplaySettings& display, | 
 |                                       const std::vector<const LayerSettings*>& layers, | 
 |                                       const std::shared_ptr<ExternalTexture>& buffer, | 
 |                                       const bool useFramebufferCache, base::unique_fd&& bufferFence, | 
 |                                       base::unique_fd* drawFence) { | 
 |     ATRACE_CALL(); | 
 |     if (layers.empty()) { | 
 |         ALOGV("Drawing empty layer stack"); | 
 |         return NO_ERROR; | 
 |     } | 
 |  | 
 |     if (bufferFence.get() >= 0) { | 
 |         // Duplicate the fence for passing to waitFence. | 
 |         base::unique_fd bufferFenceDup(dup(bufferFence.get())); | 
 |         if (bufferFenceDup < 0 || !waitFence(std::move(bufferFenceDup))) { | 
 |             ATRACE_NAME("Waiting before draw"); | 
 |             sync_wait(bufferFence.get(), -1); | 
 |         } | 
 |     } | 
 |  | 
 |     if (buffer == nullptr) { | 
 |         ALOGE("No output buffer provided. Aborting GPU composition."); | 
 |         return BAD_VALUE; | 
 |     } | 
 |  | 
 |     validateOutputBufferUsage(buffer->getBuffer()); | 
 |  | 
 |     std::unique_ptr<BindNativeBufferAsFramebuffer> fbo; | 
 |     // Gathering layers that requested blur, we'll need them to decide when to render to an | 
 |     // offscreen buffer, and when to render to the native buffer. | 
 |     std::deque<const LayerSettings*> blurLayers; | 
 |     if (CC_LIKELY(mBlurFilter != nullptr)) { | 
 |         for (auto layer : layers) { | 
 |             if (layer->backgroundBlurRadius > 0) { | 
 |                 blurLayers.push_back(layer); | 
 |             } | 
 |         } | 
 |     } | 
 |     const auto blurLayersSize = blurLayers.size(); | 
 |  | 
 |     if (blurLayersSize == 0) { | 
 |         fbo = std::make_unique<BindNativeBufferAsFramebuffer>(*this, | 
 |                                                               buffer->getBuffer() | 
 |                                                                       .get() | 
 |                                                                       ->getNativeBuffer(), | 
 |                                                               useFramebufferCache); | 
 |         if (fbo->getStatus() != NO_ERROR) { | 
 |             ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).", | 
 |                   buffer->getBuffer()->handle); | 
 |             checkErrors(); | 
 |             return fbo->getStatus(); | 
 |         } | 
 |         setViewportAndProjection(display.physicalDisplay, display.clip); | 
 |     } else { | 
 |         setViewportAndProjection(display.physicalDisplay, display.clip); | 
 |         auto status = | 
 |                 mBlurFilter->setAsDrawTarget(display, blurLayers.front()->backgroundBlurRadius); | 
 |         if (status != NO_ERROR) { | 
 |             ALOGE("Failed to prepare blur filter! Aborting GPU composition for buffer (%p).", | 
 |                   buffer->getBuffer()->handle); | 
 |             checkErrors(); | 
 |             return status; | 
 |         } | 
 |     } | 
 |  | 
 |     // clear the entire buffer, sometimes when we reuse buffers we'd persist | 
 |     // ghost images otherwise. | 
 |     // we also require a full transparent framebuffer for overlays. This is | 
 |     // probably not quite efficient on all GPUs, since we could filter out | 
 |     // opaque layers. | 
 |     clearWithColor(0.0, 0.0, 0.0, 0.0); | 
 |  | 
 |     setOutputDataSpace(display.outputDataspace); | 
 |     setDisplayMaxLuminance(display.maxLuminance); | 
 |     setDisplayColorTransform(display.colorTransform); | 
 |  | 
 |     const mat4 projectionMatrix = | 
 |             ui::Transform(display.orientation).asMatrix4() * mState.projectionMatrix; | 
 |     if (!display.clearRegion.isEmpty()) { | 
 |         glDisable(GL_BLEND); | 
 |         fillRegionWithColor(display.clearRegion, 0.0, 0.0, 0.0, 1.0); | 
 |     } | 
 |  | 
 |     Mesh mesh = Mesh::Builder() | 
 |                         .setPrimitive(Mesh::TRIANGLE_FAN) | 
 |                         .setVertices(4 /* count */, 2 /* size */) | 
 |                         .setTexCoords(2 /* size */) | 
 |                         .setCropCoords(2 /* size */) | 
 |                         .build(); | 
 |     for (auto const layer : layers) { | 
 |         if (blurLayers.size() > 0 && blurLayers.front() == layer) { | 
 |             blurLayers.pop_front(); | 
 |  | 
 |             auto status = mBlurFilter->prepare(); | 
 |             if (status != NO_ERROR) { | 
 |                 ALOGE("Failed to render blur effect! Aborting GPU composition for buffer (%p).", | 
 |                       buffer->getBuffer()->handle); | 
 |                 checkErrors("Can't render first blur pass"); | 
 |                 return status; | 
 |             } | 
 |  | 
 |             if (blurLayers.size() == 0) { | 
 |                 // Done blurring, time to bind the native FBO and render our blur onto it. | 
 |                 fbo = std::make_unique<BindNativeBufferAsFramebuffer>(*this, | 
 |                                                                       buffer.get() | 
 |                                                                               ->getBuffer() | 
 |                                                                               ->getNativeBuffer(), | 
 |                                                                       useFramebufferCache); | 
 |                 status = fbo->getStatus(); | 
 |                 setViewportAndProjection(display.physicalDisplay, display.clip); | 
 |             } else { | 
 |                 // There's still something else to blur, so let's keep rendering to our FBO | 
 |                 // instead of to the display. | 
 |                 status = mBlurFilter->setAsDrawTarget(display, | 
 |                                                       blurLayers.front()->backgroundBlurRadius); | 
 |             } | 
 |             if (status != NO_ERROR) { | 
 |                 ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).", | 
 |                       buffer->getBuffer()->handle); | 
 |                 checkErrors("Can't bind native framebuffer"); | 
 |                 return status; | 
 |             } | 
 |  | 
 |             status = mBlurFilter->render(blurLayersSize > 1); | 
 |             if (status != NO_ERROR) { | 
 |                 ALOGE("Failed to render blur effect! Aborting GPU composition for buffer (%p).", | 
 |                       buffer->getBuffer()->handle); | 
 |                 checkErrors("Can't render blur filter"); | 
 |                 return status; | 
 |             } | 
 |         } | 
 |  | 
 |         // Ensure luminance is at least 100 nits to avoid div-by-zero | 
 |         const float maxLuminance = std::max(100.f, layer->source.buffer.maxLuminanceNits); | 
 |         mState.maxMasteringLuminance = maxLuminance; | 
 |         mState.maxContentLuminance = maxLuminance; | 
 |         mState.projectionMatrix = projectionMatrix * layer->geometry.positionTransform; | 
 |  | 
 |         const FloatRect bounds = layer->geometry.boundaries; | 
 |         Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>()); | 
 |         position[0] = vec2(bounds.left, bounds.top); | 
 |         position[1] = vec2(bounds.left, bounds.bottom); | 
 |         position[2] = vec2(bounds.right, bounds.bottom); | 
 |         position[3] = vec2(bounds.right, bounds.top); | 
 |  | 
 |         setupLayerCropping(*layer, mesh); | 
 |         setColorTransform(layer->colorTransform); | 
 |  | 
 |         bool usePremultipliedAlpha = true; | 
 |         bool disableTexture = true; | 
 |         bool isOpaque = false; | 
 |         if (layer->source.buffer.buffer != nullptr) { | 
 |             disableTexture = false; | 
 |             isOpaque = layer->source.buffer.isOpaque; | 
 |  | 
 |             sp<GraphicBuffer> gBuf = layer->source.buffer.buffer->getBuffer(); | 
 |             validateInputBufferUsage(gBuf); | 
 |             bindExternalTextureBuffer(layer->source.buffer.textureName, gBuf, | 
 |                                       layer->source.buffer.fence); | 
 |  | 
 |             usePremultipliedAlpha = layer->source.buffer.usePremultipliedAlpha; | 
 |             Texture texture(Texture::TEXTURE_EXTERNAL, layer->source.buffer.textureName); | 
 |             mat4 texMatrix = layer->source.buffer.textureTransform; | 
 |  | 
 |             texture.setMatrix(texMatrix.asArray()); | 
 |             texture.setFiltering(layer->source.buffer.useTextureFiltering); | 
 |  | 
 |             texture.setDimensions(gBuf->getWidth(), gBuf->getHeight()); | 
 |             setSourceY410BT2020(layer->source.buffer.isY410BT2020); | 
 |  | 
 |             renderengine::Mesh::VertexArray<vec2> texCoords(mesh.getTexCoordArray<vec2>()); | 
 |             texCoords[0] = vec2(0.0, 0.0); | 
 |             texCoords[1] = vec2(0.0, 1.0); | 
 |             texCoords[2] = vec2(1.0, 1.0); | 
 |             texCoords[3] = vec2(1.0, 0.0); | 
 |             setupLayerTexturing(texture); | 
 |  | 
 |             // Do not cache protected EGLImage, protected memory is limited. | 
 |             if (gBuf->getUsage() & GRALLOC_USAGE_PROTECTED) { | 
 |                 unmapExternalTextureBuffer(gBuf); | 
 |             } | 
 |         } | 
 |  | 
 |         const half3 solidColor = layer->source.solidColor; | 
 |         const half4 color = half4(solidColor.r, solidColor.g, solidColor.b, layer->alpha); | 
 |         // Buffer sources will have a black solid color ignored in the shader, | 
 |         // so in that scenario the solid color passed here is arbitrary. | 
 |         setupLayerBlending(usePremultipliedAlpha, isOpaque, disableTexture, color, | 
 |                            layer->geometry.roundedCornersRadius); | 
 |         if (layer->disableBlending) { | 
 |             glDisable(GL_BLEND); | 
 |         } | 
 |         setSourceDataSpace(layer->sourceDataspace); | 
 |  | 
 |         if (layer->shadow.length > 0.0f) { | 
 |             handleShadow(layer->geometry.boundaries, layer->geometry.roundedCornersRadius, | 
 |                          layer->shadow); | 
 |         } | 
 |         // We only want to do a special handling for rounded corners when having rounded corners | 
 |         // is the only reason it needs to turn on blending, otherwise, we handle it like the | 
 |         // usual way since it needs to turn on blending anyway. | 
 |         else if (layer->geometry.roundedCornersRadius > 0.0 && color.a >= 1.0f && isOpaque) { | 
 |             handleRoundedCorners(display, *layer, mesh); | 
 |         } else { | 
 |             drawMesh(mesh); | 
 |         } | 
 |  | 
 |         // Cleanup if there's a buffer source | 
 |         if (layer->source.buffer.buffer != nullptr) { | 
 |             disableBlending(); | 
 |             setSourceY410BT2020(false); | 
 |             disableTexturing(); | 
 |         } | 
 |     } | 
 |  | 
 |     if (drawFence != nullptr) { | 
 |         *drawFence = flush(); | 
 |     } | 
 |     // If flush failed or we don't support native fences, we need to force the | 
 |     // gl command stream to be executed. | 
 |     if (drawFence == nullptr || drawFence->get() < 0) { | 
 |         bool success = finish(); | 
 |         if (!success) { | 
 |             ALOGE("Failed to flush RenderEngine commands"); | 
 |             checkErrors(); | 
 |             // Chances are, something illegal happened (either the caller passed | 
 |             // us bad parameters, or we messed up our shader generation). | 
 |             return INVALID_OPERATION; | 
 |         } | 
 |         mLastDrawFence = nullptr; | 
 |     } else { | 
 |         // The caller takes ownership of drawFence, so we need to duplicate the | 
 |         // fd here. | 
 |         mLastDrawFence = new Fence(dup(drawFence->get())); | 
 |     } | 
 |     mPriorResourcesCleaned = false; | 
 |  | 
 |     checkErrors(); | 
 |     return NO_ERROR; | 
 | } | 
 |  | 
 | void GLESRenderEngine::setViewportAndProjection(Rect viewport, Rect clip) { | 
 |     ATRACE_CALL(); | 
 |     mVpWidth = viewport.getWidth(); | 
 |     mVpHeight = viewport.getHeight(); | 
 |  | 
 |     // We pass the the top left corner instead of the bottom left corner, | 
 |     // because since we're rendering off-screen first. | 
 |     glViewport(viewport.left, viewport.top, mVpWidth, mVpHeight); | 
 |  | 
 |     mState.projectionMatrix = mat4::ortho(clip.left, clip.right, clip.top, clip.bottom, 0, 1); | 
 | } | 
 |  | 
 | void GLESRenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque, bool disableTexture, | 
 |                                           const half4& color, float cornerRadius) { | 
 |     mState.isPremultipliedAlpha = premultipliedAlpha; | 
 |     mState.isOpaque = opaque; | 
 |     mState.color = color; | 
 |     mState.cornerRadius = cornerRadius; | 
 |  | 
 |     if (disableTexture) { | 
 |         mState.textureEnabled = false; | 
 |     } | 
 |  | 
 |     if (color.a < 1.0f || !opaque || cornerRadius > 0.0f) { | 
 |         glEnable(GL_BLEND); | 
 |         glBlendFuncSeparate(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, | 
 |                             GL_ONE, GL_ONE_MINUS_SRC_ALPHA); | 
 |     } else { | 
 |         glDisable(GL_BLEND); | 
 |     } | 
 | } | 
 |  | 
 | void GLESRenderEngine::setSourceY410BT2020(bool enable) { | 
 |     mState.isY410BT2020 = enable; | 
 | } | 
 |  | 
 | void GLESRenderEngine::setSourceDataSpace(Dataspace source) { | 
 |     mDataSpace = source; | 
 | } | 
 |  | 
 | void GLESRenderEngine::setOutputDataSpace(Dataspace dataspace) { | 
 |     mOutputDataSpace = dataspace; | 
 | } | 
 |  | 
 | void GLESRenderEngine::setDisplayMaxLuminance(const float maxLuminance) { | 
 |     mState.displayMaxLuminance = maxLuminance; | 
 | } | 
 |  | 
 | void GLESRenderEngine::setupLayerTexturing(const Texture& texture) { | 
 |     GLuint target = texture.getTextureTarget(); | 
 |     glBindTexture(target, texture.getTextureName()); | 
 |     GLenum filter = GL_NEAREST; | 
 |     if (texture.getFiltering()) { | 
 |         filter = GL_LINEAR; | 
 |     } | 
 |     glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); | 
 |     glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); | 
 |     glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter); | 
 |     glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter); | 
 |  | 
 |     mState.texture = texture; | 
 |     mState.textureEnabled = true; | 
 | } | 
 |  | 
 | void GLESRenderEngine::setColorTransform(const mat4& colorTransform) { | 
 |     mState.colorMatrix = colorTransform; | 
 | } | 
 |  | 
 | void GLESRenderEngine::setDisplayColorTransform(const mat4& colorTransform) { | 
 |     mState.displayColorMatrix = colorTransform; | 
 | } | 
 |  | 
 | void GLESRenderEngine::disableTexturing() { | 
 |     mState.textureEnabled = false; | 
 | } | 
 |  | 
 | void GLESRenderEngine::disableBlending() { | 
 |     glDisable(GL_BLEND); | 
 | } | 
 |  | 
 | void GLESRenderEngine::setupFillWithColor(float r, float g, float b, float a) { | 
 |     mState.isPremultipliedAlpha = true; | 
 |     mState.isOpaque = false; | 
 |     mState.color = half4(r, g, b, a); | 
 |     mState.textureEnabled = false; | 
 |     glDisable(GL_BLEND); | 
 | } | 
 |  | 
 | void GLESRenderEngine::setupCornerRadiusCropSize(float width, float height) { | 
 |     mState.cropSize = half2(width, height); | 
 | } | 
 |  | 
 | void GLESRenderEngine::drawMesh(const Mesh& mesh) { | 
 |     ATRACE_CALL(); | 
 |     if (mesh.getTexCoordsSize()) { | 
 |         glEnableVertexAttribArray(Program::texCoords); | 
 |         glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE, | 
 |                               mesh.getByteStride(), mesh.getTexCoords()); | 
 |     } | 
 |  | 
 |     glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE, | 
 |                           mesh.getByteStride(), mesh.getPositions()); | 
 |  | 
 |     if (mState.cornerRadius > 0.0f) { | 
 |         glEnableVertexAttribArray(Program::cropCoords); | 
 |         glVertexAttribPointer(Program::cropCoords, mesh.getVertexSize(), GL_FLOAT, GL_FALSE, | 
 |                               mesh.getByteStride(), mesh.getCropCoords()); | 
 |     } | 
 |  | 
 |     if (mState.drawShadows) { | 
 |         glEnableVertexAttribArray(Program::shadowColor); | 
 |         glVertexAttribPointer(Program::shadowColor, mesh.getShadowColorSize(), GL_FLOAT, GL_FALSE, | 
 |                               mesh.getByteStride(), mesh.getShadowColor()); | 
 |  | 
 |         glEnableVertexAttribArray(Program::shadowParams); | 
 |         glVertexAttribPointer(Program::shadowParams, mesh.getShadowParamsSize(), GL_FLOAT, GL_FALSE, | 
 |                               mesh.getByteStride(), mesh.getShadowParams()); | 
 |     } | 
 |  | 
 |     Description managedState = mState; | 
 |     // By default, DISPLAY_P3 is the only supported wide color output. However, | 
 |     // when HDR content is present, hardware composer may be able to handle | 
 |     // BT2020 data space, in that case, the output data space is set to be | 
 |     // BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need | 
 |     // to respect this and convert non-HDR content to HDR format. | 
 |     if (mUseColorManagement) { | 
 |         Dataspace inputStandard = static_cast<Dataspace>(mDataSpace & Dataspace::STANDARD_MASK); | 
 |         Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK); | 
 |         Dataspace outputStandard = | 
 |                 static_cast<Dataspace>(mOutputDataSpace & Dataspace::STANDARD_MASK); | 
 |         Dataspace outputTransfer = | 
 |                 static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK); | 
 |         bool needsXYZConversion = needsXYZTransformMatrix(); | 
 |  | 
 |         // NOTE: if the input standard of the input dataspace is not STANDARD_DCI_P3 or | 
 |         // STANDARD_BT2020, it will be  treated as STANDARD_BT709 | 
 |         if (inputStandard != Dataspace::STANDARD_DCI_P3 && | 
 |             inputStandard != Dataspace::STANDARD_BT2020) { | 
 |             inputStandard = Dataspace::STANDARD_BT709; | 
 |         } | 
 |  | 
 |         if (needsXYZConversion) { | 
 |             // The supported input color spaces are standard RGB, Display P3 and BT2020. | 
 |             switch (inputStandard) { | 
 |                 case Dataspace::STANDARD_DCI_P3: | 
 |                     managedState.inputTransformMatrix = mDisplayP3ToXyz; | 
 |                     break; | 
 |                 case Dataspace::STANDARD_BT2020: | 
 |                     managedState.inputTransformMatrix = mBt2020ToXyz; | 
 |                     break; | 
 |                 default: | 
 |                     managedState.inputTransformMatrix = mSrgbToXyz; | 
 |                     break; | 
 |             } | 
 |  | 
 |             // The supported output color spaces are BT2020, Display P3 and standard RGB. | 
 |             switch (outputStandard) { | 
 |                 case Dataspace::STANDARD_BT2020: | 
 |                     managedState.outputTransformMatrix = mXyzToBt2020; | 
 |                     break; | 
 |                 case Dataspace::STANDARD_DCI_P3: | 
 |                     managedState.outputTransformMatrix = mXyzToDisplayP3; | 
 |                     break; | 
 |                 default: | 
 |                     managedState.outputTransformMatrix = mXyzToSrgb; | 
 |                     break; | 
 |             } | 
 |         } else if (inputStandard != outputStandard) { | 
 |             // At this point, the input data space and output data space could be both | 
 |             // HDR data spaces, but they match each other, we do nothing in this case. | 
 |             // In addition to the case above, the input data space could be | 
 |             // - scRGB linear | 
 |             // - scRGB non-linear | 
 |             // - sRGB | 
 |             // - Display P3 | 
 |             // - BT2020 | 
 |             // The output data spaces could be | 
 |             // - sRGB | 
 |             // - Display P3 | 
 |             // - BT2020 | 
 |             switch (outputStandard) { | 
 |                 case Dataspace::STANDARD_BT2020: | 
 |                     if (inputStandard == Dataspace::STANDARD_BT709) { | 
 |                         managedState.outputTransformMatrix = mSrgbToBt2020; | 
 |                     } else if (inputStandard == Dataspace::STANDARD_DCI_P3) { | 
 |                         managedState.outputTransformMatrix = mDisplayP3ToBt2020; | 
 |                     } | 
 |                     break; | 
 |                 case Dataspace::STANDARD_DCI_P3: | 
 |                     if (inputStandard == Dataspace::STANDARD_BT709) { | 
 |                         managedState.outputTransformMatrix = mSrgbToDisplayP3; | 
 |                     } else if (inputStandard == Dataspace::STANDARD_BT2020) { | 
 |                         managedState.outputTransformMatrix = mBt2020ToDisplayP3; | 
 |                     } | 
 |                     break; | 
 |                 default: | 
 |                     if (inputStandard == Dataspace::STANDARD_DCI_P3) { | 
 |                         managedState.outputTransformMatrix = mDisplayP3ToSrgb; | 
 |                     } else if (inputStandard == Dataspace::STANDARD_BT2020) { | 
 |                         managedState.outputTransformMatrix = mBt2020ToSrgb; | 
 |                     } | 
 |                     break; | 
 |             } | 
 |         } | 
 |  | 
 |         // we need to convert the RGB value to linear space and convert it back when: | 
 |         // - there is a color matrix that is not an identity matrix, or | 
 |         // - there is an output transform matrix that is not an identity matrix, or | 
 |         // - the input transfer function doesn't match the output transfer function. | 
 |         if (managedState.hasColorMatrix() || managedState.hasOutputTransformMatrix() || | 
 |             inputTransfer != outputTransfer) { | 
 |             managedState.inputTransferFunction = | 
 |                     Description::dataSpaceToTransferFunction(inputTransfer); | 
 |             managedState.outputTransferFunction = | 
 |                     Description::dataSpaceToTransferFunction(outputTransfer); | 
 |         } | 
 |     } | 
 |  | 
 |     ProgramCache::getInstance().useProgram(mInProtectedContext ? mProtectedEGLContext : mEGLContext, | 
 |                                            managedState); | 
 |  | 
 |     if (mState.drawShadows) { | 
 |         glDrawElements(mesh.getPrimitive(), mesh.getIndexCount(), GL_UNSIGNED_SHORT, | 
 |                        mesh.getIndices()); | 
 |     } else { | 
 |         glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); | 
 |     } | 
 |  | 
 |     if (mUseColorManagement && outputDebugPPMs) { | 
 |         static uint64_t managedColorFrameCount = 0; | 
 |         std::ostringstream out; | 
 |         out << "/data/texture_out" << managedColorFrameCount++; | 
 |         writePPM(out.str().c_str(), mVpWidth, mVpHeight); | 
 |     } | 
 |  | 
 |     if (mesh.getTexCoordsSize()) { | 
 |         glDisableVertexAttribArray(Program::texCoords); | 
 |     } | 
 |  | 
 |     if (mState.cornerRadius > 0.0f) { | 
 |         glDisableVertexAttribArray(Program::cropCoords); | 
 |     } | 
 |  | 
 |     if (mState.drawShadows) { | 
 |         glDisableVertexAttribArray(Program::shadowColor); | 
 |         glDisableVertexAttribArray(Program::shadowParams); | 
 |     } | 
 | } | 
 |  | 
 | size_t GLESRenderEngine::getMaxTextureSize() const { | 
 |     return mMaxTextureSize; | 
 | } | 
 |  | 
 | size_t GLESRenderEngine::getMaxViewportDims() const { | 
 |     return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1]; | 
 | } | 
 |  | 
 | void GLESRenderEngine::dump(std::string& result) { | 
 |     const GLExtensions& extensions = GLExtensions::getInstance(); | 
 |     ProgramCache& cache = ProgramCache::getInstance(); | 
 |  | 
 |     StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion()); | 
 |     StringAppendF(&result, "%s\n", extensions.getEGLExtensions()); | 
 |     StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(), | 
 |                   extensions.getVersion()); | 
 |     StringAppendF(&result, "%s\n", extensions.getExtensions()); | 
 |     StringAppendF(&result, "RenderEngine supports protected context: %d\n", | 
 |                   supportsProtectedContent()); | 
 |     StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext); | 
 |     StringAppendF(&result, "RenderEngine program cache size for unprotected context: %zu\n", | 
 |                   cache.getSize(mEGLContext)); | 
 |     StringAppendF(&result, "RenderEngine program cache size for protected context: %zu\n", | 
 |                   cache.getSize(mProtectedEGLContext)); | 
 |     StringAppendF(&result, "RenderEngine last dataspace conversion: (%s) to (%s)\n", | 
 |                   dataspaceDetails(static_cast<android_dataspace>(mDataSpace)).c_str(), | 
 |                   dataspaceDetails(static_cast<android_dataspace>(mOutputDataSpace)).c_str()); | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mRenderingMutex); | 
 |         StringAppendF(&result, "RenderEngine image cache size: %zu\n", mImageCache.size()); | 
 |         StringAppendF(&result, "Dumping buffer ids...\n"); | 
 |         for (const auto& [id, unused] : mImageCache) { | 
 |             StringAppendF(&result, "0x%" PRIx64 "\n", id); | 
 |         } | 
 |     } | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
 |         StringAppendF(&result, "RenderEngine framebuffer image cache size: %zu\n", | 
 |                       mFramebufferImageCache.size()); | 
 |         StringAppendF(&result, "Dumping buffer ids...\n"); | 
 |         for (const auto& [id, unused] : mFramebufferImageCache) { | 
 |             StringAppendF(&result, "0x%" PRIx64 "\n", id); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | GLESRenderEngine::GlesVersion GLESRenderEngine::parseGlesVersion(const char* str) { | 
 |     int major, minor; | 
 |     if (sscanf(str, "OpenGL ES-CM %d.%d", &major, &minor) != 2) { | 
 |         if (sscanf(str, "OpenGL ES %d.%d", &major, &minor) != 2) { | 
 |             ALOGW("Unable to parse GL_VERSION string: \"%s\"", str); | 
 |             return GLES_VERSION_1_0; | 
 |         } | 
 |     } | 
 |  | 
 |     if (major == 1 && minor == 0) return GLES_VERSION_1_0; | 
 |     if (major == 1 && minor >= 1) return GLES_VERSION_1_1; | 
 |     if (major == 2 && minor >= 0) return GLES_VERSION_2_0; | 
 |     if (major == 3 && minor >= 0) return GLES_VERSION_3_0; | 
 |  | 
 |     ALOGW("Unrecognized OpenGL ES version: %d.%d", major, minor); | 
 |     return GLES_VERSION_1_0; | 
 | } | 
 |  | 
 | EGLContext GLESRenderEngine::createEglContext(EGLDisplay display, EGLConfig config, | 
 |                                               EGLContext shareContext, | 
 |                                               std::optional<ContextPriority> contextPriority, | 
 |                                               Protection protection) { | 
 |     EGLint renderableType = 0; | 
 |     if (config == EGL_NO_CONFIG) { | 
 |         renderableType = EGL_OPENGL_ES3_BIT; | 
 |     } else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) { | 
 |         LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE"); | 
 |     } | 
 |     EGLint contextClientVersion = 0; | 
 |     if (renderableType & EGL_OPENGL_ES3_BIT) { | 
 |         contextClientVersion = 3; | 
 |     } else if (renderableType & EGL_OPENGL_ES2_BIT) { | 
 |         contextClientVersion = 2; | 
 |     } else if (renderableType & EGL_OPENGL_ES_BIT) { | 
 |         contextClientVersion = 1; | 
 |     } else { | 
 |         LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs"); | 
 |     } | 
 |  | 
 |     std::vector<EGLint> contextAttributes; | 
 |     contextAttributes.reserve(7); | 
 |     contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION); | 
 |     contextAttributes.push_back(contextClientVersion); | 
 |     if (contextPriority) { | 
 |         contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG); | 
 |         switch (*contextPriority) { | 
 |             case ContextPriority::REALTIME: | 
 |                 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_REALTIME_NV); | 
 |                 break; | 
 |             case ContextPriority::MEDIUM: | 
 |                 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_MEDIUM_IMG); | 
 |                 break; | 
 |             case ContextPriority::LOW: | 
 |                 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LOW_IMG); | 
 |                 break; | 
 |             case ContextPriority::HIGH: | 
 |             default: | 
 |                 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG); | 
 |                 break; | 
 |         } | 
 |     } | 
 |     if (protection == Protection::PROTECTED) { | 
 |         contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT); | 
 |         contextAttributes.push_back(EGL_TRUE); | 
 |     } | 
 |     contextAttributes.push_back(EGL_NONE); | 
 |  | 
 |     EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data()); | 
 |  | 
 |     if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) { | 
 |         // eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus | 
 |         // EGL_NO_CONTEXT so that we can abort. | 
 |         if (config != EGL_NO_CONFIG) { | 
 |             return context; | 
 |         } | 
 |         // If |config| is EGL_NO_CONFIG, we speculatively try to create GLES 3 context, so we should | 
 |         // try to fall back to GLES 2. | 
 |         contextAttributes[1] = 2; | 
 |         context = eglCreateContext(display, config, shareContext, contextAttributes.data()); | 
 |     } | 
 |  | 
 |     return context; | 
 | } | 
 |  | 
 | EGLSurface GLESRenderEngine::createStubEglPbufferSurface(EGLDisplay display, EGLConfig config, | 
 |                                                          int hwcFormat, Protection protection) { | 
 |     EGLConfig stubConfig = config; | 
 |     if (stubConfig == EGL_NO_CONFIG) { | 
 |         stubConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true); | 
 |     } | 
 |     std::vector<EGLint> attributes; | 
 |     attributes.reserve(7); | 
 |     attributes.push_back(EGL_WIDTH); | 
 |     attributes.push_back(1); | 
 |     attributes.push_back(EGL_HEIGHT); | 
 |     attributes.push_back(1); | 
 |     if (protection == Protection::PROTECTED) { | 
 |         attributes.push_back(EGL_PROTECTED_CONTENT_EXT); | 
 |         attributes.push_back(EGL_TRUE); | 
 |     } | 
 |     attributes.push_back(EGL_NONE); | 
 |  | 
 |     return eglCreatePbufferSurface(display, stubConfig, attributes.data()); | 
 | } | 
 |  | 
 | bool GLESRenderEngine::isHdrDataSpace(const Dataspace dataSpace) const { | 
 |     const Dataspace standard = static_cast<Dataspace>(dataSpace & Dataspace::STANDARD_MASK); | 
 |     const Dataspace transfer = static_cast<Dataspace>(dataSpace & Dataspace::TRANSFER_MASK); | 
 |     return standard == Dataspace::STANDARD_BT2020 && | 
 |             (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG); | 
 | } | 
 |  | 
 | // For convenience, we want to convert the input color space to XYZ color space first, | 
 | // and then convert from XYZ color space to output color space when | 
 | // - SDR and HDR contents are mixed, either SDR content will be converted to HDR or | 
 | //   HDR content will be tone-mapped to SDR; Or, | 
 | // - there are HDR PQ and HLG contents presented at the same time, where we want to convert | 
 | //   HLG content to PQ content. | 
 | // In either case above, we need to operate the Y value in XYZ color space. Thus, when either | 
 | // input data space or output data space is HDR data space, and the input transfer function | 
 | // doesn't match the output transfer function, we would enable an intermediate transfrom to | 
 | // XYZ color space. | 
 | bool GLESRenderEngine::needsXYZTransformMatrix() const { | 
 |     const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace); | 
 |     const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace); | 
 |     const Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK); | 
 |     const Dataspace outputTransfer = | 
 |             static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK); | 
 |  | 
 |     return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer; | 
 | } | 
 |  | 
 | bool GLESRenderEngine::isImageCachedForTesting(uint64_t bufferId) { | 
 |     std::lock_guard<std::mutex> lock(mRenderingMutex); | 
 |     const auto& cachedImage = mImageCache.find(bufferId); | 
 |     return cachedImage != mImageCache.end(); | 
 | } | 
 |  | 
 | bool GLESRenderEngine::isTextureNameKnownForTesting(uint32_t texName) { | 
 |     const auto& entry = mTextureView.find(texName); | 
 |     return entry != mTextureView.end(); | 
 | } | 
 |  | 
 | std::optional<uint64_t> GLESRenderEngine::getBufferIdForTextureNameForTesting(uint32_t texName) { | 
 |     const auto& entry = mTextureView.find(texName); | 
 |     return entry != mTextureView.end() ? entry->second : std::nullopt; | 
 | } | 
 |  | 
 | bool GLESRenderEngine::isFramebufferImageCachedForTesting(uint64_t bufferId) { | 
 |     std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex); | 
 |     return std::any_of(mFramebufferImageCache.cbegin(), mFramebufferImageCache.cend(), | 
 |                        [=](std::pair<uint64_t, EGLImageKHR> image) { | 
 |                            return image.first == bufferId; | 
 |                        }); | 
 | } | 
 |  | 
 | // FlushTracer implementation | 
 | GLESRenderEngine::FlushTracer::FlushTracer(GLESRenderEngine* engine) : mEngine(engine) { | 
 |     mThread = std::thread(&GLESRenderEngine::FlushTracer::loop, this); | 
 | } | 
 |  | 
 | GLESRenderEngine::FlushTracer::~FlushTracer() { | 
 |     { | 
 |         std::lock_guard<std::mutex> lock(mMutex); | 
 |         mRunning = false; | 
 |     } | 
 |     mCondition.notify_all(); | 
 |     if (mThread.joinable()) { | 
 |         mThread.join(); | 
 |     } | 
 | } | 
 |  | 
 | void GLESRenderEngine::FlushTracer::queueSync(EGLSyncKHR sync) { | 
 |     std::lock_guard<std::mutex> lock(mMutex); | 
 |     char name[64]; | 
 |     const uint64_t frameNum = mFramesQueued++; | 
 |     snprintf(name, sizeof(name), "Queueing sync for frame: %lu", | 
 |              static_cast<unsigned long>(frameNum)); | 
 |     ATRACE_NAME(name); | 
 |     mQueue.push({sync, frameNum}); | 
 |     ATRACE_INT("GPU Frames Outstanding", mQueue.size()); | 
 |     mCondition.notify_one(); | 
 | } | 
 |  | 
 | void GLESRenderEngine::FlushTracer::loop() { | 
 |     while (mRunning) { | 
 |         QueueEntry entry; | 
 |         { | 
 |             std::lock_guard<std::mutex> lock(mMutex); | 
 |  | 
 |             mCondition.wait(mMutex, | 
 |                             [&]() REQUIRES(mMutex) { return !mQueue.empty() || !mRunning; }); | 
 |  | 
 |             if (!mRunning) { | 
 |                 // if mRunning is false, then FlushTracer is being destroyed, so | 
 |                 // bail out now. | 
 |                 break; | 
 |             } | 
 |             entry = mQueue.front(); | 
 |             mQueue.pop(); | 
 |         } | 
 |         { | 
 |             char name[64]; | 
 |             snprintf(name, sizeof(name), "waiting for frame %lu", | 
 |                      static_cast<unsigned long>(entry.mFrameNum)); | 
 |             ATRACE_NAME(name); | 
 |             mEngine->waitSync(entry.mSync, 0); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void GLESRenderEngine::handleShadow(const FloatRect& casterRect, float casterCornerRadius, | 
 |                                     const ShadowSettings& settings) { | 
 |     ATRACE_CALL(); | 
 |     const float casterZ = settings.length / 2.0f; | 
 |     const GLShadowVertexGenerator shadows(casterRect, casterCornerRadius, casterZ, | 
 |                                           settings.casterIsTranslucent, settings.ambientColor, | 
 |                                           settings.spotColor, settings.lightPos, | 
 |                                           settings.lightRadius); | 
 |  | 
 |     // setup mesh for both shadows | 
 |     Mesh mesh = Mesh::Builder() | 
 |                         .setPrimitive(Mesh::TRIANGLES) | 
 |                         .setVertices(shadows.getVertexCount(), 2 /* size */) | 
 |                         .setShadowAttrs() | 
 |                         .setIndices(shadows.getIndexCount()) | 
 |                         .build(); | 
 |  | 
 |     Mesh::VertexArray<vec2> position = mesh.getPositionArray<vec2>(); | 
 |     Mesh::VertexArray<vec4> shadowColor = mesh.getShadowColorArray<vec4>(); | 
 |     Mesh::VertexArray<vec3> shadowParams = mesh.getShadowParamsArray<vec3>(); | 
 |     shadows.fillVertices(position, shadowColor, shadowParams); | 
 |     shadows.fillIndices(mesh.getIndicesArray()); | 
 |  | 
 |     mState.cornerRadius = 0.0f; | 
 |     mState.drawShadows = true; | 
 |     setupLayerTexturing(mShadowTexture->getTexture()); | 
 |     drawMesh(mesh); | 
 |     mState.drawShadows = false; | 
 | } | 
 |  | 
 | } // namespace gl | 
 | } // namespace renderengine | 
 | } // namespace android |