|  | #include <gtest/gtest.h> | 
|  | #include <poll.h> | 
|  | #include <private/dvr/buffer_hub_client.h> | 
|  | #include <private/dvr/bufferhub_rpc.h> | 
|  | #include <sys/epoll.h> | 
|  | #include <sys/eventfd.h> | 
|  | #include <ui/BufferHubBuffer.h> | 
|  | #include <ui/DetachedBufferHandle.h> | 
|  |  | 
|  | #include <mutex> | 
|  | #include <thread> | 
|  |  | 
|  | #define RETRY_EINTR(fnc_call)                 \ | 
|  | ([&]() -> decltype(fnc_call) {              \ | 
|  | decltype(fnc_call) result;                \ | 
|  | do {                                      \ | 
|  | result = (fnc_call);                    \ | 
|  | } while (result == -1 && errno == EINTR); \ | 
|  | return result;                            \ | 
|  | })() | 
|  |  | 
|  | using android::BufferHubBuffer; | 
|  | using android::GraphicBuffer; | 
|  | using android::sp; | 
|  | using android::dvr::ConsumerBuffer; | 
|  | using android::dvr::ProducerBuffer; | 
|  | using android::dvr::BufferHubDefs::IsBufferAcquired; | 
|  | using android::dvr::BufferHubDefs::IsBufferGained; | 
|  | using android::dvr::BufferHubDefs::IsBufferPosted; | 
|  | using android::dvr::BufferHubDefs::IsBufferReleased; | 
|  | using android::dvr::BufferHubDefs::kConsumerStateMask; | 
|  | using android::dvr::BufferHubDefs::kMetadataHeaderSize; | 
|  | using android::dvr::BufferHubDefs::kProducerStateBit; | 
|  | using android::pdx::LocalChannelHandle; | 
|  | using android::pdx::LocalHandle; | 
|  | using android::pdx::Status; | 
|  |  | 
|  | const int kWidth = 640; | 
|  | const int kHeight = 480; | 
|  | const int kLayerCount = 1; | 
|  | const int kFormat = HAL_PIXEL_FORMAT_RGBA_8888; | 
|  | const int kUsage = 0; | 
|  | const size_t kUserMetadataSize = 0; | 
|  | const size_t kMaxConsumerCount = 63; | 
|  | const int kPollTimeoutMs = 100; | 
|  |  | 
|  | using LibBufferHubTest = ::testing::Test; | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestBasicUsage) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  | // Check that consumers can spawn other consumers. | 
|  | std::unique_ptr<ConsumerBuffer> c2 = | 
|  | ConsumerBuffer::Import(c->CreateConsumer()); | 
|  | ASSERT_TRUE(c2.get() != nullptr); | 
|  |  | 
|  | // Producer state mask is unique, i.e. 1. | 
|  | EXPECT_EQ(p->buffer_state_bit(), kProducerStateBit); | 
|  | // Consumer state mask cannot have producer bit on. | 
|  | EXPECT_EQ(c->buffer_state_bit() & kProducerStateBit, 0U); | 
|  | // Consumer state mask must be a single, i.e. power of 2. | 
|  | EXPECT_NE(c->buffer_state_bit(), 0U); | 
|  | EXPECT_EQ(c->buffer_state_bit() & (c->buffer_state_bit() - 1), 0U); | 
|  | // Consumer state mask cannot have producer bit on. | 
|  | EXPECT_EQ(c2->buffer_state_bit() & kProducerStateBit, 0U); | 
|  | // Consumer state mask must be a single, i.e. power of 2. | 
|  | EXPECT_NE(c2->buffer_state_bit(), 0U); | 
|  | EXPECT_EQ(c2->buffer_state_bit() & (c2->buffer_state_bit() - 1), 0U); | 
|  | // Each consumer should have unique bit. | 
|  | EXPECT_EQ(c->buffer_state_bit() & c2->buffer_state_bit(), 0U); | 
|  |  | 
|  | // Initial state: producer not available, consumers not available. | 
|  | EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); | 
|  |  | 
|  | EXPECT_EQ(0, p->Post(LocalHandle())); | 
|  |  | 
|  | // New state: producer not available, consumers available. | 
|  | EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(1, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(1, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); | 
|  |  | 
|  | LocalHandle fence; | 
|  | EXPECT_EQ(0, c->Acquire(&fence)); | 
|  | EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(1, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); | 
|  |  | 
|  | EXPECT_EQ(0, c2->Acquire(&fence)); | 
|  | EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  |  | 
|  | EXPECT_EQ(0, c->Release(LocalHandle())); | 
|  | EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, c2->Discard()); | 
|  |  | 
|  | EXPECT_EQ(1, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, p->Gain(&fence)); | 
|  | EXPECT_EQ(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestEpoll) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | LocalHandle epoll_fd{epoll_create1(EPOLL_CLOEXEC)}; | 
|  | ASSERT_TRUE(epoll_fd.IsValid()); | 
|  |  | 
|  | epoll_event event; | 
|  | std::array<epoll_event, 64> events; | 
|  |  | 
|  | auto event_sources = p->GetEventSources(); | 
|  | ASSERT_LT(event_sources.size(), events.size()); | 
|  |  | 
|  | for (const auto& event_source : event_sources) { | 
|  | event = {.events = event_source.event_mask | EPOLLET, | 
|  | .data = {.fd = p->event_fd()}}; | 
|  | ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd, | 
|  | &event)); | 
|  | } | 
|  |  | 
|  | event_sources = c->GetEventSources(); | 
|  | ASSERT_LT(event_sources.size(), events.size()); | 
|  |  | 
|  | for (const auto& event_source : event_sources) { | 
|  | event = {.events = event_source.event_mask | EPOLLET, | 
|  | .data = {.fd = c->event_fd()}}; | 
|  | ASSERT_EQ(0, epoll_ctl(epoll_fd.Get(), EPOLL_CTL_ADD, event_source.event_fd, | 
|  | &event)); | 
|  | } | 
|  |  | 
|  | // No events should be signaled initially. | 
|  | ASSERT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), 0)); | 
|  |  | 
|  | // Post the producer and check for consumer signal. | 
|  | EXPECT_EQ(0, p->Post({})); | 
|  | ASSERT_EQ(1, epoll_wait(epoll_fd.Get(), events.data(), events.size(), | 
|  | kPollTimeoutMs)); | 
|  | ASSERT_TRUE(events[0].events & EPOLLIN); | 
|  | ASSERT_EQ(c->event_fd(), events[0].data.fd); | 
|  |  | 
|  | // Save the event bits to translate later. | 
|  | event = events[0]; | 
|  |  | 
|  | // Check for events again. Edge-triggered mode should prevent any. | 
|  | EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), | 
|  | kPollTimeoutMs)); | 
|  | EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), | 
|  | kPollTimeoutMs)); | 
|  | EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), | 
|  | kPollTimeoutMs)); | 
|  | EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), | 
|  | kPollTimeoutMs)); | 
|  |  | 
|  | // Translate the events. | 
|  | auto event_status = c->GetEventMask(event.events); | 
|  | ASSERT_TRUE(event_status); | 
|  | ASSERT_TRUE(event_status.get() & EPOLLIN); | 
|  |  | 
|  | // Check for events again. Edge-triggered mode should prevent any. | 
|  | EXPECT_EQ(0, epoll_wait(epoll_fd.Get(), events.data(), events.size(), | 
|  | kPollTimeoutMs)); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestStateMask) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  |  | 
|  | // It's ok to create up to kMaxConsumerCount consumer buffers. | 
|  | uint64_t buffer_state_bits = p->buffer_state_bit(); | 
|  | std::array<std::unique_ptr<ConsumerBuffer>, kMaxConsumerCount> cs; | 
|  | for (size_t i = 0; i < kMaxConsumerCount; i++) { | 
|  | cs[i] = ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(cs[i].get() != nullptr); | 
|  | // Expect all buffers have unique state mask. | 
|  | EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0U); | 
|  | buffer_state_bits |= cs[i]->buffer_state_bit(); | 
|  | } | 
|  | EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask); | 
|  |  | 
|  | // The 64th creation will fail with out-of-memory error. | 
|  | auto state = p->CreateConsumer(); | 
|  | EXPECT_EQ(state.error(), E2BIG); | 
|  |  | 
|  | // Release any consumer should allow us to re-create. | 
|  | for (size_t i = 0; i < kMaxConsumerCount; i++) { | 
|  | buffer_state_bits &= ~cs[i]->buffer_state_bit(); | 
|  | cs[i] = nullptr; | 
|  | cs[i] = ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(cs[i].get() != nullptr); | 
|  | // The released state mask will be reused. | 
|  | EXPECT_EQ(buffer_state_bits & cs[i]->buffer_state_bit(), 0U); | 
|  | buffer_state_bits |= cs[i]->buffer_state_bit(); | 
|  | EXPECT_EQ(buffer_state_bits, kProducerStateBit | kConsumerStateMask); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestStateTransitions) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | uint64_t context; | 
|  | LocalHandle fence; | 
|  |  | 
|  | // The producer buffer starts in gained state. | 
|  |  | 
|  | // Acquire, release, and gain in gained state should fail. | 
|  | EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); | 
|  | EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); | 
|  | EXPECT_EQ(-EALREADY, p->Gain(&fence)); | 
|  |  | 
|  | // Post in gained state should succeed. | 
|  | EXPECT_EQ(0, p->Post(LocalHandle())); | 
|  |  | 
|  | // Post, release, and gain in posted state should fail. | 
|  | EXPECT_EQ(-EBUSY, p->Post(LocalHandle())); | 
|  | EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); | 
|  | EXPECT_EQ(-EBUSY, p->Gain(&fence)); | 
|  |  | 
|  | // Acquire in posted state should succeed. | 
|  | EXPECT_LE(0, c->Acquire(&fence, &context)); | 
|  |  | 
|  | // Acquire, post, and gain in acquired state should fail. | 
|  | EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); | 
|  | EXPECT_EQ(-EBUSY, p->Post(LocalHandle())); | 
|  | EXPECT_EQ(-EBUSY, p->Gain(&fence)); | 
|  |  | 
|  | // Release in acquired state should succeed. | 
|  | EXPECT_EQ(0, c->Release(LocalHandle())); | 
|  | EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  |  | 
|  | // Release, acquire, and post in released state should fail. | 
|  | EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); | 
|  | EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); | 
|  | EXPECT_EQ(-EBUSY, p->Post(LocalHandle())); | 
|  |  | 
|  | // Gain in released state should succeed. | 
|  | EXPECT_EQ(0, p->Gain(&fence)); | 
|  |  | 
|  | // Acquire, release, and gain in gained state should fail. | 
|  | EXPECT_EQ(-EBUSY, c->Acquire(&fence, &context)); | 
|  | EXPECT_EQ(-EBUSY, c->Release(LocalHandle())); | 
|  | EXPECT_EQ(-EALREADY, p->Gain(&fence)); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestAsyncStateTransitions) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | DvrNativeBufferMetadata metadata; | 
|  | LocalHandle invalid_fence; | 
|  |  | 
|  | // The producer buffer starts in gained state. | 
|  |  | 
|  | // Acquire, release, and gain in gained state should fail. | 
|  | EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  | EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); | 
|  | EXPECT_EQ(-EALREADY, p->GainAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  |  | 
|  | // Post in gained state should succeed. | 
|  | EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); | 
|  | EXPECT_EQ(p->buffer_state(), c->buffer_state()); | 
|  | EXPECT_TRUE(IsBufferPosted(p->buffer_state())); | 
|  |  | 
|  | // Post, release, and gain in posted state should fail. | 
|  | EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); | 
|  | EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); | 
|  | EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  |  | 
|  | // Acquire in posted state should succeed. | 
|  | EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  | EXPECT_EQ(p->buffer_state(), c->buffer_state()); | 
|  | EXPECT_TRUE(IsBufferAcquired(p->buffer_state())); | 
|  |  | 
|  | // Acquire, post, and gain in acquired state should fail. | 
|  | EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  | EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); | 
|  | EXPECT_EQ(-EBUSY, p->GainAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  |  | 
|  | // Release in acquired state should succeed. | 
|  | EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence)); | 
|  | EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(p->buffer_state(), c->buffer_state()); | 
|  | EXPECT_TRUE(IsBufferReleased(p->buffer_state())); | 
|  |  | 
|  | // Release, acquire, and post in released state should fail. | 
|  | EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); | 
|  | EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  | EXPECT_EQ(-EBUSY, p->PostAsync(&metadata, invalid_fence)); | 
|  |  | 
|  | // Gain in released state should succeed. | 
|  | EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  | EXPECT_EQ(p->buffer_state(), c->buffer_state()); | 
|  | EXPECT_TRUE(IsBufferGained(p->buffer_state())); | 
|  |  | 
|  | // Acquire, release, and gain in gained state should fail. | 
|  | EXPECT_EQ(-EBUSY, c->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  | EXPECT_EQ(-EBUSY, c->ReleaseAsync(&metadata, invalid_fence)); | 
|  | EXPECT_EQ(-EALREADY, p->GainAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_FALSE(invalid_fence.IsValid()); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestZeroConsumer) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  |  | 
|  | DvrNativeBufferMetadata metadata; | 
|  | LocalHandle invalid_fence; | 
|  |  | 
|  | // Newly created. | 
|  | EXPECT_TRUE(IsBufferGained(p->buffer_state())); | 
|  | EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); | 
|  | EXPECT_TRUE(IsBufferPosted(p->buffer_state())); | 
|  |  | 
|  | // The buffer should stay in posted stay until a consumer picks it up. | 
|  | EXPECT_GE(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  |  | 
|  | // A new consumer should still be able to acquire the buffer immediately. | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  | EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_TRUE(IsBufferAcquired(c->buffer_state())); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestMaxConsumers) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  |  | 
|  | std::array<std::unique_ptr<ConsumerBuffer>, kMaxConsumerCount> cs; | 
|  | for (size_t i = 0; i < kMaxConsumerCount; i++) { | 
|  | cs[i] = ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(cs[i].get() != nullptr); | 
|  | EXPECT_TRUE(IsBufferGained(cs[i]->buffer_state())); | 
|  | } | 
|  |  | 
|  | DvrNativeBufferMetadata metadata; | 
|  | LocalHandle invalid_fence; | 
|  |  | 
|  | // Post the producer should trigger all consumers to be available. | 
|  | EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); | 
|  | EXPECT_TRUE(IsBufferPosted(p->buffer_state())); | 
|  | for (size_t i = 0; i < kMaxConsumerCount; i++) { | 
|  | EXPECT_TRUE( | 
|  | IsBufferPosted(cs[i]->buffer_state(), cs[i]->buffer_state_bit())); | 
|  | EXPECT_LT(0, RETRY_EINTR(cs[i]->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, cs[i]->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_TRUE(IsBufferAcquired(p->buffer_state())); | 
|  | } | 
|  |  | 
|  | // All consumers have to release before the buffer is considered to be | 
|  | // released. | 
|  | for (size_t i = 0; i < kMaxConsumerCount; i++) { | 
|  | EXPECT_FALSE(IsBufferReleased(p->buffer_state())); | 
|  | EXPECT_EQ(0, cs[i]->ReleaseAsync(&metadata, invalid_fence)); | 
|  | } | 
|  |  | 
|  | EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_TRUE(IsBufferReleased(p->buffer_state())); | 
|  |  | 
|  | // Buffer state cross all clients must be consistent. | 
|  | for (size_t i = 0; i < kMaxConsumerCount; i++) { | 
|  | EXPECT_EQ(p->buffer_state(), cs[i]->buffer_state()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferGained) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | EXPECT_TRUE(IsBufferGained(p->buffer_state())); | 
|  |  | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  | EXPECT_TRUE(IsBufferGained(c->buffer_state())); | 
|  |  | 
|  | DvrNativeBufferMetadata metadata; | 
|  | LocalHandle invalid_fence; | 
|  |  | 
|  | // Post the gained buffer should signal already created consumer. | 
|  | EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); | 
|  | EXPECT_TRUE(IsBufferPosted(p->buffer_state())); | 
|  | EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_TRUE(IsBufferAcquired(c->buffer_state())); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferPosted) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | EXPECT_TRUE(IsBufferGained(p->buffer_state())); | 
|  |  | 
|  | DvrNativeBufferMetadata metadata; | 
|  | LocalHandle invalid_fence; | 
|  |  | 
|  | // Post the gained buffer before any consumer gets created. | 
|  | EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); | 
|  | EXPECT_TRUE(IsBufferPosted(p->buffer_state())); | 
|  |  | 
|  | // Newly created consumer should be automatically sigalled. | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  | EXPECT_TRUE(IsBufferPosted(c->buffer_state())); | 
|  | EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_TRUE(IsBufferAcquired(c->buffer_state())); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestCreateConsumerWhenBufferReleased) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  |  | 
|  | std::unique_ptr<ConsumerBuffer> c1 = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c1.get() != nullptr); | 
|  |  | 
|  | DvrNativeBufferMetadata metadata; | 
|  | LocalHandle invalid_fence; | 
|  |  | 
|  | // Post, acquire, and release the buffer.. | 
|  | EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); | 
|  | EXPECT_LT(0, RETRY_EINTR(c1->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, c1->AcquireAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_EQ(0, c1->ReleaseAsync(&metadata, invalid_fence)); | 
|  |  | 
|  | // Note that the next PDX call is on the producer channel, which may be | 
|  | // executed before Release impulse gets executed by bufferhubd. Thus, here we | 
|  | // need to wait until the releasd is confirmed before creating another | 
|  | // consumer. | 
|  | EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_TRUE(IsBufferReleased(p->buffer_state())); | 
|  |  | 
|  | // Create another consumer immediately after the release, should not make the | 
|  | // buffer un-released. | 
|  | std::unique_ptr<ConsumerBuffer> c2 = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c2.get() != nullptr); | 
|  |  | 
|  | EXPECT_TRUE(IsBufferReleased(p->buffer_state())); | 
|  | EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); | 
|  | EXPECT_TRUE(IsBufferGained(p->buffer_state())); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestWithCustomMetadata) { | 
|  | struct Metadata { | 
|  | int64_t field1; | 
|  | int64_t field2; | 
|  | }; | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  | Metadata m = {1, 3}; | 
|  | EXPECT_EQ(0, p->Post(LocalHandle(), &m, sizeof(Metadata))); | 
|  | EXPECT_LE(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  | LocalHandle fence; | 
|  | Metadata m2 = {}; | 
|  | EXPECT_EQ(0, c->Acquire(&fence, &m2)); | 
|  | EXPECT_EQ(m.field1, m2.field1); | 
|  | EXPECT_EQ(m.field2, m2.field2); | 
|  | EXPECT_EQ(0, c->Release(LocalHandle())); | 
|  | EXPECT_LT(0, RETRY_EINTR(p->Poll(0))); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestPostWithWrongMetaSize) { | 
|  | struct Metadata { | 
|  | int64_t field1; | 
|  | int64_t field2; | 
|  | }; | 
|  | struct OverSizedMetadata { | 
|  | int64_t field1; | 
|  | int64_t field2; | 
|  | int64_t field3; | 
|  | }; | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | // It is illegal to post metadata larger than originally requested during | 
|  | // buffer allocation. | 
|  | OverSizedMetadata evil_meta = {}; | 
|  | EXPECT_NE(0, p->Post(LocalHandle(), &evil_meta, sizeof(OverSizedMetadata))); | 
|  | EXPECT_GE(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  |  | 
|  | // It is ok to post metadata smaller than originally requested during | 
|  | // buffer allocation. | 
|  | EXPECT_EQ(0, p->Post(LocalHandle())); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestAcquireWithWrongMetaSize) { | 
|  | struct Metadata { | 
|  | int64_t field1; | 
|  | int64_t field2; | 
|  | }; | 
|  | struct OverSizedMetadata { | 
|  | int64_t field1; | 
|  | int64_t field2; | 
|  | int64_t field3; | 
|  | }; | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(Metadata)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | Metadata m = {1, 3}; | 
|  | EXPECT_EQ(0, p->Post(LocalHandle(), &m, sizeof(m))); | 
|  |  | 
|  | LocalHandle fence; | 
|  | int64_t sequence; | 
|  | OverSizedMetadata e; | 
|  |  | 
|  | // It is illegal to acquire metadata larger than originally requested during | 
|  | // buffer allocation. | 
|  | EXPECT_NE(0, c->Acquire(&fence, &e)); | 
|  |  | 
|  | // It is ok to acquire metadata smaller than originally requested during | 
|  | // buffer allocation. | 
|  | EXPECT_EQ(0, c->Acquire(&fence, &sequence)); | 
|  | EXPECT_EQ(m.field1, sequence); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestAcquireWithNoMeta) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | int64_t sequence = 3; | 
|  | EXPECT_EQ(0, p->Post(LocalHandle(), &sequence, sizeof(sequence))); | 
|  |  | 
|  | LocalHandle fence; | 
|  | EXPECT_EQ(0, c->Acquire(&fence)); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestWithNoMeta) { | 
|  | std::unique_ptr<ProducerBuffer> p = | 
|  | ProducerBuffer::Create(kWidth, kHeight, kFormat, kUsage); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | LocalHandle fence; | 
|  |  | 
|  | EXPECT_EQ(0, p->Post(LocalHandle())); | 
|  | EXPECT_EQ(0, c->Acquire(&fence)); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestFailureToPostMetaFromABufferWithoutMeta) { | 
|  | std::unique_ptr<ProducerBuffer> p = | 
|  | ProducerBuffer::Create(kWidth, kHeight, kFormat, kUsage); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | int64_t sequence = 3; | 
|  | EXPECT_NE(0, p->Post(LocalHandle(), &sequence, sizeof(sequence))); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | int PollFd(int fd, int timeout_ms) { | 
|  | pollfd p = {fd, POLLIN, 0}; | 
|  | return poll(&p, 1, timeout_ms); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestAcquireFence) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, /*metadata_size=*/0); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | DvrNativeBufferMetadata meta; | 
|  | LocalHandle f1(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); | 
|  |  | 
|  | // Post with unsignaled fence. | 
|  | EXPECT_EQ(0, p->PostAsync(&meta, f1)); | 
|  |  | 
|  | // Should acquire a valid fence. | 
|  | LocalHandle f2; | 
|  | EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, c->AcquireAsync(&meta, &f2)); | 
|  | EXPECT_TRUE(f2.IsValid()); | 
|  | // The original fence and acquired fence should have different fd number. | 
|  | EXPECT_NE(f1.Get(), f2.Get()); | 
|  | EXPECT_GE(0, PollFd(f2.Get(), 0)); | 
|  |  | 
|  | // Signal the original fence will trigger the new fence. | 
|  | eventfd_write(f1.Get(), 1); | 
|  | // Now the original FD has been signaled. | 
|  | EXPECT_LT(0, PollFd(f2.Get(), kPollTimeoutMs)); | 
|  |  | 
|  | // Release the consumer with an invalid fence. | 
|  | EXPECT_EQ(0, c->ReleaseAsync(&meta, LocalHandle())); | 
|  |  | 
|  | // Should gain an invalid fence. | 
|  | LocalHandle f3; | 
|  | EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, p->GainAsync(&meta, &f3)); | 
|  | EXPECT_FALSE(f3.IsValid()); | 
|  |  | 
|  | // Post with a signaled fence. | 
|  | EXPECT_EQ(0, p->PostAsync(&meta, f1)); | 
|  |  | 
|  | // Should acquire a valid fence and it's already signalled. | 
|  | LocalHandle f4; | 
|  | EXPECT_LT(0, RETRY_EINTR(c->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, c->AcquireAsync(&meta, &f4)); | 
|  | EXPECT_TRUE(f4.IsValid()); | 
|  | EXPECT_LT(0, PollFd(f4.Get(), kPollTimeoutMs)); | 
|  |  | 
|  | // Release with an unsignalled fence and signal it immediately after release | 
|  | // without producer gainning. | 
|  | LocalHandle f5(eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK)); | 
|  | EXPECT_EQ(0, c->ReleaseAsync(&meta, f5)); | 
|  | eventfd_write(f5.Get(), 1); | 
|  |  | 
|  | // Should gain a valid fence, which is already signaled. | 
|  | LocalHandle f6; | 
|  | EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(0, p->GainAsync(&meta, &f6)); | 
|  | EXPECT_TRUE(f6.IsValid()); | 
|  | EXPECT_LT(0, PollFd(f6.Get(), kPollTimeoutMs)); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestOrphanedAcquire) { | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | std::unique_ptr<ConsumerBuffer> c1 = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c1.get() != nullptr); | 
|  | const uint64_t consumer_state_bit1 = c1->buffer_state_bit(); | 
|  |  | 
|  | DvrNativeBufferMetadata meta; | 
|  | EXPECT_EQ(0, p->PostAsync(&meta, LocalHandle())); | 
|  |  | 
|  | LocalHandle fence; | 
|  | EXPECT_LT(0, RETRY_EINTR(c1->Poll(kPollTimeoutMs))); | 
|  | EXPECT_LE(0, c1->AcquireAsync(&meta, &fence)); | 
|  | // Destroy the consumer now will make it orphaned and the buffer is still | 
|  | // acquired. | 
|  | c1 = nullptr; | 
|  | EXPECT_GE(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  |  | 
|  | std::unique_ptr<ConsumerBuffer> c2 = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c2.get() != nullptr); | 
|  | const uint64_t consumer_state_bit2 = c2->buffer_state_bit(); | 
|  | EXPECT_NE(consumer_state_bit1, consumer_state_bit2); | 
|  |  | 
|  | // The new consumer is available for acquire. | 
|  | EXPECT_LT(0, RETRY_EINTR(c2->Poll(kPollTimeoutMs))); | 
|  | EXPECT_LE(0, c2->AcquireAsync(&meta, &fence)); | 
|  | // Releasing the consumer makes the buffer gainable. | 
|  | EXPECT_EQ(0, c2->ReleaseAsync(&meta, LocalHandle())); | 
|  |  | 
|  | // The buffer is now available for the producer to gain. | 
|  | EXPECT_LT(0, RETRY_EINTR(p->Poll(kPollTimeoutMs))); | 
|  |  | 
|  | // But if another consumer is created in released state. | 
|  | std::unique_ptr<ConsumerBuffer> c3 = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(c3.get() != nullptr); | 
|  | const uint64_t consumer_state_bit3 = c3->buffer_state_bit(); | 
|  | EXPECT_NE(consumer_state_bit2, consumer_state_bit3); | 
|  | // The consumer buffer is not acquirable. | 
|  | EXPECT_GE(0, RETRY_EINTR(c3->Poll(kPollTimeoutMs))); | 
|  | EXPECT_EQ(-EBUSY, c3->AcquireAsync(&meta, &fence)); | 
|  |  | 
|  | // Producer should be able to gain no matter what. | 
|  | EXPECT_EQ(0, p->GainAsync(&meta, &fence)); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestDetachBufferFromProducer) { | 
|  | // TODO(b/112338294) rewrite test after migration | 
|  | return; | 
|  |  | 
|  | std::unique_ptr<ProducerBuffer> p = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | std::unique_ptr<ConsumerBuffer> c = | 
|  | ConsumerBuffer::Import(p->CreateConsumer()); | 
|  | ASSERT_TRUE(p.get() != nullptr); | 
|  | ASSERT_TRUE(c.get() != nullptr); | 
|  |  | 
|  | DvrNativeBufferMetadata metadata; | 
|  | LocalHandle invalid_fence; | 
|  | int p_id = p->id(); | 
|  |  | 
|  | // Detach in posted state should fail. | 
|  | EXPECT_EQ(0, p->PostAsync(&metadata, invalid_fence)); | 
|  | EXPECT_GT(RETRY_EINTR(c->Poll(kPollTimeoutMs)), 0); | 
|  | auto s1 = p->Detach(); | 
|  | EXPECT_FALSE(s1); | 
|  |  | 
|  | // Detach in acquired state should fail. | 
|  | EXPECT_EQ(0, c->AcquireAsync(&metadata, &invalid_fence)); | 
|  | s1 = p->Detach(); | 
|  | EXPECT_FALSE(s1); | 
|  |  | 
|  | // Detach in released state should fail. | 
|  | EXPECT_EQ(0, c->ReleaseAsync(&metadata, invalid_fence)); | 
|  | EXPECT_GT(RETRY_EINTR(p->Poll(kPollTimeoutMs)), 0); | 
|  | s1 = p->Detach(); | 
|  | EXPECT_FALSE(s1); | 
|  |  | 
|  | // Detach in gained state should succeed. | 
|  | EXPECT_EQ(0, p->GainAsync(&metadata, &invalid_fence)); | 
|  | s1 = p->Detach(); | 
|  | EXPECT_TRUE(s1); | 
|  |  | 
|  | LocalChannelHandle handle = s1.take(); | 
|  | EXPECT_TRUE(handle.valid()); | 
|  |  | 
|  | // Both producer and consumer should have hangup. | 
|  | EXPECT_GT(RETRY_EINTR(p->Poll(kPollTimeoutMs)), 0); | 
|  | auto s2 = p->GetEventMask(POLLHUP); | 
|  | EXPECT_TRUE(s2); | 
|  | EXPECT_EQ(s2.get(), POLLHUP); | 
|  |  | 
|  | EXPECT_GT(RETRY_EINTR(c->Poll(kPollTimeoutMs)), 0); | 
|  | s2 = p->GetEventMask(POLLHUP); | 
|  | EXPECT_TRUE(s2); | 
|  | EXPECT_EQ(s2.get(), POLLHUP); | 
|  |  | 
|  | auto s3 = p->CreateConsumer(); | 
|  | EXPECT_FALSE(s3); | 
|  | // Note that here the expected error code is EOPNOTSUPP as the socket towards | 
|  | // ProducerChannel has been teared down. | 
|  | EXPECT_EQ(s3.error(), EOPNOTSUPP); | 
|  |  | 
|  | s3 = c->CreateConsumer(); | 
|  | EXPECT_FALSE(s3); | 
|  | // Note that here the expected error code is EPIPE returned from | 
|  | // ConsumerChannel::HandleMessage as the socket is still open but the producer | 
|  | // is gone. | 
|  | EXPECT_EQ(s3.error(), EPIPE); | 
|  |  | 
|  | // Detached buffer handle can be use to construct a new BufferHubBuffer | 
|  | // object. | 
|  | auto d = BufferHubBuffer::Import(std::move(handle)); | 
|  | EXPECT_FALSE(handle.valid()); | 
|  | EXPECT_TRUE(d->IsConnected()); | 
|  | EXPECT_TRUE(d->IsValid()); | 
|  |  | 
|  | EXPECT_EQ(d->id(), p_id); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestCreateBufferHubBufferFails) { | 
|  | // Buffer Creation will fail: BLOB format requires height to be 1. | 
|  | auto b1 = BufferHubBuffer::Create(kWidth, /*height=2*/ 2, kLayerCount, | 
|  | /*format=*/HAL_PIXEL_FORMAT_BLOB, kUsage, | 
|  | kUserMetadataSize); | 
|  |  | 
|  | EXPECT_FALSE(b1->IsConnected()); | 
|  | EXPECT_FALSE(b1->IsValid()); | 
|  |  | 
|  | // Buffer Creation will fail: user metadata size too large. | 
|  | auto b2 = BufferHubBuffer::Create( | 
|  | kWidth, kHeight, kLayerCount, kFormat, kUsage, | 
|  | /*user_metadata_size=*/std::numeric_limits<size_t>::max()); | 
|  |  | 
|  | EXPECT_FALSE(b2->IsConnected()); | 
|  | EXPECT_FALSE(b2->IsValid()); | 
|  |  | 
|  | // Buffer Creation will fail: user metadata size too large. | 
|  | auto b3 = BufferHubBuffer::Create( | 
|  | kWidth, kHeight, kLayerCount, kFormat, kUsage, | 
|  | /*user_metadata_size=*/std::numeric_limits<size_t>::max() - | 
|  | kMetadataHeaderSize); | 
|  |  | 
|  | EXPECT_FALSE(b3->IsConnected()); | 
|  | EXPECT_FALSE(b3->IsValid()); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestCreateBufferHubBuffer) { | 
|  | auto b1 = BufferHubBuffer::Create(kWidth, kHeight, kLayerCount, kFormat, | 
|  | kUsage, kUserMetadataSize); | 
|  | EXPECT_TRUE(b1->IsConnected()); | 
|  | EXPECT_TRUE(b1->IsValid()); | 
|  | EXPECT_NE(b1->id(), 0); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestPromoteBufferHubBuffer) { | 
|  | // TODO(b/112338294) rewrite test after migration | 
|  | return; | 
|  |  | 
|  | auto b1 = BufferHubBuffer::Create(kWidth, kHeight, kLayerCount, kFormat, | 
|  | kUsage, kUserMetadataSize); | 
|  | int b1_id = b1->id(); | 
|  | EXPECT_TRUE(b1->IsValid()); | 
|  |  | 
|  | auto status_or_handle = b1->Promote(); | 
|  | EXPECT_TRUE(status_or_handle); | 
|  |  | 
|  | // The detached buffer should have hangup. | 
|  | EXPECT_GT(RETRY_EINTR(b1->Poll(kPollTimeoutMs)), 0); | 
|  | auto status_or_int = b1->GetEventMask(POLLHUP); | 
|  | EXPECT_TRUE(status_or_int.ok()); | 
|  | EXPECT_EQ(status_or_int.get(), POLLHUP); | 
|  |  | 
|  | // The buffer client is still considered as connected but invalid. | 
|  | EXPECT_TRUE(b1->IsConnected()); | 
|  | EXPECT_FALSE(b1->IsValid()); | 
|  |  | 
|  | // Gets the channel handle for the producer. | 
|  | LocalChannelHandle h1 = status_or_handle.take(); | 
|  | EXPECT_TRUE(h1.valid()); | 
|  |  | 
|  | std::unique_ptr<ProducerBuffer> p1 = ProducerBuffer::Import(std::move(h1)); | 
|  | EXPECT_FALSE(h1.valid()); | 
|  | ASSERT_TRUE(p1 != nullptr); | 
|  | int p1_id = p1->id(); | 
|  |  | 
|  | // A newly promoted ProducerBuffer should inherit the same buffer id. | 
|  | EXPECT_EQ(b1_id, p1_id); | 
|  | EXPECT_TRUE(IsBufferGained(p1->buffer_state())); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestDetachThenPromote) { | 
|  | // TODO(b/112338294) rewrite test after migration | 
|  | return; | 
|  |  | 
|  | std::unique_ptr<ProducerBuffer> p1 = ProducerBuffer::Create( | 
|  | kWidth, kHeight, kFormat, kUsage, sizeof(uint64_t)); | 
|  | ASSERT_TRUE(p1.get() != nullptr); | 
|  | int p1_id = p1->id(); | 
|  |  | 
|  | // Detached the producer. | 
|  | auto status_or_handle = p1->Detach(); | 
|  | EXPECT_TRUE(status_or_handle.ok()); | 
|  | LocalChannelHandle h1 = status_or_handle.take(); | 
|  | EXPECT_TRUE(h1.valid()); | 
|  |  | 
|  | // Detached buffer handle can be use to construct a new BufferHubBuffer | 
|  | // object. | 
|  | auto b1 = BufferHubBuffer::Import(std::move(h1)); | 
|  | EXPECT_FALSE(h1.valid()); | 
|  | EXPECT_TRUE(b1->IsValid()); | 
|  | int b1_id = b1->id(); | 
|  | EXPECT_EQ(b1_id, p1_id); | 
|  |  | 
|  | // Promote the detached buffer. | 
|  | status_or_handle = b1->Promote(); | 
|  | // The buffer client is still considered as connected but invalid. | 
|  | EXPECT_TRUE(b1->IsConnected()); | 
|  | EXPECT_FALSE(b1->IsValid()); | 
|  | EXPECT_TRUE(status_or_handle.ok()); | 
|  |  | 
|  | // Gets the channel handle for the producer. | 
|  | LocalChannelHandle h2 = status_or_handle.take(); | 
|  | EXPECT_TRUE(h2.valid()); | 
|  |  | 
|  | std::unique_ptr<ProducerBuffer> p2 = ProducerBuffer::Import(std::move(h2)); | 
|  | EXPECT_FALSE(h2.valid()); | 
|  | ASSERT_TRUE(p2 != nullptr); | 
|  | int p2_id = p2->id(); | 
|  |  | 
|  | // A newly promoted ProducerBuffer should inherit the same buffer id. | 
|  | EXPECT_EQ(b1_id, p2_id); | 
|  | EXPECT_TRUE(IsBufferGained(p2->buffer_state())); | 
|  | } | 
|  |  | 
|  | TEST_F(LibBufferHubTest, TestDuplicateBufferHubBuffer) { | 
|  | auto b1 = BufferHubBuffer::Create(kWidth, kHeight, kLayerCount, kFormat, | 
|  | kUsage, kUserMetadataSize); | 
|  | int b1_id = b1->id(); | 
|  | EXPECT_TRUE(b1->IsValid()); | 
|  | EXPECT_EQ(b1->user_metadata_size(), kUserMetadataSize); | 
|  |  | 
|  | auto status_or_handle = b1->Duplicate(); | 
|  | EXPECT_TRUE(status_or_handle); | 
|  |  | 
|  | // The detached buffer should still be valid. | 
|  | EXPECT_TRUE(b1->IsConnected()); | 
|  | EXPECT_TRUE(b1->IsValid()); | 
|  |  | 
|  | // Gets the channel handle for the duplicated buffer. | 
|  | LocalChannelHandle h2 = status_or_handle.take(); | 
|  | EXPECT_TRUE(h2.valid()); | 
|  |  | 
|  | std::unique_ptr<BufferHubBuffer> b2 = BufferHubBuffer::Import(std::move(h2)); | 
|  | EXPECT_FALSE(h2.valid()); | 
|  | ASSERT_TRUE(b2 != nullptr); | 
|  | EXPECT_TRUE(b2->IsValid()); | 
|  | EXPECT_EQ(b2->user_metadata_size(), kUserMetadataSize); | 
|  |  | 
|  | int b2_id = b2->id(); | 
|  |  | 
|  | // These two buffer instances are based on the same physical buffer under the | 
|  | // hood, so they should share the same id. | 
|  | EXPECT_EQ(b1_id, b2_id); | 
|  | // We use buffer_state_bit() to tell those two instances apart. | 
|  | EXPECT_NE(b1->buffer_state_bit(), b2->buffer_state_bit()); | 
|  | EXPECT_NE(b1->buffer_state_bit(), 0ULL); | 
|  | EXPECT_NE(b2->buffer_state_bit(), 0ULL); | 
|  | EXPECT_NE(b1->buffer_state_bit(), kProducerStateBit); | 
|  | EXPECT_NE(b2->buffer_state_bit(), kProducerStateBit); | 
|  |  | 
|  | // Both buffer instances should be in gained state. | 
|  | EXPECT_TRUE(IsBufferGained(b1->buffer_state())); | 
|  | EXPECT_TRUE(IsBufferGained(b2->buffer_state())); | 
|  |  | 
|  | // TODO(b/112338294) rewrite test after migration | 
|  | return; | 
|  |  | 
|  | // Promote the detached buffer should fail as b1 is no longer the exclusive | 
|  | // owner of the buffer.. | 
|  | status_or_handle = b1->Promote(); | 
|  | EXPECT_FALSE(status_or_handle.ok()); | 
|  | EXPECT_EQ(status_or_handle.error(), EINVAL); | 
|  | } |